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Abstract: Oil production prediction plays a significant role in designing programs for hydrocarbon
reservoir development, adjusting production operations and making decisions. The prediction ac-
curacy of oil production based on single methods is limited since more and more unconventional
reservoirs are being exploited. Artificial intelligence technology and data decomposition are widely
implemented in multi-step forecasting strategies. In this study, a hybrid prediction model was
proposed based on two-stage decomposition, sample entropy reconstruction and long short-term
memory neural network (LSTM) forecasts. The original oil production data were decomposed into
several intrinsic mode functions (IMFs) by complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN); then these IMFs with different sample entropy (SE) values were recon-
structed based on subsequence reconstruction rules that determine the appropriate reconstruction
numbers and modes. Following that, the highest-frequency reconstructed IMF was preferred to be
decomposed again by variational mode decomposition (VMD), and subsequences of the secondary de-
composition and the remaining reconstructed IMFs were fed into the corresponding LSTM predictors
based on a hybrid architecture for forecasting. Finally, the prediction values of each subseries were
integrated to achieve the result. The proposed model makes predictions for the well production rate
of the JinLong volcanic reservoir, and comparative experiments show that it has higher forecasting
accuracy than other methods, making it recognized as a potential approach for evaluating reservoirs
and guiding oilfield management.

Keywords: two-stage decomposition; sample entropy; hybrid model; time series forecasting; oil
production forecast

1. Introduction

Well production is one of the most important indicators of oilfield development and
management. Acquainting well production performance in advance can help engineers
adapt development countermeasures and optimize development effects timely. Decline
curve analysis has been widely utilized and achieves a good performance in conventional
reservoirs [1]. The Arps model, however, may not be suitable due to the intricacy of
flow dynamics in unconventional reservoirs. Under certain assumptions, the formation
parameters are simplified, and the analytical or semi-analytical model is proposed and
solved [2,3], which can simplify the complex formation seepage issue, but also limit the
model’s application. Numerical reservoir simulation techniques make production forecasts
based on history matching by building a geological model of the actual reservoir [4];
however, establishing a model that is virtually identical to the actual reservoir requires
reservoir engineers to have considerable experience. The complex geological characteristics
of unconventional reservoirs, on the other hand, exacerbate the non-linear variance of oil
production over time, making production prediction extremely challenging.

Various artificial intelligence algorithms have been implemented in the field of petroleum
engineering with the growth of machine learning theory, paving a new route for the inves-
tigation of the production prediction issue [5,6]. Wang constructed a deep neural network
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(DNN) model to forecast cumulative oil production of Bakken shale reservoirs [7]. On the
basis of a long short-term memory (LSTM) structure, Huang conducted the development
prediction task in a water-flooding reservoir [8]. Sagheer and Kotb established a deep
long-short term memory (DLSTM) framework to enhance the oil production forecast per-
formance and employed the genetic algorithm to optimize the hyperparameters [9]. Cheng
used the long short-term memory (LSTM) network and gated recurrent unit (GRU) method
to predict the oil production of actual oilfields in China and India [10]; the results indicate
that LSTM and GRU have respective advantages under different circumstances.

Whereas single models are not sufficiently applicable for complicated issues, hybrid
structures have become a research trend in the time series forecasting area [11,12], including
well performance forecasting [13]. Fan developed a hybrid model that incorporated the
autoregressive integrated moving average (ARIMA) with the long short-term memory
(LSTM) network to predict the production of three actual wells under the influence of
manual operations [14]. Li [15] used the PSO algorithm to optimize the proposed CNN-
LSTM production forecast model, which has higher prediction accuracy than a single model.
To enhance prediction validity, a current trend in time series forecasting is to incorporate the
artificial intelligence algorithm with decomposition pre-processing strategies [16–18]. Liu
proposed a hybrid model that combines ensemble empirical mode decomposition (EEMD)
with an LSTM network [19], with the appropriate intrinsic mode functions (IMFs) of EEMD
chosen using dynamic time warping (DTW). The method achieved a higher accuracy than
other models in two reservoirs. Wang constructed a hybrid method with variational mode
decomposition (VMD) and gated recurrent unit (GRU) [20], which was implemented in the
Tahe oilfield and demonstrated an outstanding performance.

