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Abstract: In the contemporary energy landscape, power generation comprises a blend of renewable
and non-renewable resources, with the major supply of electrical energy fulfilled by non-renewable
sources, including coal and gas, among others. Renewable energy resources are challenged by their
dependency on unpredictable weather conditions. For instance, solar energy hinges on clear skies,
and wind energy relies on consistent and sufficient wind flow. However, as a consequence of the
finite supply and detrimental environmental impact associated with non-renewable energy sources,
it is required to reduce dependence on such non-renewable sources. This can be achieved by precisely
predicting the generation of renewable energy using a data-driven approach. The prediction accuracy
for electric load plays a very significant role in this system. If we have an appropriate estimate of
residential and commercial load, then a strategy could be defined for the efficient supply to them
by renewable and non-renewable energy sources through a smart grid, which analyzes the demand-
supply and devises the supply mechanism accordingly. Predicting all such components, i.e., power
generation and load forecasting, involves a data-driven approach where sensitive data (such as user
electricity consumption patterns and weather data near power generation setups) is used for model
training, raising the issue of data privacy and security concerns. Hence, the work proposes Federated
Smart Grid (FedGrid), a secure framework that would be able to predict the generation of renewable
energy and forecast electric load in a privacy-oriented approach through federated learning. The
framework collectively analyzes all such predictive models for efficient electric supply.

Keywords: federated learning; smart grid; renewable energy; load prediction; power generation
prediction; privacy-preserving machine learning

1. Introduction

Energy management serves as a bridge between demand and supply by entailing the
systematic control and optimization of energy resources, encompassing their generation,
distribution, and consumption. It provides a balance between sustainable, eco-friendly
options and the efficient, responsible utilization of finite resources. This practice has broad
applicability across various domains, from industrial operations to individual households.
Effective energy management aims to achieve a state of equilibrium, where energy is
harnessed efficiently while minimizing adverse environmental impacts. This approach
results in reduced greenhouse gas emissions, heightened energy security, and decreased
operational costs.

The smart grid is an advanced electrical system [1] that plays a crucial role in efficient
management of energy demand and supply. It leverages digital technology, including
smart meters, IoT devices, distributed energy resources, and data analytics. The smart
grid facilitates real-time communication and control, integrates renewable sources, opti-
mizes energy usage between renewable and non-renewable resources, and enhances grid
reliability, as depicted in Figure 1.
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Figure 1. Smart power grid [2].

Electrical energy generation employs various energy resources, primarily categorized
into renewable energy resources (RER) and non-renewable energy resources (NRERs).
Renewable energy resources encompass solar energy (photovoltaic (PV)), wind energy (via
windmills), and hydroelectric power. These energy sources harness natural elements such as
sunlight, wind, and water bodies to generate electrical energy indefinitely. The exceptional
capabilities of renewable resources make them essential for a sustainable and eco-friendly
future. The energy generation from RERs is highly variable, and is primarily dependent on
weather conditions such as sunlight, rain, clouds, wind speed, temperature, and storms.
For instance, energy generated through photovoltaic (PV) panels (solar energy) relies
heavily on the amount of solar radiation reaching the panels, with solar radiation playing a
pivotal role in their efficiency. Any weather changes, such as cloud cover, can reduce power
generation in solar panels. Similarly, power generation from windmills depends on wind
energy, with speed and wind direction significantly influencing energy production.

In contrast, non-renewable energy resources include fossil fuels such as coal, oil, and
natural gas, which are widely used for electricity generation. The statistics [3] corresponding
to the energy share indicate that non-renewable resources have a significant share in electricity
production compared with renewable energy sources. However, NRERs are finite and un-
sustainable, with detrimental impacts on ecosystems. Power generation from non-renewable
sources is constant and can be easily estimated using deterministic approaches.

For the efficient and secure management of electrical energy, the smart grid plays a vital
role, where the supply of electricity is carried out based on demands, including commercial
and residential needs. However, a key aspect in smart grid electricity management is
predicting energy demands or forecasting the load on the smart grid to ensure sufficient
supply at specific times. Predictive analysis has now become an essential paradigm in
the smart grid. The cutting edge technology of machine learning (ML) has significantly
simplified the task associated with load prediction and energy generation by using historical
data. Additionally, the prediction of upcoming weather conditions also holds a crucial
place in generating electrical energy through RERs. Accurate weather prediction enables
the system to efficiently forecast energy generation through RERs.

In traditional ML, predictive analysis for load forecasting is performed by collecting
energy consumption data from various smart meters to the central server, which become
highly sensitive and critical when shared with other entities, for further processing [4].
The shared data at the central server are prone to access and being misutilized, as they
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can be analyzed to obtain sensitive informations. User consumption patterns can provide
information about personal habits, behaviors, and even personally identifiable information.
For example, discerning a usage pattern in a house may reveal the user’s movements, such
as minimal or zero consumption, indicating the absence of residents. Therefore, sharing
consumption data for analysis and other predictive tasks raises privacy concerns that can
significantly affect the entities associated with the data. Similarly, if a weather station is
installed near the power generation setup, sharing IoT collected data for weather prediction
can also pose privacy issues, as it may reveal the exact location and information associated
with energy generation by the power generation setup. Disclosure of the power setup
location and corresponding future energy generation prediction is very detrimental, as
attackers may use such information for harmful activities to disturb the smart grid and
consequently take down the entire energy system. Thus, it is very necessary to address all
of the privacy concerns of data, for which some advanced technology is required.

The recent development of machine learning has introduced the concept of federated
learning (FL), which performs predictive analysis in a privacy-preserving manner by
limiting access to the data of the clients. FL is an innovative ML approach that focuses on
data privacy and decentralized model training [5,6]. Unlike the centralized ML approach,
which compels users or devices to share sensitive data with the central server for model
training, FL trains the ML model without sharing user or device data with the central server.
It only shares the model updates of the local model with the centrally integrated global
model, where the aggregation of all model parameters takes place. Figure 2 represents the
architecture of FL, containing multiple clients, where a local model is installed at every
client and is trained with the client’s private data. After local training, the local model
updates of all locally trained models are shared with the central server for the aggregation
process. After aggregating all of the model updates, it is sent back to all the clients, where
clients update their models with the received aggregated model updates. In this way,
all the clients are trained with data from every client, without sharing any client data
with the central server. This approach ensures that sensitive information remains with
the clients, while the model continuously improves with each local update. Predictions
related to electric load, weather forecasting, and all other associated predictive tasks can be
accomplished through FL without sharing data with any external entity.

