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Abstract: Energy theft causes a lot of economic losses every year. In the practical environment of
energy theft detection, it is required to solve imbalanced data problem where normal user data
are significantly larger than energy theft data. In this paper, a variational autoencoder-generative
adversarial network (VAE-GAN)-based energy theft-detection model is proposed to overcome the
imbalanced data problem. In the proposed model, the VAE-GAN generates synthetic energy theft
data with the features of real energy theft data for augmenting the energy theft dataset. The obtained
balanced dataset is applied to train a detector which is designed as one-dimensional convolutional
neural network. The proposed model is simulated on the practical dataset for comparing with
various generative models to evaluate their performance. From simulation results, it is confirmed
that the proposed model outperforms the other existing models. Additionally, it is shown that the
proposed model is also very useful in the environments of extreme data imbalance for a wide variety
of applications by analyzing the performance of detector according to the balance rate.

Keywords: energy theft; imbalanced dataset; data augmentation; variational autoencoder; generative
adversarial network

1. Introduction

Every year, energy theft causes globally enormous economic losses of electric utili-
ties [1]. The energy theft can be defined as an illegal usage of energy service with dishonest
intentions such as meter tampering, bypassing, direct tapping from feeders, etc. [2]. By im-
plementing smart meters and advanced metering infrastructure (AMI), the electric utilities
may prevent traditional energy theft [3]. However, intelligent energy thefts can manipulate
smart meters by advanced techniques [4].

To detect the intelligent energy thefts, many studies have actively been conducted
in the past decades. The energy theft detection methods can be divided into four types:
hardware-based, grid analysis-based, game theory-based and machine learning-based
methods [3]. Hardware-based methods have been treated with developing devices for
energy theft detection. The modified current meter was designed by three modules to
detect malicious consumers [5]. In addition, a device for anomaly detection was proposed
that compares the deviation of real-time and estimated values [6]. Grid analysis-based
methods have been usually focused on detecting abnormal consumers by monitoring the
current flow and line voltage of a power grid. The method formulated by power flow
analysis was presented to effectively detect energy thieves [7]. A state estimation-based
method with weighted least-squares was presented for estimating the voltage of consumers
and comparing it to the measured voltage [8]. Game theory-based methods have been
dealt with the interactive decision-making process among energy thieves, utilities and
consumers. The energy theft detection problem was conceptualized as a game between
energy thieves and utilities [9], where the Nash equilibrium was attempted to be found over
several assumptions. To detect energy theft meters, a Stackelberg game-theoretic model
based on Benford’s law was proposed [10]. Due to limitations of machine learning models,
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machine learning-based methods have recently been focused on deep learning techniques.
A novel convolutional neural network architecture was proposed to handle the energy theft
detection problem [11]. Using a clustering algorithm that learns patterns from unlabeled
data, the correlation between meter data and outliers was determined [12]. An energy theft
detection scheme based on a semi-supervised learning algorithm was presented for the
imbalanced labeled data [13].

1.1. Related Works

An imbalanced data problem is major issue of the deep learning-based energy theft
methods dealing with a practical environment [14–18]. In the practical environment, it
has been considerably simpler to obtain the energy consumption data of users than the
energy theft data. The biased dataset can be formed due to the tiny number of energy theft
events. The imbalanced data problem may cause performance degradation of deep learning
models. In general, the approaches for designing the feature cost-efficiency model have
been applied to alleviate the imbalanced data problem, but occasionally the approaches for
balancing the datasets have also been employed [14–19].

In the approaches of balancing the datasets, synthetic data are generated by augment-
ing energy theft data as much as energy consumption data. Although simple methods such
as false data injection [15] can be applied for generating the synthetic data, the synthetic
data generated by the simple methods may be unsuitable for the practical environment. In
the practical environment, the synthetic data with realistic features is needed to improve the
degraded performance of deep learning models by imbalanced dataset. The synthetic data
with realistic features can be augmented by sampling methods or generative models [16,17].

Recently, synthetic minority oversampling technique (SMOTE), which is sampling
method, is a well-known data augmentation method for imbalanced dataset problem [20].
SMOTE generates synthetic data of minority class using K-nearest neighbor algorithm.
However, SMOTE may lead to the overfitting problem and generate other class data due to
sampling without consideration of other classes.

