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Abstract: Deep comprehension of wind farm performance is a complicated task due to the multivari-
ate dependence of wind turbine power on environmental variables and working parameters and to
the intrinsic limitations in the quality of SCADA-collected measurements. Given this, the objective
of this study is to propose an integrated approach based on SCADA data and Computational Fluid
Dynamics simulations, which is aimed at wind farm performance analysis. The selected test case is a
wind farm situated in southern Italy, where two wind turbines had an apparent underperformance.
The concept of a space–time comparison at the wind farm level is leveraged by analyzing the oper-
ation curves of the wind turbines and by comparing the simulated average wind field against the
measured one, where each wind turbine is treated like a virtual meteorological mast. The employed
formulation for the CFD simulations is Reynolds-Average Navier–Stokes (RANS). In this work, it
is shown that, based on the above approach, it has been possible to identify an anemometer bias
at a wind turbine, which has subsequently been fixed. The results of this work affirm that a deep
comprehension of wind farm performance requires a non-trivial space–time comparison, of which
CFD simulations can be a fundamental part.

Keywords: wind energy; wind turbines; power curve; CFD; SCADA; data analysis; performance analysis

1. Introduction

The comprehension of wind turbine performance in a real-world environment [1] is,
in general, a complicated task. This occurs substantially for two reasons:

• the wind turbine power has a multivariate dependence on environmental factors,
on working parameters, and on the health status of the machine;

• there are data quality issues related to the wind speed measurement.

As regards the latter point, the standard is that the wind speed at a wind turbine
site is measured by cup- or ultrasonic anemometers, which are placed behind the rotor
span, and the free stream wind speed is estimated ex post through a nacelle transfer
function. Several environmental factors on which the power of a wind turbine depends
are not measured in industrial plants, mainly for economic reasons. Some examples are
the vertical components of the wind flow [2], the turbulence intensity [3], the humidity, the
temperature [4], and so on. This means that in case the wind turbine is situated in a harsh
environment [5] or is operating incorrectly (for example, if it is subjected to systematic yaw
error [6,7]), the interaction between the wind field and the wind turbine rotor is different
with respect to standard conditions and typically unpredictable. Furthermore, it is not rare
that anemometers of industrial wind turbines are affected by bias [8–10] and therefore do
not measure the wind speed correctly.

The most adopted method for wind turbine verification is the power curve analy-
sis [11]. The power curve is simply the relationship between the input (wind speed) and
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the output (power) of a wind turbine. For the above-cited reasons, it is well established
that the power curve of a wind turbine is site dependent [12], which means that the power
curve of the same wind turbine model situated in different environments looks different.
Given this, the design specifications of the power curve of a certain wind turbine model
are useful only to a certain extent because there is no precise ground truth about how the
measured power curve should appear at a given real-world site.

As regards the multivariate dependence of wind turbine power on operational pa-
rameters, a meaningful simplification is that the power that should be extracted by a wind
turbine is given in Equation (1) [13]:

P =
1
2

πR2ρv3Cp(β, λ), (1)

where R is the rotor diameter, ρ is the air density, v is the free stream wind speed and Cp is
the power coefficient which depends on the blade pitch β and on the rotor speed ω through
the tip-speed ratio λ.

Given the above considerations and, most of all, the absence of a ground truth for
performance verification, the most consistent approach is the space–time comparison [14],
which is based on the assumption that the behavior of a wind turbine should be reasonably
similar to itself over time and that the behavior of wind turbines of the same model at the
same site should, as well, be reasonably similar. In a nutshell, the scientific objective of the
present study is to pursue this concept further with respect to the state-of-the-art. The main
innovative aspect of this work is that the two sources of complexity regarding wind turbine
performance interpretation (which are the multivariate behavior and the wind speed
data quality issues) are disentangled. This is achieved by separately employing SCADA
data analysis methods [15] and Computational Fluid Dynamics (CFD) simulations and
interpreting them jointly. The former method is applied to address the multivariate behavior
of the power on the working parameters, and the latter to address the comprehension of the
wind field on site and how it is measured by the wind turbines. The innovativeness does not
regard every single method in particular, although it should be noted that the application
of CFD simulations to a wind farm operational assessment is, in general, overlooked; rather,
the approach regards the overall application and the interpretation. The study is organized
as an academia–industry collaboration between the University of Perugia and the Fera
company, and it is devoted to a real-world test-case study: a wind farm situated in Italy,
composed of seven wind turbines having 3.4 MW of rated power each.