Figure 2. Federated Learning Architecture.
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In the context of the evolving energy landscape, it is evident that RERs are witnessing
substantial development and increasing dependence. However, RERs are inherently con-
tingent upon varying weather conditions, and their ability to generate sufficient power is
not consistently reliable. Conversely, a sole reliance on NRERs will inevitably deplete these
finite resources over time and its exploitation is not suitable for the environment. Hence,
it is essential to ensure fair and-equitable use of resources by considering the dynamic
nature of electric load, optimizing the use of resource, fostering eco-friendly orientation,
and implementing secure methodologies.

The work proposes a secure federated smart grid (FedGrid) framework that pro-
vides an architecture for the smart management of electrical energy in a smart grid by
assuring the privacy of the sensitive data used in it. The proposed framework consists of
machine-learning models for energy consumption and energy generation prediction, which
collectively provides the ability to utilize renewable and non-renewable energy resources
efficiently to fulfil residential and industrial energy demands. All such ML models work
in a privacy-preserving manner by employing the approach of federated learning, which
limits access to consumption and power generation prediction data. The state of the art
reveals that none of the work conducted so far has provided a full-fledged framework
with comparable capabilities to the proposed FedGrid framework. The ML models in the
framework predict the residential and industrial energy consumption, along with solar and
wind forecasting individually. The above models in the proposed framework collectively
provide the benefit of long and short-term load management, as they inculcate the prior
prediction of renewable energy generation and consumption load. Additionally, the energy
supply can be optimized for demand in both peak and non-peak hours for both renewable
and non-renewable energy sources. By employing these methods, the framework is poised
to revolutionize energy management in the smart grid, fostering greater efficiency and
sustainability in the face of the ever-evolving energy landscape.

In the remaining sections of the paper, Section 2 discusses previous research works
conducted in the context of energy load forecasting, energy management, renewable energy
prediction, and security approaches considered for the smart grid. Section 3 provides brief
overview of the proposed FedGrid framework by discussing its components. Section 4
presents the methodology and experimental procedures undertaken within the framework,
shedding light on the proposed approach. Section 5 analyzes and discusses the results
obtained in the performed experiments. Finally, in Section 6, we concluded this work by
delivering a comprehensive conclusion. Here, we not only summarize our findings, but
also delineate various promising avenues for future research in this domain.

2. Literature Review

The proposed work provides a framework for the sustainability of the entire energy in-
frastructure, comprising important components such as the smart grid for the management
of energy demand and supply, energy consumption load forecasting, and the prediction of
renewable energy generation. The current phase of framework mainly deals with the pre-
dictive models for consumption and energy generation by employing privacy-preserving
machine learning for model training, so that the privacy and security of the user data
could be maintained. The authors in research work [7] were the first to initialize federated
learning in the load prediction of household consumption using the data of 200 households
located in Texas, USA. The data exhibited a heterogeneous nature in consumption patterns,
along with a large amount of information. Hence, the work analyzed the effect of data
volume and diversity among the participating clients in the training process. The work
confirmed the potential of federated learning to address the challenge of privacy and data
diversity in the smart-grid domain. Furthermore, authors in [8] provided a load forecasting
model utilizing the long short-term memory (LSTM) network within a federated learning
framework. The efficacy of LSTM networks in time-series-based load forecasting is high-
lighted due to their commendable performance. However, an underlying concern arises
during the practical implementation of federated learning, specifically when smart energy
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meters are employed as clients in the learning process. These meters, despite providing
valuable data for model training, may encounter computational limitations while executing
complex models like the LSTM network or its alternatives, potentially impeding their
effective contribution within federated learning, raising concern regarding the adaptabil-
ity of the proposed framework in the existing infrastructure setup. On the other hand,
the work also considered a dynamic setting, where certain clients joined the federation
post-training and utilized the pre-trained model for forecasting. In this way the computa-
tionally constrained devices may get some relaxation in the training phase. On the similar
path, authors in [9] utilizes CNN-Attention-LSTM model, leveraging the federated learn-
ing methodology with the aim to optimize predictive accuracy within integrated energy
systems. Furthermore, authors also implemented various federated learning algorithms,
including FedAvg, FedAdagrad, FedYogi, and FedAdam, in their investigation. Their
study elucidated the substantial contribution of federated learning in predictive analysis,
showcasing the comparative significance of FedAdagrad in load forecasting scenarios.

Federated learning provides privacy during model training in the distributed envi-
ronment, but it is still being explored for its feasibility and applicability in the existing
infrastructure. While traditional machine learning does not require any training-related
computation in the client device, in federated learning, the models are trained on the actual
client device. As the geographically distributed clients are heterogeneous in nature, this
raises the concern of statistical and system heterogeneity. Hence, for the interoperability
of the proposed framework within existing systems, it is necessary that clients should use
devices with good computational capabilities built in so that the current system can be
integrated. Keeping these aspects in consideration, the work [10] proposes FedForecast
framework, which performs federated-learning-based individual load forecasting by ensur-
ing privacy and utilizing edge computing resources. The authors utilized the PecanStreet
dataset for training the edge devices while addressing the issue of system heterogeneity.

In spite of preserving the privacy by transferring the model updates instead of data,
federated learning is also prone to be attacked and compromised, as attacker might steal the
information from the model updates raising the concern of security. In this regard, various
strategies have been proposed to secure the model updates while transmission. The author
in [11] proposed FL based short term load forecasting (SLTF) by employing differential
privacy and secure aggregation to provide additional security to entire federated learning
setup. The authors conducted an analysis of different neural network (NN) architectures
and evaluated various scenarios using real-world historical data to assess the performance
and privacy implications of FL for STLF. Similarly, authors in [12] introduced a novel
framework to enhance the robustness of federated short-term load forecasting and protect
against Byzantine threats. The framework’s core concept involves gradient quantization
using the Sign Stochastic Gradient Descent (SignSGD) algorithm. The work provides
experimental results, which involve benchmark neural networks and a range of Byzantine
attack models. Thus it concludes by highlighting the effectiveness of the proposed approach
and demonstrates significant improvements in mitigating Byzantine threats compared to
traditional FedSGD models. Furthermore, authors in [13] developed Differential Privacy-
enhanced Federated Learning (DPEFL) for the development of LSTM load forecasting
models using data distributed across multiple consumer households. The effectiveness
of the DPEFL approach was evaluated through simulations conducted using real-world
household data from the Pecan Street dataset, which contains data from households in Texas,
USA. The results of these simulations demonstrate that DPEFL is capable of producing
high-performance load forecasting models while simultaneously offering various levels of
privacy protection.