Though the generative models have been actively employed in various fields for data
augmentation, the generative models have been rarely applied to research area of energy
theft detection with imbalance data problem. The generative models can generate synthetic
data with diversity. The degraded performance of deep learning models can be enhanced
by training the balanced dataset with the synthetic data generated from the generative
models. However, due to addition of generative models in the augmenting process, the
complexity of energy theft detection model is increased. In this study, it is attempted to
apply a generative model to an energy theft detection model with imbalance dataset and to
confirm the performance improvement.

In deep learning-based methods, a variety of models have been utilized as detectors,
including convolutional neural network (CNN), since CNN can handle large amount of
data, automate feature extraction and perform well enough in terms of classification [3].
By designing the cost efficiency deep learning model, the performance of the energy theft
detection model can be enhanced. In this study, it is focused on the effect of balancing
datasets rather than on designing the cost efficiency detector.

1.2. Main Contributions

In this paper, an energy theft detection model based on a generative adversarial
network combining a variational autoencoder is proposed to solve the imbalanced data
problem over a practical environment. For an efficient detection of energy theft, handling
of imbalanced datasets is known to be a crucial point. The augmentation of synthetic
data with realistic features is one of the most promising solutions to tackle the imbalance
problems of the dataset. From this viewpoint, among various machine learning algorithms,
generative models have been working well by efficiently relieving the data imbalance.
Therefore, the representative two models have been chosen and combined to enhance
detection performance of energy theft. One is a generative adversarial network (GAN),
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which generates samples as similar as possible to the data in training dataset, and the other
is a variational autoencoder (VAE) which generates new types of samples with features in
the training dataset. The GAN is known to be unstable during the learning phase while
VAE is more stable than GAN. By combining GAN and VAE, a generative model with high
quality and stability can be produced. The synthetic data is generated from a variational
autoencoder-generative adversarial network (VAE-GAN) to mitigate the imbalanced data
problem in the proposed energy theft model. Then, a detector, which is designed as one
dimensional (1D-CNN), is trained by both real and synthetic data for detecting energy theft.
The 1D-CNN is employed for dealing with energy consumption data and energy theft data,
which are one-dimensional time-series data.

For clarity, the main contributions of this paper are summarized as follows:

• The GAN combined with VAE is proposed for energy theft detection in a practical
environment. VAE generates data with diversity and appears to be stable in its learning
process. Meanwhile, GAN generates data with fidelity, which turns out to be unstable.

• To ensure that VAE-GAN can be effective, the proposed energy theft detection model
is evaluated in terms of data generation and classification over different data augmen-
tation schemes.

• The performance of the proposed model is evaluated according to the balance rate, so
as to look into the imbalanced data problem.

The remainder of this paper is organized as follows. Section 2 presents the proposed
energy theft detection model based on the VAE-GAN and metrics for evaluating the
performance of the proposed model. In Section 3, the simulation settings and results are
reported. Here, the performance of the proposed energy theft detection model is analyzed
and discussed. Finally, concluding remarks are given in Section 4.

2. System Model

In this section, the VAE-GAN and the proposed energy theft detection model are
illustrated for imbalanced data and high-dimensional data problems. The metrics are
described for evaluating the performance of the proposed model.

2.1. VAE-GAN

In this study, VAE-GAN is employed to alleviate the imbalanced data problem. GAN
produces samples with fidelity and is unstable during the learning process while VAE
produces samples with diversity and is relatively stable during the learning process. By
combining a couple of generative models, it can contain the benefits of each model. VAE-
GAN may generate samples with high fidelity and diversity as well as be stable in the
learning process.

The VAE is usually composed of an encoder and decoder [21]. The encoder maps the
input to a latent vector while the decoder reconstructs the latent vector into an approxi-
mated input. The encoder and decoder can be represented as follows:

z ∼ Enc(x) = qφ(z|x), (1)

x̂ ∼ Dec(z) = pθ(x|z), (2)

where x, z, and x̂ denote the input, latent vector and approximated input, respectively,
and φ and θ are parameters of the encoder and decoder models. The term qφ(z|x) is the
approximation of the true posterior pθ(x|z). The loss function of VAE is represented as the
sum of the reconstruction error and a prior regularization term.

JVAE = Jrecon + Jprior, with (3)

Jrecon = −Eqφ(z|x)[log pθ(x|z)], (4)

Jprior = DKL
(
qφ(x|z) ‖ pθ(z)

)
, (5)
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where DKL and pθ(z) denote the Kullback-Leibler divergence and the prior distribution
of z.