Two methods based on SCADA data are employed:

• The analysis of operation curves [16] which do not depend on the measurement of
wind speed. The space–time comparison is pursued in order to individuate if there
are differences in the wind turbines suspected of under-performance.

• The analysis of the power of the wind turbines of interest as a function of the power
of nearby reference wind turbines. This method is typically called power–power or
side–side and has been applied in the literature for evaluating small energy gains due
to technology optimizations [17,18].

As anticipated above, the numerical method selected in this study consists of CFD sim-
ulations of the free wind flow over the wind farm. WindSim software has been employed
for the solution of the Reynolds-Averaged formulation of the Navier–Stokes equations
(RANS). The rationale for this analysis is that a possible anemometer bias at a wind turbine
could be individuated in the form of a mismatch between the simulated wind field and
the wind field measured by the nacelle anemometer of the wind turbine of interest. Once
again, the space comparison between wind turbines from the same site comes in handy,
and this is pursued in an original way. The hypothesis of anemometer bias is confirmed
if the mismatch between the numerical simulations and measurements distinguishes the
suspected wind turbine with respect to what happens for the rest of the fleet. From this
point of view, each wind turbine can be conceptually considered a meteorological mast that
can be employed for reference or validation.
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Regarding the test case of this work, the above summarized holistic approach provided
the solution to a measurement bias problem. Indeed, based upon the analyses reported
in this work that were conducted, the nacelle anemometer of one wind turbine has been
replaced, and the anomaly has been fixed.

The structure of the manuscript is, therefore, the following: in Section 2, the test case
and the measurements at disposal are described; Section 3 is devoted to the data analysis
and numerical methods; the results are collected and discussed in Section 4; the conclusions
are drawn in Section 5.

2. The Test Case and the Data Set

The wind farm is composed of seven wind turbines having 3.4 MW of rated power
each. The hub height is 96.5 m, and the rotor diameter is 104 m. The blade pitch angle
is controlled electrically. The layout of the wind farm is reported in Figure 1. As can
be deduced from the further information reported in Section 3, the wind farm is poorly
affected by wakes, and the terrain is not particularly complex. Therefore, wind turbines are
expected to perform similarly.

Figure 1. The layout of the test case wind farm.

The nacelle anemometers of T2 and T4 have been replaced (the date is not reported for
confidentiality). This allows for comparing the behavior before and after the replacement.

Data Pre-Processing

The data at our disposal go from 1 January 2016 to 31 October 2022. The available
validated measurements have ten minutes of averaged time, and for each wind turbine are
the following:

• Wind Speed v measured by the ultrasonic nacelle anemometer (m/s);
• Output power P (kW);
• Blade pitch angle β (◦);
• Rotor speed ω (rpm);
• Gearbox speed Ω (rpm).

Appropriate data pre-processing is fundamental in order to interpret the wind turbine
performance correctly. In particular, a two-step method is applied in this study:

• For each wind turbine, data are filtered on the request that it has been producing
output during all the 10-min intervals associated with a record. This has been done
using the appropriate run-time counter available in the SCADA data set.

• Industrial wind farms might operate under curtailment, due to grid requirements
or for noise- or load-reduction. It is recommended to filter out the time steps associ-
ated with operation under curtailment when analyzing the performance of a wind
turbine [19,20]. A simple and effective method is based on the fact that wind turbines
under curtailment are forced to pitch anomalously in order to regulate the load at
the desired set point. Therefore, for the deviation with respect to the average wind
speed–blade pitch [21], a curve can be used for distinguishing the operation under
curtailment. A 2◦ threshold has been employed for this study. An example of filtering
is reported in Figure 2. From this figure, it appears that the identification of anoma-
lous data is acceptable for practical uses, such as for the purposes of this study. It
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should be noticed that there are several methods in the literature for substituting the
missing or filtered-out data through interpolation [22,23]. This is not necessary for the
objectives of this work, which is based on an analysis of the average behavior of the
wind turbines.
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Figure 2. Example of raw and filtered power curve data of T1.