Oil production data of unconventional reservoirs are complicated and nonstationary;
even a decomposition-forecasting method could not obtain excellent accuracy, so further
data processing [21] is necessary. By considering both improving the prediction perfor-
mance and reducing the accumulation errors, the secondary decomposition method and
subsequence reconstruction approach are implemented comprehensively in this study.
By analyzing the prediction performance of various reconstruction numbers and modes,
guidelines for component reconstruction are generated, and the threshold is set for sample
entropy values of first-stage decomposition IMFs. After evaluating the forecast efficiency,
the most complex subsequence is further decomposed by VMD. As the core part of the
structure, an optimum predictor is selected among four artificial intelligence algorithms to
utilize their excellent data-learning skills. Then, the multi-type subseries data is inputted
to the corresponding LSTM predictor based on a hybrid architecture. The multi-stage
prediction structure is proposed and applied to forecast the well production rate of the
Jinlong volcanic reservoir. The contributions of the proposed method are as follows:

(1) A novel multi-step decomposition-integration framework is established for oil pro-
duction forecasting;

(2) Intrinsic mode functions (IMFs) are reconstructed to re-IMFs according to the rules
for subsequence reconstruction numbers and modes, which reduces accumulation
errors and calculation complexity;

(3) The highest-frequency reconstructed IMF is preferred to be further decomposed to
enhance prediction accuracy;

(4) The hybrid model combines the advantages of both integral and corresponding
architectures, maintaining both prediction accuracy and computing efficiency.

2. Methods
2.1. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

Empirical Mode Decomposition (EMD) has been popularly utilized for decomposing
sequential data in several time series forecasting fields. It also has disadvantages, such as
weak stability. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN) is presented as an improved practice of EMD [22]. The raw time series data
can also be decomposed into several intrinsic mode functions (IMFs) and a residue with
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different frequencies by the CEEMDAN, which incorporates adaptive noise into the EMD
process, and the decomposition process is complete so the least reconstruction error is
obtained, helping resolve the issue of modal aliasing and residual noise in the sequence.

2.2. Variational Mode Decomposition

Variational Mode Decomposition (VMD) is a novel non-recursive data decomposition
algorithm defined by Dragomiretskiy and Zosso [23] to solve the limitations of sensitivity
to noise and sampling, which can decompose nonlinear and nonstationary original data
into specific amounts of intrinsic mode functions (IMFs). The VMD method searches
for the optimal solution to a variational problem to accomplish adaptive decomposition.
The promotion points of VMD include minimizing the sum of evaluated bandwidth and
inhibiting noise. It has been utilized to further decompose high-frequency subseries data
from previous data processing, which can effectively decrease its complexity.

2.3. Long Short-Term Memory Network

Recurrent neural network (RNN) is widely utilized in Natural Language Processing
(NLP) and Time Series Forecasting (TSF) areas; because of the gradient disappearance and
explosion problem, improved methods have been proposed, especially the long short-term
memory neural network (LSTM) which demonstrates excellent performance in dealing
with many issues [24]. Figure 1 depicts the cell structure of the LSTM, which consists
of the cell state, forget gate, input gate and output gate. As the core section of LSTM
structure, a cell state contains information about all previous states, and at each new time
step, operations are carried out to identify which old information to discard and which
new information to add.
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2.4. Sample Entropy

Sample entropy (SE), proposed by Richman and Moorman [25], can be employed
to evaluate the complexity of time series; the higher the sample entropy value, the more
complicated the sequence is. Although the series data is decomposed, IMFs still have
several high-frequency subsequences. Based on the rules of reconstruction numbers and
modes we defined in Section 2.5, IMFs decomposed from different source data could
be integrated in a general flow, which can properly decrease computing workload and
promote model efficiency.