Typically, the GAN model consists of a generator and discriminator [21]. The generator
maps the latent vector to data space while the discriminator allocates probability v and
probability 1 − v. The main objective of GAN is to find the discriminator distinguishing
between true and generated data and simultaneously the generator adapting to the true
data distribution. The loss function of GAN is represented by the binary cross entropy with
respect to the generator and discriminator.

v = Dis(u) ∈ [0, 1], u = Gen(w), (6)

JGAN = log(Dis(u)) + log(1− Dis(Gen(w))), (7)

where u denotes an actual sample and w is random variable with probability density
function p(w).

Although it is possible to obtain synthetic data from random noise without density
functions using GAN, it may be advantageous to attain new samples from the generator
with specific distributions under imbalance data. Then, a generative model is designed by
assigning the decoder of VAE as the generator of GAN. Figure 1 depicts the structure of
the VAE-GAN.
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The loss function of VAE-GAN can be represented as follows [21].

JVAE−GAN = Jprior + JDisl + JGAN , with (8)

JDisl = −Eq(z|x)[log p(Disl(x)|z)], (9)

where Disl(x) represents a Gaussian observation model with mean Disl(x̃) and identity
covariance.

2.2. Energy Theft Detection Model Based on VAE-GAN

A classification model based on VAE-GAN is proposed to detect energy theft in this
paper. In practical environments, the energy consumption data of users are collected much
more than the energy theft data. The performance of classifiers trained on this imbalanced
dataset may be degraded. In order to enhance the performance of classifiers, the balanced
dataset is necessary. The balanced dataset can be formed by generating artificial data
similar to authentic data. The VAE-GAN is employed to produce the artificial data in
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this study. The proposed VAE-GAN approach can combine enhanced discrimination
capability of the discriminator and higher fidelity of mapping of the encoder by jointly
training the encoder, generator and discriminator. From the improved encoder, generator
and discriminator capabilities, the proposed VAE-GAN approach can achieve superior
performance by generating data with higher diversity by VAE and higher fidelity by GAN
compared with other algorithms. And 1D-CNN is utilized as a classifier for detecting
energy theft. The architecture of the proposed energy theft detection model is described in
Figure 2. The proposed model consists of four steps. The VAE-GAN network is learned
by the real energy theft data for generating the synthetic energy theft data. Then, the
synthetic energy theft data is generated by the learned VAE-GAN network. And then,
the energy theft detector, which is designed as 1D-CNN network, is learned by using
the dataset comprised of energy consumption data from real users, real energy theft and
synthetic data. Finally, the learned detector is deployed to detect energy theft in the dataset
composed of real energy consumption and energy theft data for checking the performance
of the detector.
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2.3. Performance Metrics

The performance of the proposed model can be by the following two points: data
generation and data classification. In the case of data generation, fidelity and diversity are
considered for validating generative models. The fidelity means the quality of generated
data from generative models, i.e., how similar the generated data is to real data. The
diversity means a variety of generated data from generative models. In other words, it is
how close the distribution of the generated data is to the distribution of real data. Con-
sidering the fidelity and diversity, the Inception Score (IS) and Fréchet Inception Distance
(FID) are used for evaluating generative models [22]. The IS is a method to measure the
fidelity of outputs of a generative model. For including meaningful features, data should
have a conditional distribution of low entropy. Moreover, a marginal distribution should
have high entropy to generate various data from the model. Then, the IS is derived as the
following equation:

IS = exp(Ex∼pG (DKL(p(y
∣∣x) ‖ p(y))), (10)

where x denotes the generated data from a generative model G and y denotes the labels
obtained from a pretrained classifier applied x; p(y) and p(y|x) denote a distribution of y
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and a conditional distribution of y given x, respectively; DKL(p ‖ q) is the KL-divergence
between a distribution p and q. The high score of IS indicates both high diversity in data
and that the data are meaningful.

The FID evaluates the fidelity and diversity of outputs of generative models using the
Fréchet distance which is a distance between the real data distribution and the generated
data distribution. For the multivariate normal distributions case, the Fréchet distance can
be defined by the following:

d(D1, D2) =‖ µ1 − µ2 ‖ 2 + Tr
(

Σ1 + Σ2 − 2
√

Σ1Σ2

)
, (11)

where D1 and D2 are marginal distributions of X and Y, respectively; µi and Σi are mean
and covariance matrix of Di; Tr(·) is trace of a matrix which means the sum of the elements
on the main diagonal. In (11), the former term represents the distance between the centers
of the two distributions and the latter term describes a metric on the space of all covari-
ance matrices. The FID is calculated by the Fréchet distance between the generated data
distribution and real data distribution using a feature extractor. Here, it is assumed that
the extracted features have a multivariate normal distribution. The FID is described as the
following equation:

FID =‖ µR − µG ‖ 2 + Tr
(

ΣR + ΣG − 2
√

ΣRΣG

)
, (12)

where µR and ΣR are the mean and covariance matrix of the real data distribution; µG and
ΣG are the mean and covariance matrix of the generated data distribution. In this paper,
the IS and FID are employed to evaluate the data augmentation performance of the energy
theft detection model based on VAE-GAN.