3. Methods
3.1. SCADA Data Analysis

The basis for the SCADA data analysis is constituted by the binning method. The
rationale is that for the purpose of performance analysis, the average behavior of a wind
turbine is likely sufficient to highlight an apparent anomaly. The critical point is instead
given by the interpretation of the apparent under-performance, and here is where the
approach proposed in this study intervenes.

The principles of the binning method can be summarized starting from the power
curve analysis. The power curve is the relation between the wind speed v and the power
P. The design specifications of a wind turbine indicate that this relation should be a line;
however, in a real-world environment, it is instead a cloud of points. Therefore, the simplest
method for a space–time comparison is the binning method applied to the power curve,
which reduces a cloud of points to an average line. The method simply consists of grouping
the (v, P) measurements in intervals of wind speed, whose amplitude is typically selected
based on plausibility arguments as 0.5 or 1 m/s. Therefore, a given data set is divided
accordingly into J subsets having a population of Nj, with j = 1, . . . , J. For each, the
average power Pj is computed as in Equation (2):

Pj =
1
Nj

Nj

∑
i=1

Pj,i, (2)

where Pj,i is the i-th power measurement in the j-th wind speed bin. Therefore, the binning
method results in a set of points (vj, Pj) identifying a line in the (v, P) plane.

Based on Equation (1), it is recommended that the nacelle wind speed v be renor-
malized by considering the effect of air density, as indicated in Equations (3) and (4):

vc = v

(
ρ

ρre f

) 1
3

(3)

ρ = ρre f
Tre f

Tamb
(4)
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where vc is the corrected wind speed, ρ is the air density measured on site, ρre f = 1.225 kg/m3

is the air density in standard conditions, Tre f is the absolute temperature in standard
conditions (288.15 K), and Tamb is the absolute ambient temperature measured on site. This
procedure is fundamental in order to compare the observed power curve against the design
specifications or in order to perform a time comparison by referring the measurements
to a common benchmark (standard conditions). The renormalization is less fundamental
when performing a space comparison during a given period because it is supposed that
nearby wind turbines are subjected to reasonably similar conditions. Regarding this
point, the literature also provides more complex renormalization methods [10,24] based
on statistical analysis or design specifications in order to compensate for the absence of a
ground-truth reference.

In the present study, two generalizations of the application of the binning method are
proposed to interpret a more in-depth performance of the wind farm under investigation.

The former generalization is given by the analysis of operation curves that do not in-
volve wind speed. Some of them have been methodologically explored in [16] and applied
in [25] to the long-term analysis of wind turbine performance. These are, for example, the
rotor speed–power curve, or the gearbox speed–power curve or the blade pitch–power
curve. Since a wind turbine is substantially controlled by regulating the blade pitch and,
consequently, the rotor speed, an under-performance should, in principle, be individuated
as diminished extracted power for a given rotational speed or, in the partial load region,
as increased blade pitch for extracting a certain power. Technically, this requires adapting
the binning method from the (v, P) couple to (G1, G2), where G1 and G2 can be an arbi-
trary couple of quantities that are considered representative of the wind turbine behavior.
As a rule of thumb for individuating the bins, the 10% of the range that G1 assumes is a
reasonable bin amplitude.

The latter generalization of the binning method proposed in this study is based on the
idea that a wind turbine’s under-performance could likely be individuated as a decrease of
the relative performance with respect to a reference wind turbine (which can be selected
as the nearest one, for example). For this analysis, the binning method can be applied by
selecting (G1, G2) to be the power of a reference wind turbine and the power of the target
wind turbine. For the application to the test case of interest, G1 is selected as the power
of the T5 reference wind turbine and G2 as the power of the target T4 wind turbine. The
applications of the binning method employed in this study are therefore summarized in
Table 1.