The proposed framework comprises ML models for renewable energy generation
making RER vital for energy generation in smart grid. The generation of energy from these
resources are totally dependent on the weather condition. Hence the efficient model to
predict the upcoming weather condition is very important. Authors in [14] proposed a
novel federated BayesLSTM-NN forecasting scheme for probabilistic multihorizon solar
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irradiation forecasting. The method focused on forecasting RERs within the context of
integrated electrical grids. Furthermore the authors in [15] determined an appropriate
sizing for a Hybrid Renewable Energy System (HRES) to meet the power demands of a data
center. HRES includes wind and solar energy production, along with battery and hydrogen
energy storage. It provides a comparative analysis that compares four different forecasting
models for solar radiation and wind speed generation putting focusing on SARIMA Model
that demonstrates the model effectiveness in solar radiation forecasting over the years,
particularly due to its seasonal distribution fit.

3. FedGrid: Proposed Secure Framework

The work proposed a secure FedGrid (Federated Smart Grid) framework for smart
management of consumer demand and supply by renewable and non renewable energy
resources in context to electric loads primarily assuring the privacy of data. In traditional
machine learning, sharing weather data (in close proximity to power generation setups)
and smart meter data with a central server for model training exposes the entire setup and
energy meter to potential cyber or physical attacks. These datasets often contain critical
information such as geographical locations and power consumption patterns, making them
vulnerable to security breaches. Hence the proposed framework provides the security
by inculcating various predictive models trained within the federated learning approach,
ensuring restricted access to sensitive data. To accomplish this, the work divides the
proposed framework into following three main components which will work collectively
for effective and efficient analysis of energy consumption and energy generation trends
making this framework highly secure, reliable, and focused on more accurate predictions.

i Federated Time Series Analysis model for Electric Load Prediction: The framework
encompasses two robust federated time series analysis models using LSTM networks
for predictive analysis and forecasting of residential load and commercial/industrial
load. These models predict energy consumption patterns for specific time intervals,
enabling us to anticipate the grid‚ requirements in real time. The deployed models
are trained using continuous real-time hourly energy consumption data from both
residential and industrial sectors. Considering the sensitivity and security of such
consumption data, the privacy-preserving federated learning method is applied to
the model training where smart meters (act as a client containing local model) will
only share their trained weights with the global model instead of the actual data.

ii Power Generation Prediction from Federated Weather Forecasting Model: The work
focuses on power generation by renewable energy sources and its dependency on
weather conditions. The proposed framework considers two renewable energy re-
sources, namely solar energy and wind energy. Accurate power generation predictions
from renewable sources require precise weather forecasts. Therefore, the proposed
framework incorporates the deployment of weather stations near power-generating
sources to efficiently monitor local weather conditions. For instance, cloud conditions
may vary in different geographical locations. A time series model using DSS-LSTM
(stateful LSTM) is employed for predictive solar radiation analysis and another time
series model using LSTM is employed for predictive wind speed analysis. These
forecasts are used to calculate future power generation by renewable energy resources
using a mathematical model that takes into account the specifications of PV panels
and windmills to estimate energy generation. The placement of weather stations near
solar or wind energy installations plays a crucial role in forecasting future weather
conditions. The data gathered from sensors at these stations holds significant im-
portance as it combines both the geographical coordinates of the energy setup and
detailed weather data. This geographical information precisely pinpoints the en-
ergy source’s location, aiding in accurately predicting energy generation based on
weather forecasts. Such detailed insights become pivotal in managing and influenc-
ing demand response programs effectively. Additionally, the industry competition
and complex administrative processes, the sharing of such data is not so easy [16].
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However, to tackle privacy concerns and other issues associated with this level of
data detail, an innovative approach called privacy-preserving federated learning has
been implemented. This technique enables distributed and privacy-conscious weather
forecasting in the vicinity of power generation setups. By employing this method,
crucial weather predictions can be made while safeguarding sensitive location-based
data, ensuring the privacy of individuals and installations involved.

iii Optimized Resource Management for Effective Demand-Supply balance through
Smart Grid: In the proposed framework, the smart grid plays a vital role for managing
the entire energy setup. The supply is made on the basis of consumption analysis.
The renewable and non renewable energy resources are employed for fulfilling the
consumption need. As both the energy resources have their own characteristics, avail-
ability, and capacity. The NRER are available all the time while RER is available only
in limited amount of time. Hence, managing the use of both the energy resources is
not an easy task. The smart grid utilize predictions of residential load, industrial load,
renewable energy generation, and energy generation through NRERs to effectively
balance supply and demand.
These predictions will enable the smart grid to identify the optimal times for electricity
usage and the most efficient utilization of integrated renewable and non-renewable
energy sources. For example, during periods of high energy demand, the prioritization
of renewable energy usage can help in keeping the share of non-renewable energy low.
Conversely, during periods of low energy demand, non-renewable energy resources
may be used more efficiently. This approach promotes the efficient use of both energy
resources, contributes to a more eco-friendly future, and ensures the conservation of
RER by utilizing NRERs in the best possible manner

The Figure 3 represents the architecture of the proposed FedGrid framework, which
mainly comprises three key components: the energy generation prediction represented as
green dashed border box, the consumption load forecasting represented as maroon dashed
border box and the smart grid component represented as sky blue dashed border box.

Figure 3. Proposed FedGrid Framework Architecture.
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The energy generation component comprised of 02 parts i.e., renewable energy source
(represented as green box) including solar energy & wind energy source and non-renewable
energy source (represented as red box) including energy derived from coal, natural gas, oil,
and nuclear sources. This component mainly comprises the renewable energy prediction
models for solar and wind stations, which works in privacy preserving manner. The calcu-
lation of these energy is mainly based on the prediction of upcoming weather conditions.
The energy generation by the non-renewable energy sources are kept constant here. The
overall predicted renewable energy and non renewable energy are calculated and sent to
the smart grid. The consumption load forecasting component (represented as yellow box)
comprises the prediction models for residential load forecasting as well as industrial load
forecasting. The load prediction is mainly done through the data of smart energy meters in
FL approach. The smart meters acts as a client for the entire prediction component setup
and the predicted consumption load for the upcoming days is sent to the smart grid. The
most important component of the proposed framework is smart grid which comprises
the smart energy management system along with power distribution system. The smart
energy management system takes the predicted energy generation and consumption load
as input and provided the efficient distribution of energy to specific geographical location
on specific time as an output. While the power distributor distributes the power on the
basis of policies formed in the smart grid.

