Energy Theft Detection Model Based on VAE-GAN for Imbalanced Dataset
Abstract
:1. Introduction
1.1. Related Works
1.2. Main Contributions
- The GAN combined with VAE is proposed for energy theft detection in a practical environment. VAE generates data with diversity and appears to be stable in its learning process. Meanwhile, GAN generates data with fidelity, which turns out to be unstable.
- To ensure that VAE-GAN can be effective, the proposed energy theft detection model is evaluated in terms of data generation and classification over different data augmentation schemes.
- The performance of the proposed model is evaluated according to the balance rate, so as to look into the imbalanced data problem.
2. System Model
2.1. VAE-GAN
2.2. Energy Theft Detection Model Based on VAE-GAN
2.3. Performance Metrics
3. Simulation Results
3.1. Simulation Environment
3.1.1. Dataset
3.1.2. Data Pre-Processing
3.1.3. Hyper-Parameters
3.1.4. Structure of VAE-GAN Network
3.1.5. Structure of Detector
3.2. Performance Analysis
4. Conclusions and Discussions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shah, A.L.; Mesbah, W.; Al-Awami, A.T. An Algorithm for Accurate Detection and Correction of Technical and Nontechnical Losses Using Smart Metering. IEEE Trans. Instrum. Meas. 2020, 69, 8809–8820. [Google Scholar] [CrossRef]
- Nagi, J.; Yap, K.S.; Tiong, S.K.; Ahmed, S.K.; Mohamad, M. Nontechnical Loss Detection for Metered Customers in Power Utility Using Support Vector Machines. IEEE Trans. Power Del. 2010, 25, 1162–1171. [Google Scholar] [CrossRef]
- Yan, Z.; Wen, H. Performance Analysis of Electricity Theft Detection for The Smart Grid: An Overview. IEEE Trans. Instrum. Meas. 2021, 71, 1–28. [Google Scholar] [CrossRef]
- Korba, A.A.; Karabadji, N.E.I. Smart Grid Energy Fraud Detection Using SVM. In Proceedings of the 2019 International Conference on Networking Advanced Systems, Annaba, Algeria, 26–27 June 2019. [Google Scholar]
- Henriques, H.O.; Barbero, A.P.L.; Ribeiro, R.M.; Fortes, M.Z.; Zanco, W.; Xavier, O.S.; Amorim, R.M. Development of Adapted Ammeter for Fraud Detection in Low-voltage Installations. Measurement 2014, 56, 1–7. [Google Scholar] [CrossRef]
- Engelbrecht, J.; Hancke, G.P.; Osifeko, M.O. Design and Implementation of An Electrical Tamper Detection System. In Proceedings of the 45th Annual Conference on the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019. [Google Scholar]
- Kim, J.Y.; Hwang, Y.M.; Sun, Y.G.; Sim, I.; Kim, D.I.; Wang, X. Detection for Non-technical Loss by Smart Energy Theft with Intermediate Monitor Meter in Smart Grid. IEEE Access 2019, 7, 129043–129053. [Google Scholar] [CrossRef]
- Weckx, S.; Gonzalez, C.; Tant, J.; De Rybel, T.; Driesen, J. Parameter Identification of Unknown Radial Grids for Theft Detection. In Proceedings of the 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe, Berlin, Germany, 14–17 October 2012. [Google Scholar]
- Cardenas, A.A.; Amin, S.; Schwartz, G.; Dong, R.; Sastry, S. A Game Theory Model for Electricity Theft Detection and Privacy-aware Control in AMI Systems. In Proceedings of the 50th Annual Allerton Conferences, Monticello, IL, USA, 1–5 October 2012. [Google Scholar]
- Wei, L.; Sundararajan, A.; Sarwat, A.I.; Biswas, S.; Ibrahim, E. A Distributed Intelligent Framework for Electricity Theft Detection Using Benford’s Law and Stackelberg game. In Proceedings of the 2017 Resilience Week, Wilmington, DE, USA, 18-22 September 2017. [Google Scholar]