Table 1. Applications of the binning method.

Application G1 G2 G1 Range G1 Bins

Power curve v P [4, 12] m/s 0.5 m/s
Rotor speed–power curve ω P [7.5, 13.5] rpm 0.5 rpm

Gearbox speed–power curve Ω P [650, 1200] rpm 50 rpm
Rotor speed–blade pitch ω β [7.5, 13.5] rpm 0.5 rpm

Relative performance PT5 PT4 [0, 3400] kW 340 kW

3.2. Numerical Simulations

CFD (Computation Fluid Dynamics) simulations of the wind field on the actual terrain
have been performed using the RANS (Reynolds-Average Navier–Stokes) approach with
the WindSim software. The selection of the computational method has been based on
the fact that the objective is to inquire if there is a systematic error in the wind speed
measurements of one or more wind turbines. Therefore, a numerical simulation, which
provides an average picture of the flow field, is sufficient for the scope, and there is no need
to employ more sophisticated methods like Large-Eddy Simulations [26]. Furthermore, in
general, the WindSim software is widely used in the wind energy practitioners community
and for research purposes, as well [27–29].
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The RNG k-ε turbulence model has been employed. The selection of RNG k-ε is
based on its good capability of capturing terrain effects [30]. Furthermore, it is the most
used and validated in RANS simulations for the mean flow in the Atmospheric Boundary
Layer, which has been considered adequate for the purposes of this work (characterization
of the mean flow). The calculation domain has been initialized using the ASTERDEM
terrain digital information and the European Corine Land use map for roughness esti-
mation. The digital terrain model and the calculation grid are represented respectively
in Figures 3 and 4, while the details of the grid (for a total number of 3,492,480 cells) are
reported in Table 2. The overall domain size is 12 × 11 km in the East–West and North–
South directions. The boundary profile is logarithmic, which means it assumes an infinite
flat terrain upstream from the calculation domain. The standard setting of 500 m for the
boundary layer height has been used in the present study. The boundary condition on top
of the domain is constant pressure, and the non-equilibrium log-law wall functions are
employed near the ground.

Table 2. Grid specifications.

Direction Grid Spacing (Min–Max) Number of Cells

x 17.1–266.3 320
y 17.0–270.5 21
z Variable 51

Figure 3. Digital terrain model.

Figure 4. Grid resolution in the horizontal plane: from the boundary to the investigated area
(WindFarm), the spacing is refined from 270 to 17 m.
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The numerical CFD calculations have been performed blowing the wind on the terrain
considering twelve direction sectors and a neutral atmosphere on top of the boundary layer
(600 m of height). Two wind regimes have been simulated:

• Low: 10 m/s;
• High: 13 m/s.

Nevertheless, from a practical point of view, it is clear from the wind rose reported in
Figure 5 that the most important sectors are 150◦ and 330◦ and the results are presented
mostly for these two sectors.

Figure 5. Wind speed directional distributions on the turbines.

The wind speed and wind shear profiles for the most important wind direction sectors
are reported in Figures 6 and 7.
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Figure 6. Wind speed profile for the 0◦, 150◦, and 330◦ direction sectors.

Figure 7. Wind shear profile for the 0◦, 150◦, and 330◦ direction sectors.

The validation of the numerical model is summarized in Tables 3 and 4, where the
average wind speed for the low and high wind speed regimes is compared against SCADA
measurements upon averaging on all the wind turbines. The maximum average absolute
error is in the order of 1%, which indicates a very good agreement.

Table 3. Average measured and simulated wind speed: low wind regime.

Sector SCADA Numerical

0◦ 7.17 m/s 7.22 m/s
150◦ 7.36 m/s 7.35 m/s
330◦ 7.20 m/s 7.16

Table 4. Average measured and simulated wind speed: high wind regime.