4. Methods and Experiment Details

The proposed FedGrid framework manages demand and supply in data driven ap-
proach by training ML models for electric load forecasting and prediction of weather for
renewable energy generation. The experiment is performed to evalute the performance
of these models for their effective contribution in the proposed framework. The experi-
ment was conducted in 02 parts i.e., experiment for load forecasting and experiment for
predicting the generation of energy from renewable energy sources. The trained models
are evaluated with the performance metric Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE). In the proposed framework it is required that, the models not
only showcase strong predictive performance but also address the unique challenges of
federated learning in smart grids, ensuring privacy, scalability, adaptability, reliability, and
overall positive impacts on energy management and sustainability.

4.1. Electric Load Forecasting

The electric load forecasting is performed for residential load as well as commercial
loads using federated learning approach. For the residential load prediction experiment
(referred as experiment 1), the dataset was sourced from scientific data 2017 [17] which was
collected from the residential houses of United Kingdom, comprising 8760 h of data from
20 residential buildings at 60-min intervals. After preprocessing the entire dataset, total
19 clients were initially selected for local model training using their private consumption
data and data corresponding to 01 residential building is used to test the prediction of
the model. The timestampand the energy consumption is taken as parameter for the
experiment. At each client, the Long Short Term Memory (LSTM) model was employed,
which was trained with the dataset for future predictions. The detailed information about
LSTM model is discussed in later Section 4.1.1. These clients trained their local models with
the data and subsequently sent their model updates to the global server for aggregation,
where FedAvg algorithm is used to aggregate these model updates. The aggregation of
model in FL is very important aspect. The detailed discussion about FedAvg algorithm
is provided in later Section 4.1.2. Similarly, for commercial load forecasting (referred as
experiment 2), the dataset was obtained from Mendeley Data [18] which was collected from
the commercial buildings of New Jersey, US, containing 8760 h of data at 60-min intervals.
Total 19 clients were chosen for local training and data for 01 client is kept for the testing of
the proposed model. The timestamp and the energy consumption is taken as parameter for
the experiment. The local models for commercial load forecasting utilized the same LSTM
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model and followed the FedAvg aggregation algorithm. For the experiment, there exists
many possible distribution of data among the participating clients but in this work, we
assumed that the distribution of data is independent and identically distributed (IID Data).
Figure 4 represents the architecture of individual model training in FL approach where
two different global models are getting trained by obtaining residential client’s local model
updates and commercial client’s local model updates.

Figure 4. Federated Model for residential and commercial electric load forecasting.

4.1.1. Long Short Term Memory for Model Training

The above discussed predictive models have used LSTM model [19] for local training
of time series data. The state-of-the-art mention that the LSTM model is widely used and
highly accurate for load forecasting in comparison to other existent time series models [20].
Long short-term memory (LSTM) is a recurrent neural network characterized by a state
memory and a multi-layer cell structure. LSTMs are purpose-built for handling sequential
data tasks, including time series analysis, image processing, speech recognition, manu-
facturing, autonomous systems, communication, and energy consumption. It has gained
widespread acclaim for their capacity to adeptly capture and represent dependencies in
sequential data by incorporating a gating mechanism that leverages information from
previous steps to produce output, involving the evaluation of a function that modifies the
current LSTM cell state [20,21]. The Figure 5 represents the technical architecture of LSTM
which comprises input gate with output as it, output gate with output as Ot, and forget
gate with output as ft. The output values for all such gates are computed as follows:

ft = σ(w f [ht−1, Xt] + b f ) (1)

it = σ(wi[ht−1, Xt] + bi (2)

Ot = σ(wo[ht−1, Xt] + bo (3)

where σ is the sigmoid activation function and it can be defined as:
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σ(x) = (1 + e−x)−1 (4)

at = tanh(wa[ht−1, Xt] + ba (5)

ct = ft × ct−1 + it × at (6)

ht = Ot × tanh(ct), (7)

where , ct refers to the memory cell
at is the update and the activation of the current cell status.
Xt is the input vector
ht represents the output vector result at time t.
W f ,i,a,o are the weights matrices
b f ,i,a,o the bias vectors.

Figure 5. The technical architecture the LSTM model [22].

4.1.2. FedAvg Algorithm: Global Model Aggregation Algorithm

The widely used basic aggregation algorithm for federated learning is FedAvg [23],
which mainly deals with the aggregation of all received model updates from every clients.
The FedAvg is the legacy of federated learning as initially the concept of federated learning
came with FedAvg. The Figure 6 depicts the flow of FedAvg algorithm, which can be
understood step by step manner as follows:

i The server containing global model initializes model weight as w0 and sent to all the
clients. At each round, the performance of the global model is evaluated.

ii Initially, total St clients takes part in the learning process and initializes their local
model weight as w0.

iii At initial round, each client starts training their local model from their private dataset
and updates the model weight as wt ← wt − η∇l(w, b).

iv The model weights wt of all the clients are then shared with central server, where
aggregation of the received models takes place as wt+1 ← ∑K

k=1
nk
n wk

t+1.
v Once aggregation is done, the aggregated weights are return back to the clients, where

client updates their model from the received aggregated weights.
vi The step iii to v is repeated for round t = 1, 2. . . R till the convergence of global model.
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Figure 6. FedAvg Algorithm: The model updates aggregator [24].

In the proposed work the FedAvg aggregation algorithm is used for the model aggre-
gation by assuming the distribution of data among the client is Independent and Identically
Distributed (IID). The FedAvg algorithm works well for the IID distributed data but it
shows adverse performance when the distribution of data becomes Non-Independent
and Identically Distributed (NIID) leading to the issue of statistical heterogeneity [23]. In
FL, the different client with their different model updates are participated. These model
updates are obtained from the training of datasets which are different for all the clients. It
may be possible that client at different geographical location have different classes in their
datasets leading to the NIID distribution when compared with all the participating clients.
Hence, consideration of NIID data distribution in the proposed work will also impact the
performance of the models. There are different aggregation algorithms like FedProx [25],
which shows better performance as compared to FedAvg in NIID data distribution scenario.