2.5. Rules of Subsequence Reconstruction and Secondary Decomposition

To reduce the accumulation errors, simplify the complexity of computation, and further
process high-complexity components, this research implements a procedure after initial
decomposition with the production data of actual oil wells: reconstruction and secondary
decomposition. We determine the optimum number of reconstruction subsequences and
prefer the most appropriate mode for the method’s wide adaptability and migration. Details
of the rules’ definition process for this flow are depicted by comparable experiments in
Section 3.2. The conclusions of the experiments are summarized as follows:

(1) The proper number of reconstructed IMFs is set to three according to the predic-
tion performance comparison of multiple hybrid models with various reconstructed
IMF counts;

(2) Based on the first decomposition process results of oil well production data in the
JinLong volcanic reservoir, the corresponding most appropriate reconstruction modes
are preferred. The optimum reconstruction modes show the threshold of the sample
entropy value of IMFs to conduct the integration. The high-frequency subseries
whose sample entropy values are over 1.0 and the low-complexity IMFs with values
under 0.2 should be reconstructed, while the rest of the sequences comprise a re-IMF,
regardless of whether the initial decomposition’s component number is 8 or 9.

(3) To consider both improving the prediction accuracy and simplifying the complexity
of calculation, the secondary decomposition is applied to process only the highest
frequency subsequence among the three reconstructed IMFs.

2.6. Architecture of the Proposed Hybrid Model

The architecture of the hybrid model proposed in this paper is depicted in Figure 2.
The main progress can be described as follows:

Step 1 Collect the actual oil production data.
Step 2 Decompose time series data into several IMFs by CEEMDAN.
Step 3 Calculate the sample entropy values of all IMFs and reconstruct them into fewer
re-IMFs based on the rules for component reconstruction numbers and modes.
Step 4 Decompose the highest-frequency re-IMF0 from Step 3 by VMD to obtain new
subsequences, and feed them into an integral LSTM architecture in the form of a matrix
for prediction.
Step 5 Build the same number of LSTM models as reconstructed IMFs without secondary
decomposition, input each IMF vectors and forecast them correspondingly.
Step 6 Integrate all the forecasting values of each re-IMF from Step 4 and Step 5 to obtain
the final prediction result and evaluate it.
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2.7. Model Evaluation Index

For evaluating the forecasting performance of every model, this study selects the
following four common performance measurement indices: root mean square error (RMSE),
mean absolute error (MAE), mean absolute percentage error (MAPE) and determination
coefficient (R2). The calculation formulas for the indices are shown as follows:
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(4)

where yi, ŷi, yi are the actual, forecast and mean values of the time series sample data,
respectively, n is the sample size. The values of the four indexes represent the prediction
accuracy of the proposed hybrid model; if the values of RMSE, MAE, MAPE are closer to 0,
or R2 is closer to 1, the model is more excellent.
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3. Experiments

Aiming to validate the established hybrid forecasting structure, oil production data
from the JinLong volcanic reservoir are processed, and seven comparative experiments
are conducted.

3.1. Data Preparation

The hybrid model proposed above is implemented to forecast actual oil production in
the JinLong(JL) volcanic reservoir, which is located on the east slope of the Zhongguai Uplift
in the southwest margin of the Junggar Basin, as shown in Figure 3. The Jiamahe Formation
of the Permian is the primary oil-bearing layer to develop, which has an average depth of
4000 m. The thickness of the volcanic rock of the Jiamuhe Formation ranges from 22 m to
286 m, averaging 145.3 m. As a naturally fractured reservoir, oblique fractures, straight
split fractures, reticular fractures, microfractures and partially filled fractures develop in
the JL volcanic reservoir. The permeability of the formation varies from 0.01 to 68 mD and
the average value is 0.56 mD; the porosity ranges from 8% to 22.3% with an average of
12.35%. Oil production data of the production wells in the JL volcanic reservoir are applied
in multiple comparative experiments from Sections 3.3–3.8. After processing zero values,
missing and abnormal values, the volume of oil production data for each single well varies
from 916 to 1309. For the purpose of a high-quality modeling effect, the last 100 samples of
each series of data are chosen as test sets; the rest is for training.
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3.2. Sample Entropy Reconstruction and Secondary Decomposition

After the CEEMDAN process, oil production data could be decomposed into several
IMFs, including a residual series. There are two kinds of first-decomposition results
determined by the source data in this study: 8 and 9. The sample entropy values of each
subsequence are calculated and listed in Table 1. In order to decrease the computational
workload on the premise of ensuring prediction accuracy, we integrate the first-stage IMFs
into fewer ones and implement secondary decomposition. The principles of reconstruction
and secondary decomposition are defined by the following trials:

Table 1. First-stage decomposition results and sample entropy values of each subsequence.