Sector SCADA Numerical

0◦ 9.28 m/s 9.36 m/s
150◦ 9.51 m/s 9.52 m/s
330◦ 9.17 m/s 9.27

Finally, the adopted procedure goes as follows:

• one turbine is selected as a reference for the wind speed measurement;
• SCADA data are filtered when the wind direction is within the wind sector of interest,

and the nacelle wind speed at the reference wind turbine is equal to the one calculated
by the CFD model, with a tolerance of 0.2 m/s;

• the difference between the measured and the numerical wind speed are computed
(absolute and in percentage) for all the other wind turbines in the farm;

• the above steps are repeated, changing the reference turbine each time: eventually,
an error matrix has been obtained.
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The rationale for this analysis is that if there is a systematic error affecting one wind
turbine anemometer, it can be individuated by the mismatch between measurements and
model estimates when the model is set up on the measurements of the other wind turbines
in the farm, and vice versa.

4. Results
4.1. SCADA Data Analysis

A preliminary space–time comparison is pursued through the analysis of the power
curve, computed using the binning method as indicated in Table 1. Figure 8 reports the
power curves of all the wind turbines in the wind farm for 2016 and 2021, respectively. It
clearly appears that T4 appears to be underperforming in 2021, while it did not do so in
2016. Therefore, a time comparison of the power curve is performed for T4 (the target wind
turbine) and for a reference one (selected to be T5). The results are reported in Figure 9,
from which it appears that the power curve of T4 apparently degrades in time, with an
abrupt change occurring in 2020, while this does not happen for wind turbine T5.
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Figure 8. Power curve for the whole wind farm, computed using the binning method.
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Figure 9. Difference of the power curve with respect to 2016, for wind turbines T4 and T5.

Given the above results, Figure 10 reports a space–time comparison of the rotor speed–
power curves of the wind farm in 2016 and 2021. From this figure, it appears that each
wind turbine extracts averagely the same amount of power for a given average rotor speed.
The same kind of conclusion about the operational behavior arises from Figures 11 and 12,
where the gearbox speed–power curves and the rotor speed–blade pitch curves are reported
for the same periods.
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Figure 10. Rotor speed–power curve for the whole wind farm, computed using the binning method.
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Figure 11. Gearbox speed–power curve for the whole wind farm, computed using the binning method.
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Figure 12. Rotor speed–blade pitch curve for the whole wind farm, computed using the binning method.

From Figures 10 and 11, it appears that, given a certain rotational speed, wind turbine
T4 extracts, on average, the same amount of power as the other wind turbines. At this stage,
two hypotheses are conceivable: wind turbine T4 has a lower rotor speed and different
blade pitch for a given wind intensity (with respect to the other wind turbines on the farm),
which means there is under-performance or an issue with the wind speed measurement.
In order to discriminate between these two hypotheses, the binning method is applied to
the analysis of the power of the target wind turbine T4 relative to that of reference wind
turbine T5. The results are reported in Figure 13 and indicate that the difference in the
relative behavior of T4 with respect to T5 is practically negligible (few kW) from 2016 to
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2021, while Figure 8 indicates that over those five years, T4 has worsened with respect to
T5 up to more or less 10%. This contradiction suggests that the most plausible hypothesis
is that wind turbine T4 is affected by anemometer bias. Finally, in Figure 14, the average
power curve of the wind farm for 2022 is reported. It appears that, upon replacement of the
nacelle anemometer at wind turbine T4, the apparent anomaly has largely been reduced.
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Figure 13. Power of T4 as a function of the power of T5, computed using the binning method: 2016
and 2021.

Figure 14. Power curve for the whole wind farm, computed using the binning method: 2022,
upon nacelle anemometer replacement at wind turbine T4.

A deeper insight into the diagnosis of the problem at T4 is provided by the results of
the numerical simulations, reported in Section 4.2.