4.2. Energy Generation: Forecasting Energy from Renewable Source

The proposed framework consists of two energy resources i.e., energy from a renew-
able and energy from a non-renewable resources. This work assumes the generation of
energy from non-renewable sources is constant and foreknown. Hence, the work experi-
mented to predict the energy from renewable energy sources because of its high dependency
on weather conditions, making varying amount of energy generations. For the experiment,
two renewable energy sources i.e., solar energy and wind energy is considered. The follow-
ing experiment is performed to develop and evaluate two ML models in FL approach to
predict the weather parameters for solar and wind energy respectively.

1. Solar Energy Generation Model: Solar energy is generated by photovoltaic plates
(PV plate) or solar panels in which large number of solar panels are used for the
energy generation. The total generated solar energy can be obtained through the
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collective calculation of energy generated by individual solar stations. Each solar
station comprises of multiple solar panels. The Equation (8) represents the total solar
energy generated by k solar stations for n number of solar panels in each solar stations.

TotalSE =
k

∑
j=1

n

∑
i=1

(Apvi × GHI × ηpvi ) (8)

where, Apvi : is the area and ηpvi is the efficiency of the ith solar panel.
The solar panel converts solar radiations into electrical energy and, the amount of
energy generated per hour by a PV plate in watt-hours is given by Equation (9).

Ehour = Apv × GHI × ηpv (9)

where, Apv: Area (m2) of the solar panel.
GHI: Global Horizontal Irradiance, which represents the amount of solar radiation
received on a horizontal surface (measured in W/m2).
ηpv: Efficiency of the solar panel.

In Equation (9), Apv and ηpv will be constant for a specific panel, raising the concern
to predict varying GHI i.e., Global Horizontal Irradiance. Hence, the proposed work
performed an experiment 3 and developed a ML model using federated learning approach,
which would be able to forecast the GHI value. The predicted GHI value would play a
crucial role in determining the total energy to be generated by using Equation (9). In this
experiment, each solar energy generation station will comprise a weather station which will
work as a client to train a model in FL approach as represented in Figure 7. The dataset [26]
collected from the solar power plant in island of Santiago, Cape Verde is used for local
model training consists of two attributes one is timestamp and another one has GHI values.
It is hourly data of a total of 8760 h.

Figure 7. Federated Renewable Energy Prediction Architecture.
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The DSS-LSTM (Dynamic Spatial-Spectral Long Short-Term Memory), which is a
stateful LSTM model is employed as local model at each weather station as because it
has been proven the best model for the GHI Forecasting [27]. It is a specialized recurrent
neural network tailored for handling spatiotemporal data. It combines spatial and spectral
components to capture both spatial and spectral dependencies, making it suitable for tasks
such as time series prediction and sequence modeling. The model’s architecture comprises
two primary constituents: the spatial component and the spectral component, each playing
a pivotal role in comprehensively capturing and analyzing the intricacies within the data.

The spatial component in the DSS-LSTM model aims to capture spatial dependencies
within the data. This can be represented using the following Equations (10)–(15) in the form
of an LSTM (Long Short-Term Memory) cell. An LSTM cell typically includes equations for
the input gate (it), forget gate ( ft), output gate (ot), cell state (ct), and hidden state (ht):

it = σ(Wixxt + Wihht−1 + Wicct−1 + bi) (10)

ft = σ(W f xxt + W f hht−1 + W f cct−1 + b f ) (11)

ot = σ(Woxxt + Wohht−1 + Wocct + bo) (12)

gt = tanh(Wgxxt + Wghht−1 + bg) (13)

ct = ft ⊙ ct−1 + it ⊙ gt (14)

ht = ot ⊙ tanh(ct) (15)

Here, xt represents the input at time t, ht−1 denotes the previous hidden state, ct−1
represents the previous cell state, σ denotes the sigmoid function, tanh represents the
hyperbolic tangent function, ⊙ signifies element-wise multiplication, and W and b are
weight matrices and bias vectors, respectively.

The spectral component within the DSS-LSTM model is designed to capture spectral
dependencies in the data. This component often involves techniques like Fourier trans-
forms, spectral analysis, or other methods suited to analyze frequency-domain information.
The specific equation for the spectral component can vary based on the spectral analysis
technique or method employed within the model.

2. Wind Renewable Energy Generation Model: Wind energy, the clean and renewable
source of electricity is generated by wind turbines, which gets rotated when the wind
blows. More the flow of wind, there will be more energy generation by the turbine.
The total wind energy generated by all wind turbines in the wind energy station is
calculated by adding the energy generated by each turbine in the station. If there are
n wind turbines and power generated by each wind turbine is Pwt the total power
obtained from a wind generating station is given by Equation (16).

TGW =
t=n

∑
t=1

Pwt (16)

Wind speed, turbine efficiency, location, and maintenance are key factors in wind
energy generation. The output power generated by the wind turbine depends on the
rotation of wind blade caused by the flow of wind. The power generation Pw starts when
the wind speed reaches to cut-in value vci and increases with the increase of wind speed to
the rated wind speed vr. For the safety reasons and proper function of the wind energy
generation system, a cut-out wind speed is set so that when wind speed reaches beyond
the “cut-out” speed vco, the turbine stops generating energy, as represented in Figure 8.
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Figure 8. Electrical power generation w.r.t wind speed in wind energy system [15].

The power generation by wind speed can be mathematically represented by Equation (17)
where wind speed in m/s at any time t (s) is given as v(t) and nominal power of the wind
turbine is given as Pr.

Pw =


0, if v(t) ≤ vci or v(t) ≥ vco

Pr
v(t) − vci
vr − vci

, if vci < v(t) < vr

Pr, if vr < v(t) < vco

(17)

According to Equation (17), the electrical energy generated by wind energy system
depends mainly on wind speed. If we have exact knowledge of wind speed for a specific
time, then the amount of power generation can be determined effectively. Although we
should take into account the variability of wind speeds, both short-term (turbulence, gusts)
and long-term (seasonal changes, climate patterns), significantly impact the performance
of wind turbine power generation estimates. Small variations around optimal wind speeds
can cause significant changes in power output. Uncertainties in weather forecasting, spatial
variability, and the non-linear nature of turbine power curves contribute to prediction
challenges [28]. The proposed work performed experiment 4 by developing a model that
would be able to predict the speed of wind for upcoming time so that the prediction of
the amount of electrical energy can be performed. A ML model is trained in FL approach
in which each weather station installed near to wind energy generation setup works as a
client to train their local model from their collected data as represented in Figure 7. The
dataset [29] collected from five wind farms near Dallas, New York City, Chicago, Miami,
and Los Angeles is used for local model training consists of two attributes one is timestamp
and another one has wind speed values. It is hourly data of a total of 8760 h (365 days)
containing a timestamp and wind speed that is used for the training by the LSTM model
at every client. The experiment was done on a total of 10 local clients which are treated
as weather station models for wind speed prediction. The LSTM model has shown its
supremacy in forecasting wind speed effectively [30]. The global aggregation of these
locally trained model updates are done by FedAvg algorithm.