- Zheng, Z.; Yang, Y.; Niu, X.; Dai, H.-N.; Zhou, Y. Wide and Deep Convolutional Neural Networks for Electricity-theft Detection to Secure Smart Grids. IEEE Trans. Ind. Informat. 2018, 14, 1606–1615. [Google Scholar] [CrossRef]
- Zheng, K.; Chen, Q.; Wang, Y.; Kang, C.; Xia, Q. A Novel Combined Data-driven Approach for Electricity Theft Detection. IEEE Trans. Ind. Informat. 2019, 15, 1809–1819. [Google Scholar] [CrossRef]
- Wang, X.; Yang, I.; Ahn, S.-H. Sample Efficient Home Power Anomaly Detection in Real Time Using Semi-supervised Learning. IEEE Access 2019, 7, 139712–139725. [Google Scholar] [CrossRef]
- Aldegheishem, A.; Anwar, M.; Javaid, N.; Alrajeh, N.; Shafiq, M.; Ahmed, H. Towards Sustainable Energy Efficiency With Intelligent Electricity Theft Detection in Smart Grids Emphasising Enhanced Neural Networks. IEEE Access 2021, 9, 25036–25061. [Google Scholar] [CrossRef]
- Lee, J.; Sun, Y.G.; Sim, I.; Kim, S.H.; Kim, D.I.; Kim, J.Y. Non-Technical Loss Detection Using Deep Reinforcement Learning for Feature Cost Efficiency and Imbalanced Dataset. IEEE Access 2022, 10, 27084–27095. [Google Scholar] [CrossRef]
- Aslam, Z.; Javaid, N.; Ahmad, A.; Ahmed, A.; Gulfam, S.M. A Combined Deep Learning and Ensemble Learning Methodology to Avoid Electricity Theft in Smart Grids. Energies 2020, 13, 5599. [Google Scholar] [CrossRef]
- Hasan, M.N.; Toma, R.N.; Nahid, A.-A.; Islam, M.M.M.; Kim, J.-M. Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach. Energies 2019, 12, 3310. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Wen, H. Electricity Theft Detection Base on Extreme Gradient Boosting in AMI. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Punmiya, R.; Choe, S. Energy Theft Detection Using Gradient Boosting Theft Detector with Feature Engineering-Based Preprocessing. IEEE Trans. Smart Grid 2019, 10, 2326–2329. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kengelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2022, 16, 321–357. [Google Scholar] [CrossRef]
- Larsen, A.B.L.; Sonderby, S.K.; Larochelle, H.; Winther, O. Autoencoding Beyond Pixels Using A Learned Similarity Metric. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016. [Google Scholar]
- Benny, Y.; Galanti, T.; Benaim, S.; Wolf, L. Evaluation Metrics for Conditional Image Generation. Int. J. Comput. Vis. 2021, 129, 1712–1731. [Google Scholar] [CrossRef]
- Xie, X.; Jiang, W.; Guo, J. Research on Rockburst Prediction Classification Based on GA-XGB Model. IEEE Access 2021, 9, 83993–84020. [Google Scholar] [CrossRef]
- Chicco, D.; Starovoitov, V.; Jurman, G. The Benefits of The Matthews Correlation Coefficient (MCC) over The Diagnostic Odds Ratio (DOR) in Binary Classification Assessment. IEEE Access 2021, 9, 47112–47124. [Google Scholar] [CrossRef]
- Albahar, M.A. Skin Lesion Classification Using Convolutional Neural Network with Novel Regularizer. IEEE Access 2019, 7, 38306–38313. [Google Scholar] [CrossRef]
- Joseph, V.R. Optimal Ratio for Data Splitting. Stat. Anal. Data Min. 2022, 15, 531–538. [Google Scholar] [CrossRef]
- Genes, C.; Esnaola, I.S.; Perlaza, M.; Ochoa, L.F.; Coca, D. Recovering Missing Data via Matrix Completion in Electricity Distribution Systems. In Proceedings of the IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications, Edinburgh, UK, 3–6 July 2016. [Google Scholar]