Subsequence Sample Entropy Value
Well-1 Well-2 Well-3 Well-4

IMF0 1.6896 1.6283 1.1927 1.3437
IMF1 1.3168 1.8620 1.4169 1.3095
IMF2 0.7788 1.2472 1.0695 0.6152
IMF3 0.5569 0.6540 0.6434 0.5737
IMF4 0.3745 0.2106 0.2698 0.4166
IMF5 0.1186 0.1255 0.1168 0.1666
IMF6 0.0442 0.0334 0.0572 0.0835
IMF7 0.0040 0.0277 0.0260 0.0084
IMF8 \ 0.0022 0.0001 \

(1) Determine the proper number of reconstruction IMFs.

To optimize the best reconstruction number, comparison experiments with different
re-IMF quantities are carried out. All the experiments are based on the decomposition-
reconstruction-integral LSTM structure. Table 2 shows the specific programs and evaluation
index of these models’ forecasting performance.

Table 2. Comparison of prediction models with different reconstructed IMF numbers.

Number of Re-IMFs
Well-1 Well-2 Well-3 Well-4

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 (no decomposition) 0.8030 3.4270 0.8044 3.1330 0.7658 0.8804 0.7955 4.3385
2 0.8035 3.1414 0.8064 2.5684 0.7801 0.8532 0.8119 1.9584
3 0.8529 2.2888 0.8656 2.1305 0.8549 0.6930 0.8603 1.3145
4 0.8135 2.7132 0.8064 2.4053 0.8134 0.7404 0.7853 2.4741

8 or 9 (no reconstruction) 0.8229 2.5888 0.8346 2.7063 0.7697 0.8731 0.8146 2.3529

When the number of re-IMFs is three, the prediction errors are the lowest and the R2

scores are the highest. Therefore, in this research, the number of reconstruction IMFs is
defined as three to obtain the best prediction accuracy.

(2) Identify the optimum reconstruction modes.

To obtain three reconstruction subsequences, several optional integration modes of
IMFs are listed in Tables 3 and 4. The forecasting results of these modes are compared with
the same predictor, and the evaluation results are also shown in Tables 3 and 4.

Table 3. Reconstruction modes (first-stage decomposition IMF’s number: 8).

Reconstruction
Mode

Component of
Re-IMF0

Component of
Re-IMF1

Component of
Re-IMF2

Well-1 Well-4
R2 RMSE R2 RMSE

A IMF0, IMF1 IMF2, IMF3, IMF4 IMF5, IMF6, IMF7 0.8529 2.2888 0.8603 1.3145
B IMF0, IMF1, IMF2 IMF3, IMF4 IMF5, IMF6, IMF7 0.8056 3.1018 0.8167 1.8762
C IMF0, IMF1 IMF2, IMF3 IMF4, IMF5, IMF6, IMF7 0.8115 2.6132 0.8186 1.6709
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Table 4. Reconstruction modes (first-stage decomposition IMF’s number: 9).

Reconstruction
Mode

Component of
Re-IMF0

Component of
Re-IMF1

Component of
Re-IMF2

Well-2 Well-3
R2 RMSE R2 RMSE

A IMF0, IMF1, IMF2 IMF3, IMF4, IMF5 IMF6, IMF7, IMF8 0.8171 2.3069 0.8278 0.7495
B IMF0, IMF1 IMF2, IMF3, IMF4 IMF5, IMF6, IMF7, IMF8 0.8153 2.3210 0.8389 0.7302
C IMF0, IMF1, IMF2 IMF3, IMF4 IMF5, IMF6, IMF7, IMF8 0.8656 2.1305 0.8549 0.6930

Mode A and Mode C for subsequence reconstruction, corresponding to an IMF number
of 8 and 9, respectively, achieve the best prediction performance. Considering the sample
entropy values of each IMF listed in Table 1, we could summarize the threshold of the
sample entropy value to obtain the best reconstruction mode.