5. Results and Analysis

The proposed FedGrid framework provides a privacy preserving methodology for the
sustainability of the smart grids, eco-friendly approach and feasible energy pricing policies.
It contains several ML models for the prediction of load consumption and energy generation.
In this context, experiment 1, 2, 3, and 4 are performed to develop various predictive models
under the FedGrid framework, and their evaluation is done. The obtained results along
with the key observations are discussed here.
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5.1. Residential and Commercial Electric Load Forecasting Model

The experiment 1 was performed for residential load forecasting and the corresponding
results are represented in the form of Figures 9 and 10, which represents the performance
of federated global time series model to predict the consumption with the frequency of 1 h
and 6 h respectively. Similarly, experiment 2 is performed for commercial load prediction
and the corresponding performance of global federated model is represented in Figure 11.
From the analysis of all such graphs representing model performance, it is observed that the
model is following the pattern of actual data by showing its significant performance as it
could predict high peak time and low peak time of consumption similar to the actual pattern.
Hence, the proposed federated model for smart grid systems facilitates the analysis of
load demand trends for residential and commercial areas, enabling a data driven approach
to efficiently balance the supply and utilization of renewable and non-renewable energy
sources for optimized energy management for residential and commercial areas.

Figure 9. Performance of Federated Global Model for Residential Load Prediction for the next 24 h
(The 0 on X-axis denotes starting time of the day 1.e., 00:00:00).

Figure 10. Performance of Federated Global Model for Residential Load Prediction for the next 7
days (The 0 on the X-axis denotes the starting time of the 1st day 1.e., 00:00:00).
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Figure 11. Performance of Federated Global Model for Commercial Load Prediction for the next 24 h
(The 0 on the X-axis denotes the starting time of the 1st day 1.e., 00:00:00).

5.2. Federated GHI and Wind Speed Prediction Model for Renewable Energy Generation

The experiment 3 is performed for the GHI prediction and the corresponding model
performance is represented in Figure 12. The global model predicted GHI pattern in very
similar to the actual GHI pattern for the next 24 h data of GHI testing data. Hence, the
calculation of the predicted energy generated by the Solar Energy Generation Station can
be done efficiently for future by employing the Equation (9).

Figure 12. Performance of Federated Global Model for GHI Prediction for the next 24 h.

Similarly, the experiment 4 is performed for wind speed prediction and the corre-
sponding model’s performance is represented in Figure 13. The global model predicted
wind speed pattern is kinda similar to the actual wind speed pattern for the next 24 h data
but it lags to achieve the exact magnitude of the wind speed. The graph pattern is similar as
it can predict when wind speed is high or low but it is unable to get the exact speed values.
The accurate prediction of wind energy is not only depends on the wind speed, but it also
comprises various other factors which affects the wind turbine propulsion, consequently
affecting the energy generation. Wind direction, height from sea level, relative humidity,
and pressure are also the important factors affecting the generation of wind energy [31].
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While the the current model only considered the wind speed along with timestamp for wind
energy prediction, its enhancement can occur through the training with other parameters
for the accurate prediction of wind energy as well as compatibility with the existing energy
infrastructures. Yet, for the obtained results, the calculation to predict the energy generated
by the wind turbines Energy Generation Station can be done by using Equation (16) which
considers the wind speed as a only factor influencing the wind energy generation.

Figure 13. Accuracy of Global Model for Wind Speed Prediction for the next 24 h.

5.3. Load Consumption VS Anticipated Hourly Energy Production

The above experiment 1, 2, 3 and 4 have shown their individual prediction capability
in energy consumption and energy generation, as a part of the proposed framework. These
models are trained on specific datasets to provide them prediction capability. After training
and obtaining the significant performance of these individual models, they are assessed for
their applicability and effectiveness in the proposed FedGrid framework. Hence, to analyze
the combined effect, benefits and effectiveness of these predictive models in the proposed
framework, an experiment was performed with these trained models. The experiment
contains the prediction of residential as well as industrial electric load prediction along
with the prediction of energy generation from renewable energy resources from the already
trained models in experiment 1, 2, 3 & 4. The electricity consumption and energy generation
was predicted for next 24 h with the interval of 1 h.

The obtained result for this experiment is shown in the form of graph as Figure 14. In
this line graph, the purple line represents the combined load (residential and industrial
load), which is taken as negative value (high negative value refers to more consumption
load) and electricity generation through renewable (red and green lines) and non-renewable
energy resources (black line) is taken as positive value. It is observed that, the consumption
load and power generation varies throughout the day in which, the consumption load
ranges −1 to −4, power generation from non-renewable supply varies between +2 to +5
and the power supply from renewable energy resources lies between 0 to +2. The values
in the graph represents that, the power supply through NRERs is available all the time
throughout the day and contains the ability to fulfill all energy demands. But the renewable
source of energy is not available all the time and it cannot fulfill the entire energy demand,
as solar energy can’t be generated in the absence of sunlight or GHI and wind energy can’t
be generated if (vt) ≤ (vci) or (v(t)) ≥ (vco). Hence, there is huge dependability of renewable
sources on weather conditions. The predictive models provide that the non-renewable
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energy source guarantees almost constant power generation throughout the day, while
the solar energy production can be estimated to be at higher levels from mid-afternoon
till early sunset. Wind energy can often be highly random hence not being a very reliable
estimation for energy production. The combined load for households & commercials do
seems to have peak values in morning and evening time, while the energy production from
solar is maximum in the afternoon.

Although the RERs are not capable of fulfilling the entire energy demands but it can be
used in optimizing the use of NRERs resulting in reduced dependency on it. As a point of
benefits, the stored renewable energy can be used during peak hours to reduce the energy
cost at significant level, during the availability of renewable and non-renewable energy
resources, the renewable energy utilization can be prioritize over the non-renewable energy
resources and in case of any power interruption with non-renewable energy resources, the
renewable energy can overcome it at some extent.