- Raskutti, G.; Wainwright, M.J.; Yu, B. Early Stopping for Non-parametric Regression: An Optimal Data-dependent Stopping Rule. In Proceedings of the 49th Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 28–30 September 2011. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. In Proceedings of the 6th International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D Convolutional Neural Networks and Applications: A Survey. Mech. Syst. Signal Process. 2021, 151, 107398. [Google Scholar] [CrossRef]
- Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-normalizing Neural Networks. In Proceedings of the 31st International Conference on Neural Information Processing System, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Sontag, E.D. VC Dimension of Neural Networks. NATO ASI Ser. F Comput. Syst. Sci. 1998, 168, 69–96. [Google Scholar]
VAE-GAN | 1D-CNN | |
---|---|---|
batch size | 100 | 100 |
epoch | 10,000 | 1000 |
learning rate | 0.0004 | 0.002 |
optimizer | Adam | Nadam |
Layer Type (with Activation Function) | |
---|---|
encoder | (Conv + ReLU) × 3 |
generator (decoder) | (ConvT + ReLU) × 3 |
ConvT + Sigmoid | |
discriminator | (FC + LeakyReLU) × 3 |
FC + Sigmoid |
Layer | Type (with Activation Function) | # of Neurons | Size of Kernel | Stride | # of Parameters |
---|---|---|---|---|---|
1 | Conv1D + SELU | 256 | 7 | 1 | 2048 |
2 | AvgPool | - | 4 | 3 | - |
3 | Conv1D + SELU | 128 | 7 | 1 | 229,504 |
4 | AvgPool | - | 4 | 3 | - |
5 | Conv1D + SELU | 64 | 7 | 1 | 57,408 |
6 | AvgPool | - | 4 | 3 | - |
7 | Conv1D + SELU | 32 | 7 | 1 | 14,368 |
8 | AvgPool | - | 4 | 3 | - |
9 | GlobalAvgPool | - | - | - | - |
10 | Linear + SELU | 512 | - | - | 16,896 |
11 | Linear + SELU | 256 | - | - | 131,328 |
12 | Linear + SELU | 128 | - | - | 32,896 |
13 | Linear + SELU | 64 | - | - | 8256 |
14 | Linear + SELU | 32 | - | - | 2080 |
15 | Output (Sigmoid) | 1 | - | - | 33 |
VAE-GAN | VAE | GAN | SMOTE | |
---|---|---|---|---|
IS | 1.13 | 1.01 | 1.08 | 1.00 |
FID | 13.99 | 14.13 | 14.21 | 14.33 |
VAE-GAN | VAE | GAN | SMOTE | Baseline | |
---|---|---|---|---|---|
PPV | 0.925 | 0.754 | 0.733 | 0.783 | 0.661 |
TPR | 0.909 | 0.803 | 0.693 | 0.729 | 0.65 |
F1-score | 0.905 | 0.76 | 0.622 | 0.677 | 0.567 |
MCC | 0.834 | 0.62 | 0.446 | 0.517 | 0.352 |
Generative Models | Model Complexity (the Number of Weights) |
---|---|
VAE | 134,165 |
GAN | 1,248,642 |
VAE-GAN | 5,689,813 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Lee, J.; Kim, S.; Seon, J.; Lee, S.; Kyeong, C.; Kim, J. Energy Theft Detection Model Based on VAE-GAN for Imbalanced Dataset. Energies 2023, 16, 1109. https://doi.org/10.3390/en16031109
Sun Y, Lee J, Kim S, Seon J, Lee S, Kyeong C, Kim J. Energy Theft Detection Model Based on VAE-GAN for Imbalanced Dataset. Energies. 2023; 16(3):1109. https://doi.org/10.3390/en16031109
Chicago/Turabian StyleSun, Youngghyu, Jiyoung Lee, Soohyun Kim, Joonho Seon, Seongwoo Lee, Chanuk Kyeong, and Jinyoung Kim. 2023. "Energy Theft Detection Model Based on VAE-GAN for Imbalanced Dataset" Energies 16, no. 3: 1109. https://doi.org/10.3390/en16031109
APA StyleSun, Y., Lee, J., Kim, S., Seon, J., Lee, S., Kyeong, C., & Kim, J. (2023). Energy Theft Detection Model Based on VAE-GAN for Imbalanced Dataset. Energies, 16(3), 1109. https://doi.org/10.3390/en16031109