It can be inferred that subsequences whose sample entropy values are higher than
1.0 or lower than 0.2 should be reconstructed into a new re-IMF; the others are the third
re-IMF, setting the principle of subsequence reconstruction in this study.

(3) Select the appropriate subsequence for secondary decomposition.

Secondary decomposition could improve model performance but consume more
time; which reconstructed IMF from the subsequence reconstruction process should be
re-decomposed is investigated by the comparison experiments listed in Table 5.

Table 5. Comparison of prediction models with different re-decomposition programs.

Components to be
Re-Decomposed

Well-1 Well-2 Well-3 Well-4
R2 Time (s) R2 Time (s) R2 Time (s) R2 Time (s)

re-IMF2 0.8282 865.777 0.8800 858.695 0.8472 801.331 0.8017 901.619
re-IMF1 0.8394 902.950 0.8826 867.678 0.8641 870.178 0.8334 909.153
re-IMF0 0.9235 928.145 0.9603 1001.435 0.9364 944.565 0.9483 926.474

re-IMF0, re-IMF1 0.8802 1206.589 0.9615 1267.169 0.8811 1282.281 0.9151 1205.483
re-IMF0, re-IMF1,re-IMF2 0.8546 1299.403 0.9621 1270.926 0.8781 1283.385 0.8313 1249.192

While decomposing only one subsequence, the prediction performance of the model
gradually decreases from re-IMF0 to re-IMF2. On the other hand, with the increase in
the number of sequences that are secondarily decomposed, the prediction accuracy of the
model improves very slightly or doesn’t improve; however, the computing time increases
significantly. Re-IMF0 includes much complex information about the source data; further
processing could capture the sufficient features to forecast more accurately. Furthermore,
while low-frequency data is initially easy to forecast, additional processing leads to in-
creased cumulative errors and calculation workload. Therefore, only the highest-frequency
subsequence should be applied to the secondary decomposition procedure.

3.3. Experiment I: Comparison of Single Models

The forecasting performance of four single artificial intelligence models without data
decomposition is compared in this section, including Support Vector Regression (SVR), Back
Propagation (BP) Neural Network, Recurrent Neural Network (RNN) and LSTM. Based on
the oil production prediction values of Well-1, the evaluation metrics are calculated and
shown in Figure 4.

Evidently, LSTM has the smallest error (RMSE, MAE, MAPE) and highest accuracy
(R2) among single models. It implies that, when compared to SVR, BP and RNN, LSTM can
grasp the high-sophistication features of the oil production rate more effectively, making it
more suitable as a prediction method for production dynamic analysis in oilfields. However,
single models still cannot satisfy the requirements of high forecast accuracy for their low-
level R2 score.
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3.4. Experiment II: Comparison of First Decomposition Methods before Sample
Entropy Reconstruction

The primary objective of this scenario is to compare the performance of popular decom-
position methods based on the decomposition-sample entropy reconstruction-ensemble
forecasting framework. The error index values obtained by different decomposition meth-
ods, including EMD, Ensemble Empirical Mode Decomposition (EEMD) and CEEMDAN,
are shown in Figure 5, while simple LSTM is the baseline.
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After adopting EMD, EEMD and CEEMDAN as first-stage decomposition methods,
the prediction accuracy of the model has been significantly improved; even the EMD-
SE-LSTM model with low accuracy (RMSE = 2.6570, MAE = 2.0306, MAPE = 11.6345,
R2 = 0.8093) is much better than the single LSTM. In contrast with EMD and EEMD, CEEM-
DAN is more suitable for processing well production data.

3.5. Experiment III: Comparison of Different Predictors Based on the Hybrid Structure with
Primary Decomposition and Sample Entropy Reconstruction

This section investigated the performance of the hybrid structure via primary decom-
position and sample entropy reconstruction with a classical predictor. SVR, BP, RNN and
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LSTM were introduced as predictors in the ensemble forecasting framework, and their
prediction performances are shown in Figure 6.
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Based on the hybrid model, the performance of multiple predictors appeared to follow
the following order: deep learning techniques (RNN, LSTM) > machine learning methods
(SVR, BP). It could be inferred that the forecasting efficiency of LSTM was infinitely superior
to traditional machine learning algorithms and RNN because of its particular structure and
ability to process time series.