In nutshell, the experiment shows the effectiveness of all the employed models in the
proposed framework which creates the sustainable smart grid with data privacy and secu-
rity. The proposed framework shows its importance in managing the demand and supply
along with optimizing the supply through non-renewable energy resources by maintaining
the use of renewable energy supply. It shows its benefits in achieving continuous power
supply, low energy cost, reduced dependence on non-renewable energy resources and
low energy pricing during peak hours (as in many countries the electricity price varies on
demand). The framework makes the smart grid flexible so that it can adjust the demand
supply program on specific need and rules, which varies throughout the geographical
locations across the world.

Figure 14. Load Consumption pattern VS Anticipated Hourly Energy Production.

6. Conclusions and Future Scope

The work proposed a secure framework FedGrid for the effective and privacy preserv-
ing oriented supply demand management. The proposed work represents a significant
step toward achieving optimal energy resource utilization in a federated smart grid con-
text. The work successfully developed predictive models for residential and commercial
energy consumption forecasting along with dedicated models for wind and solar energy
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generation prediction. The models have been implemented using federated learning to
assure the privacy of consumption data being used for the model training. Through a
data-driven approach, the work demonstrated the ability to analyze consumption patterns
and make informed decisions, i.e., when to switch between renewable and non-renewable
energy sources.

This study showcases the potential for data-driven decision-making in smart grid
systems, which results in multidimensional benefits in terms of smart grid management, en-
vironment friendly methods and socio-feasible policies. The proposed FedGrid framework
provides a foundation to efficiently develop demand response program, optimized use
of renewable and non-renewable energy resources by switching from one to another and
developing the energy policies corresponding to the predictive load and energy generation.
In this way, the proposed framework leads to various benefits while promoting the sus-
tainability, which including efficient and cost effective management in smart grid, reduced
energy price during normal & during peak load period, assuring the continuous energy
supply to other critical infrastructures like transportation, banking, healthcare, telecom-
munication etc, and reducing the dependency on the non-renewable energy resources by
switching to renewable energy sources as per the policy.

The proposed framework presents numerous advantages; however, its implementation
in the real world poses several challenges. The predictive components, operating through a
federated learning approach in a distributed manner, face hurdles due to heterogeneous
client participation, resulting in statistical heterogeneity issues. Additionally, constraints
in energy meters accommodating large machine learning models, regulatory and security
compliance in smart grid setups, compatibility with existing infrastructures, and ensuring
a reliable and resilient federated learning setup are crucial factors that might impede the
framework’s real-world implementation, warranting detailed exploration. While show-
casing the adaptability of various predictive models within this framework, there remains
ample space for expansion, particularly in emphasizing the smart grid’s role beyond power
generation and load forecasting. This could involve integrating predictive insights into
smart grid operations. Furthermore, extending the framework to encompass Non-IID data
distribution, considering diverse renewable energy sources beyond solar and wind, could
significantly enrich and enhance the proposed framework’s applicability and effectiveness.

In the current energy system, the smart energy meters with adequate computational
resources can be a very useful paradigm for the proposed framework. Keeping the privacy
of user data and predicting their upcoming energy utilization may help the grids to modify
their policies for the efficient and continuous energy supplies. Additionally, the installed
solar energy systems at individual residence or places would also play a crucial role to
adapt in the proposed framework.

Author Contributions: Conceptualization, H.G., O.P.V. and A.P.; methodology, H.G., P.A., K.G. and
S.B.; investigation, P.A., K.G. and S.B.; validation, P.A., K.G. and S.B.; formal analysis, H.G., P.A.,
K.G. and S.B.; data curation, P.A., K.G. and S.B.; writing-original draft preparation, H.G., P.A., K.G.
and S.B.; supervision, O.P.V. and A.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable for studies not involving humans.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The work acknowledges the University Grant Commission (UGC), India and
the Risk Averse Resilience Framework for Critical Infrastructure Security (RARCIS) project, funded
by the Department of Science and Technology (DST), and C3i-Hub (Indian Institute of Technology
Kanpur), India, for their partial funding.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2023, 16, 8097 20 of 21

References
1. Kamran, M. Fundamentals of Smart Grid Systems; Elsevier: Amsterdam, The Netherlands, 2022.
2. Eissa, M.; Elmesalawy, M.M.; Soliman, A.; Shetaya, A.A.; Shaban, M. Egyptian Wide Area Monitoring System (EWAMS) Based

on Smart Grid System Solution. In Energy Efficiency Improvements in Smart Grid Components; InTech: London, UK, 2015; pp. 3–20.
3. Ritchie, H.; Rosado, P.; Roser, M. Electricity Mix. Our World in Data, 9 October 2023 .
4. Armoogum, S.; Bassoo, V. Privacy of energy consumption data of a household in a smart grid. In Smart Power Distribution Systems;

Elsevier: Amsterdam, The Netherlands, 2019; pp. 163–177.
5. Wen, J.; Zhang, Z.; Lan, Y.; Cui, Z.; Cai, J.; Zhang, W. A survey on federated learning: Challenges and applications. Int. J. Mach.

Learn. Cybern. 2023, 14, 513–535. [CrossRef]
6. Gupta, H.; Patel, D.; Makade, A.; Gupta, K.; Vyas, O.; Puliafito, A. Risk Prediction in the Life Insurance Industry Using Federated

Learning Approach. In Proceedings of the 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), Palermo,
Italy, 14–16 June 2022 ; pp. 948–953.

7. Taïk, A.; Cherkaoui, S. Electrical load forecasting using edge computing and federated learning. In Proceedings of the ICC 2020
IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6.