4.2. Numerical Simulations

The results of the comparison between numerical simulations and measurements
for 2021 are summarized in Figure 15. The matrix is meaningful because it indicates
straightforwardly that wind turbines T2 and T4 are anomalous. The sign of the anomaly
is fundamental in order to interpret the results. If the model is tuned to the nacelle
anemometer of T2 or T4, the average wind speed estimated at the nacelle of the other wind
turbines is higher than the real one for all the wind turbines on the farm. This means that
there is a bias at the nacelle anemometers of T2 and T4, which measure a wind speed higher
than the actual. From Figure 16, it appears that the error in the wind speed estimation with
respect to T4 diminishes considerably upon the replacement of the nacelle anemometer.
This is corroborated as well by Figures 17 and 18, where the average absolute errors between
the model and measurements are reported for the low and high wind speed regimes. The
change in the behavior of T4 upon nacelle anemometer replacement is evident.
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(a) 150◦ Before (b) 330◦ Before

Figure 15. Percentage error in the wind speed estimation before the replacement of the T4 nacelle
anemometer: low wind regime. In the i-th row, the results are obtained by calibrating the model on
the nacelle wind speed of the i-th wind turbine.

(a) 150◦ After (b) 330◦ After

Figure 16. Percentage error in the wind speed estimation upon the replacement of the T4 nacelle
anemometer: low wind regime. In the i-th row, the results are obtained by calibrating the model on
the nacelle wind speed of the i-th wind turbine.

(a) Low wind before (b) Low wind after

Figure 17. The mean absolute error between simulation and measurements for the sectors 0◦, 150◦

and 330◦, before and after the replacement of the T4 nacelle anemometer: low wind regime.
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(a) High wind before (b) High wind after

Figure 18. The mean absolute error between simulation and measurements for the sectors 0◦, 150◦

and 330◦, before and after the replacement of the T4 nacelle anemometer: high wind regime.

A careful analysis of Figures 15 and 16 indicates that there are strong directional
behaviors, and in particular, the 150◦ sector is quite peculiar because there are differences
between two sub-clusters, which are T1-T6-T7 and T2-T3-T4-T5. This interpretation is
corroborated by Figure 19, where the average wind direction (as simulated by tuning the
model iteratively on each wind turbine) is compared against SCADA measurements. While
the model predicts minimal deviations from one turbine site to the other, the measured
wind turbine nacelle direction changes up to 10◦ from one turbine site to the other.

Figure 19. Comparison between simulation and measurements regarding the average wind direction,
where each wind turbine is selected iteratively for tuning the model.

5. Conclusions

The objective of the present study has been to formulate an innovative approach
for wind turbine performance analysis and interpretation. As discussed in Section 1, the
comprehension of wind turbine performance is characterized by several critical points that
deal with data analysis and with measurements. In a nutshell, the power curve of a wind
turbine is site dependent and affected by the operation status of the machine. There is
no precise ground truth, and the power curve provided by design specifications is useful
only to a certain extent. Furthermore, the power of a wind turbine has a multivariate
dependence on ambient conditions and working parameters.
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Given these considerations, the most innovative approaches in the literature treat
the real-world comprehension of wind turbine performance as an issue of space–time
comparison [14], to which the present study has contributed through the combined use of
SCADA data analysis and CFD simulations. The rationale for this approach is to separate
the analysis of the wind field and of the working behavior of the wind turbine and to
interpret the results holistically. Based on this, the present study has been organized as a
real-world test case discussion regarding a situated wind farm owned by the Fera company.

An important conclusion of the present study is that a robust comprehension of
wind turbine performance also requires analysis methods that do not employ wind speed
measurements. Two types have been employed in this test case study and are recommended
in general. These are the analysis of operation curves (as rotor speed–power or blade
pitch–power) and of the relative performance between nearby wind turbines. A general
recommendation arising from this work is that the use of CFD simulations for performance
analysis is overlooked in the wind energy industry. The test case considered in this work
indicates that a RANS free flow model on the actual terrain provides information that can
be very useful for understanding the operational behavior of a wind farm. The practical
conclusion has been that, based on the analyses of the present work, a nacelle anemometer
bias has been individuated and fixed.

The most straightforward further direction of this work is incorporating the rotor
orientation in the comparison between numerical modeling and SCADA-collected mea-
surements. This could help interpret the static and dynamic wind turbine yaw behavior,
which would be a decisive step forward in improving wind farm operation.
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