3.6. Experiment IV: Comparison of Different Forecasting Architectures

There are two basic structures during the time series forecast process, which are named
integral architecture and corresponding architecture in this issue. Integral architecture
means applying all series data to an individual model, so the input data should be a matrix.
On the contrary, the corresponding structure is more complicated and accurate because
it predicts all series data separately. The forecasting model’s quantities are dependent on
the counts of input vectors, which increases the prediction procedure’s calculation time.
Considering the evident advantages and disadvantages of two structures comprehensively,
a hybrid architecture is established. First, it uses the corresponding structure to forecast
each IMF or re-IMF, then uses the integral architecture to integrate the results of the previous
step. Figure 7 exhibits the evaluation indicators for three forecasting architectures compared
with a simple LSTM baseline. The calculation time of each structure is shown in Table 6.

Although the corresponding architecture has the smallest error, it requires a significant
amount of calculation time. The integral architecture runs fastest but sacrifices accuracy.
The hybrid structure demonstrates nearly identical performance to the corresponding
architecture and saves lots of time. It combines the advantages of two basic architectures,
maintaining prediction accuracy while promoting computing speed.

Table 6. Calculation time of different architectures.

Architecture Calculation Time (s)

Simple LSTM 191.518
CEEMDAN-SE-Integral LSTM 267.187

CEEMDAN-SE-Corresponding LSTM 953.668
CEEMDAN-SE-Hybrid LSTM 554.536
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3.7. Experiment V: Comparison of Second-Stage Decomposition Methods

After first-step processing, the raw data is decomposed into several IMFs, which
consist of high-frequency sequences and low-frequency sequences; LSTM could forecast
the latter more effectively. Further processing for high-frequency series data could enhance
the model’s performance; multi-stage decomposition is suggested. In this experiment,
IMF0 or re-IMF0 is decomposed secondarily by different decomposition methods based on
the hybrid forecasting architecture, including EMD, EEMD, CEEMDAN and VMD. The
comparative result of these models is shown in Figure 8.
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These three EMD-based methods perform better than simple LSTM; however, applying
VMD to the second-stage decomposition process decreases the error evidently (RMSE
decreased by 72.74%, MAE by 67.82% and MAPE by 67.66%) and promotes the R2 score
by 15.01%.

3.8. Experiment VI: Comparison of Proposed Hybrid Model with Other Forecasting Methods

To verify the proposed model’s progression and creativeness, it is essential to compare
it to other models that are usually utilized for time series forecasting, including BP, single
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LSTM, CEEMDAN-SE-LSTM, and integral forecasting architecture based on VMD second-
decomposition. The comparison with these models illustrates the value of the proposed
model. The evaluation indices of these models are depicted in Figure 9.
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The proposed model has the smallest error and the highest R2 value among the com-
monly used methods; the results confirmed the validity of the proposed hybrid approach
for oil production forecasting. Figure 10 shows the performance of the hybrid model in
predicting Well-1’s oil production.
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Figure 10. Forecasting performance of the proposed model for Well-1.

The hybrid structure of decomposition-reconstruction-secondary decomposition con-
tributes to the ability to distinguish information of different frequencies and capture deeper
features of oil production data, achieving more accurate prediction outcomes. In fact,
frequently and abruptly changing values, as illustrated in Figures 11 and 12, remain a
difficult issue in forecasting. More engineering parameters should be considered when
using the model in the future.



Energies 2023, 16, 1027 13 of 16Energies 2023, 16, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 11. Forecasting performance of the proposed model for Well-5. 

 
Figure 12. Forecasting performance of the proposed model for Well-6. 

3.9. Experiment VII: Validations in Other Production Wells 
The proposed hybrid prediction framework achieved outstanding performance in 

forecasting Well-1’s production dynamics. We implement it for other wells’ production 
predictions to validate the hybrid model. Figures 13–15 demonstrate the production fore-
casting results of three wells in the JL volcanic reservoir. 