8. Fekri, M.N.; Grolinger, K.; Mir, S. Distributed load forecasting using smart meter data: Federated learning with Recurrent Neural
Networks. Int. J. Electr. Power Energy Syst. 2022, 137, 107669. [CrossRef]

9. Zhang, G.; Zhu, S.; Bai, X. Federated learning-based multi-energy load forecasting method using CNN-Attention-LSTM model.
Sustainability 2022, 14, 12843. [CrossRef]

10. Liu, Y.; Dong, Z.; Liu, B.; Xu, Y.; Ding, Z. FedForecast: A federated learning framework for short-term probabilistic individual
load forecasting in smart grid. Int. J. Electr. Power Energy Syst. 2023, 152, 109172. [CrossRef]

11. Fernández, J.D.; Menci, S.P.; Lee, C.M.; Rieger, A.; Fridgen, G. Privacy-preserving federated learning for residential short-term
load forecasting. Appl. Energy 2022, 326, 119915. [CrossRef]

12. Husnoo, M.A.; Anwar, A.; Hosseinzadeh, N.; Islam, S.N.; Mahmood, A.N.; Doss, R. A secure federated learning framework for
residential short term load forecasting. IEEE Trans. Smart Grid 2023 . [CrossRef]

13. Zhao, Y.; Xiao, W.; Shuai, L.; Luo, J.; Yao, S.; Zhang, M. A differential privacy-enhanced federated learning method for short-
term household load forecasting in smart grid. In Proceedings of the 2021 7th International Conference on Computer and
Communications (ICCC), Chengdu, China, 10–13 December 2021; pp. 1399–1404.

14. Zhang, X.; Fang, F.; Wang, J. Probabilistic Solar Irradiation Forecasting Based on Variational Bayesian Inference with Secure
Federated Learning. IEEE Trans. Ind. Inform. 2021, 17, 7849–7859. [CrossRef]

15. Haddad, M.; Nicod, J.; Mainassara, Y.B.; Rabehasaina, L.; Al Masry, Z.; Péra, M. Wind and solar forecasting for renewable energy
system using sarima-based model. In Proceedings of the International Conference on Time Series and Forecasting, Granada,
Spain, 25–27 September 2019.

16. Ahmadi, A.; Talaei, M.; Sadipour, M.; Amani, A.M.; Jalili, M. Deep Federated Learning-Based Privacy-Preserving Wind Power
Forecasting. IEEE Access 2023, 11, 39521–39530. [CrossRef]

17. Murray, D.; Stankovic, L.; Stankovic, V. An electrical load measurements dataset of United Kingdom households from a two-year
longitudinal study. Sci. Data 2017, 4, 1–12. [CrossRef]

18. Angizeh, F.; Ghofrani, A.; Jafari, M. Dataset on hourly load profiles for a set of 24 facilities from industrial, commercial, and
residential end-use sectors. Mendeley Data 2020, 1.

19. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
20. Smagulova, K.; James, A.P. A survey on LSTM memristive neural network architectures and applications. Eur. Phys. J. Spec. Top.

2019, 228, 2313–2324. [CrossRef]
21. Arslan, S. A hybrid forecasting model using LSTM and Prophet for energy consumption with decomposition of time series data.

PeerJ Comput. Sci. 2022, 8, e1001. [CrossRef]
22. Mahjoub, S.; Chrifi-Alaoui, L.; Marhic, B.; Delahoche, L. Predicting Energy Consumption Using LSTM, Multi-Layer GRU and

Drop-GRU Neural Networks. Sensors 2022, 22, 4062. [CrossRef]
23. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from

decentralized data. In Proceedings of the Artificial Intelligence and Statistics, PMLR, Fort Lauderdale, FL, USA, 20–22 April 2017;
pp. 1273–1282.

24. McMahan, H.B.; Ramage, D.; Talwar, K.; Zhang, L. Learning differentially private recurrent language models. arXiv 2017,
arXiv:1710.06963.

25. Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated optimization in heterogeneous networks. Proc.
Mach. Learn. Syst. 2020, 2, 429–450.

26. Qing, X.; Niu, Y. Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM. Energy 2018, 148, 461–468.
[CrossRef]

27. Malakar, S.; Goswami, S.; Ganguli, B.; Chakrabarti, A.; Roy, S.S.; Boopathi, K.; Rangaraj, A. Designing a long short-term network
for short-term forecasting of global horizontal irradiance. SN Appl. Sci. 2021, 3, 1–15. [CrossRef]

28. Russo, M.; Carvalho, D.; Martins, N.; Monteiro, A. Forecasting the inevitable: A review on the impacts of climate change on
renewable energy resources. Sustain. Energy Technol. Assess. 2022, 52, 102283. [CrossRef]

http://doi.org/10.1007/s13042-022-01647-y
http://dx.doi.org/10.1016/j.ijepes.2021.107669
http://dx.doi.org/10.3390/su141912843
http://dx.doi.org/10.1016/j.ijepes.2023.109172
http://dx.doi.org/10.1016/j.apenergy.2022.119915
http://dx.doi.org/10.1109/TSG.2023.3292382
http://dx.doi.org/10.1109/TII.2020.3035807
http://dx.doi.org/10.1109/ACCESS.2022.3232475
http://dx.doi.org/10.1038/sdata.2016.122
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1140/epjst/e2019-900046-x
http://dx.doi.org/10.7717/peerj-cs.1001
http://dx.doi.org/10.3390/s22114062
http://dx.doi.org/10.1016/j.energy.2018.01.177
http://dx.doi.org/10.1007/s42452-021-04421-x
http://dx.doi.org/10.1016/j.seta.2022.102283


Energies 2023, 16, 8097 21 of 21

29. Feng, C.; Chartan, E.K.; Hodge, B.M.S.; Zhang, J. Characterizing Time Series Data Diversity for Wind Forecasting. In Proceedings
of the BDCAT, Austin, TX, USA, 5–8 December 2017; Association for Computing Machinery: New York, NY, USA; pp. 113–119.

30. Shao, B.; Song, D.; Bian, G.; Zhao, Y. Wind speed forecast based on the LSTM neural network optimized by the firework algorithm.
Adv. Mater. Sci. Eng. 2021, 2021, 1–13. [CrossRef]

31. Anwar, K.; Deshmukh, S. Parametric study for the prediction of wind energy potential over the southern part of India using
neural network and geographic information system approach. Proc. Inst. Mech. Eng. Part J. Power Energy 2020, 234, 96–109.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1155/2021/4874757
http://dx.doi.org/10.1177/0957650919848960

	Introduction
	Literature Review
	FedGrid: Proposed Secure Framework
	Methods and Experiment Details
	Electric Load Forecasting
	Long Short Term Memory for Model Training
	FedAvg Algorithm: Global Model Aggregation Algorithm

	Energy Generation: Forecasting Energy from Renewable Source

	Results and Analysis
	Residential and Commercial Electric Load Forecasting Model
	Federated GHI and Wind Speed Prediction Model for Renewable Energy Generation
	Load Consumption VS Anticipated Hourly Energy Production

	Conclusions and Future Scope
	References