Figure 11. Forecasting performance of the proposed model for Well-5.

Energies 2023, 16, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 11. Forecasting performance of the proposed model for Well-5. 

 
Figure 12. Forecasting performance of the proposed model for Well-6. 

3.9. Experiment VII: Validations in Other Production Wells 
The proposed hybrid prediction framework achieved outstanding performance in 

forecasting Well-1’s production dynamics. We implement it for other wells’ production 
predictions to validate the hybrid model. Figures 13–15 demonstrate the production fore-
casting results of three wells in the JL volcanic reservoir. 

Figure 12. Forecasting performance of the proposed model for Well-6.

3.9. Experiment VII: Validations in Other Production Wells

The proposed hybrid prediction framework achieved outstanding performance in
forecasting Well-1’s production dynamics. We implement it for other wells’ production
predictions to validate the hybrid model. Figures 13–15 demonstrate the production
forecasting results of three wells in the JL volcanic reservoir.

The results validate that the hybrid model proposed in this study also achieves good
accuracy in forecasting other wells’ production. The proposed model could obtain the char-
acteristics and trends of production history data and make accurate predictions, providing
an applicable method for reservoir production forecasting.
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4. Discussion

This study aims to establish a hybrid framework to analyze the production dynamics
and improve the prediction accuracy of oil reservoirs. Simple models cannot capture all
features of reservoir history information, making inaccurate predictions. Decomposition
methods could process nonstationary, complex and low-quality data in the petroleum
industry. The raw data can be transformed into subsequences, facilitating feature engineer-
ing; however, the complexity of some subsequences is still high. To enhance the model’s
efficiency and avoid unnecessary computing, IMFs’ integration is conducted under the
rules of sample entropy reconstruction determined by evaluation experiments. The re-
maining highest-frequency component contains the main irregular parts of the data, which
inhibits the model’s performance. A secondary decomposition could improve the model’s
prediction performance by addressing nonstationary and nonlinear issues in the highest-
frequency data and fully extracting time series features. The LSTM structure, which is able
to capture and store valuable features from time series data, is appropriate for the hybrid
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forecasting structure with high prediction accuracy. The proposed model is applied for
single-well production prediction in the JL volcanic reservoir and performs outstandingly,
achieving more accurate forecast results than single models and one-step decomposition
structures. Moreover, the rules for reconstruction and re-decomposition make the process
more automated and intelligent.

Although principles of reconstruction and secondary decomposition are specified for
the proposed framework, we advise adopting the method in other reservoirs with similar
geological or production characteristics. For different types of oilfields, the threshold in
the rules should be adjusted according to the actual production dynamics of oil wells.
Furthermore, more geological and engineering features should be considered to enhance
the forecast of suddenly changing values, and the predictor in the final stage of the structure
should be determined among multiple methods by comparable evaluations since there is
no perfect technique for every task.

5. Conclusions

Oil production forecasting is extremely significant during oilfield development, par-
ticularly in unconventional reservoirs such as volcanic reservoirs. Traditional methods
and simple machine learning algorithms cannot achieve sufficiently high accuracy in oil
production forecasting results. High-frequency data from the decomposition-prediction
strategy also limits the forecasting efficiency; thus, a multi-stage decomposition model
is proposed in this study. The hybrid model consists of CEEMDAN, sample entropy re-
construction, secondary decomposition based on VMD and the LSTM forecasting process.
Based on data-driven theory, two-stage decomposition could aid in extracting features and
increasing prediction accuracy. The structure synthesizes the advantages of the integral and
corresponding architecture, making it outstanding among comparative experiments. The
rules of reconstruction and secondary decomposition are defined, and which subsequence
should be decomposed again is also proposed, improving the workflow’s generalizability.
The proposed hybrid model was validated in several actual production wells, illustrating
its wide applicability. We can apply the model to other reservoirs with similar geological
features or similar oil production patterns, such as other volcanic reservoirs, naturally
fractured reservoirs and low permeable reservoirs developed by artificial fracturing. The
common property of these formations is that their oil production capacity is determined by
fracture development. Besides predicting production, the method helps to understand the
reservoir thoroughly and adjust the subsequent development scheme.
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