The energy theft detection problem can be handled as a classification problem. There-
fore, the performance metrics of classification problems can be utilized to evaluate the
energy theft detection model. In this paper, four performance metrics—positive predictive
value (PPV), true positive rate (TPR), F1-score, and Matthews correlation coefficient (MCC)—are
used to evaluate the proposed model [23–25]. The metrics are described in the following
equations:

PPV =
TP

TP + FP
, (13)

TPR =
TP

TP + FN
, (14)

F1− score =
2TP

2TP + FP + FN
, (15)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (16)

where TP denotes true positive which means that the result of classifying actual energy
thieves as energy thieves; FP denotes false positive which means that the result of classifying
actual normal users as energy thieves; FN denotes false negative which means that the
result of classifying actual energy thieves as normal users; and TN denotes true negative
which means that the result of classifying actual normal users as normal users. PPV is the
ratio of actual energy thieves among the results of classifying as energy thieves. TPR is the
ratio of results of classifying as energy thieves among actual energy thieves. F1-score is a
harmonic mean of PPV and TPR. MCC, which is called phi coefficient, is the performance
metric used where the dataset is imbalanced. The value of F1-score is represented between
0 and 1 while the value of MCC is represented between −1 and 1. However, the closer the
value of two metrics approaches one, the better the classification performance.
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For evaluating the performance depending on the balance ratio of dataset, the balance
rate (BR) is defined as follow:

BR =
augmented abnormal data

normal data
. (17)

The data augmentation scheme is not applied to learn the detection model at BR = 0,
while the synthetic data are only used to learn the detection model at BR = 1. The results of
performance metrics are shown and discussed in the next section.

3. Simulation Results

In this section, the environment is described for simulating the proposed model.
Furthermore, the simulation results are shown and analyzed to evaluate the performance
of the proposed energy theft model.

3.1. Simulation Environment
3.1.1. Dataset

The energy consumption dataset, which has been released by SGCC (State Grid
Corporation of China), is used to simulate over-realistic environment [11]. The dataset
consists of 38,757 normal users and 3615 energy thieves within 1035 days (from January
2014 to October 2016). The data collected by meters includes the daily energy consumption
histories of residential users. In addition, it is confirmed that normal users and energy
thieves have different consumption patterns [17]. It has been well known that the data
of abnormal(thief) users tend to fluctuate more drastically in amplitude compared with
those of normal users. The fluctuation pattern of energy consumption data is used for
classification. The energy thieves constitute roughly 9% of the released dataset. The
composition of the released dataset demonstrates that the imbalanced dataset is manifested
in actual world. The dataset contains some error values. Therefore, data pre-processing is
described in following subsection for addressing this issue.

In the deep learning field, the splitting ratio of the training and testing data has
conventionally been used as 8:2 [26]. Consequently, the dataset is empirically divided into
training, validation and test datasets with the proportion of 8:1:1 based on trial and error.

3.1.2. Data Pre-Processing

The data pre-processing stage consists of two steps which are the initialization and
normalization step. Initially, missing values in dataset are calculated by a pre-processing
scheme. And then, the compensated data is normalized by a normalization scheme.

Missing values are often included in energy consumption data by various causes such
as unreliable measurement data, the error of smart meters, etc. [27]. In order to recover the
error values, the interpolation method is used following the below equation:

f (xi) =


xi−1+xi+1

2 ,

0,

xi,

xi ∈ NaN, xi−1 and xi+1 /∈ NaN

xi ∈ NaN, xi−1 or xi+1 /∈ NaN

xi /∈ NaN,

, (18)

where xi is the value in energy consumption data and NaN denotes a set of null value.
Moreover, after handling the missing values, the data are normalized to apply on the

neural networks by the MIN-MAX scaler. Due to the nature of deep learning model, when
the data have a high range of values then the performance of the deep learning model
can be degraded. It can help to the training procedure that the values of the dataset are
allocated to the same scale. The values of the energy consumption data are transformed
into the range of 0 and 1 by normalization. The MIN-MAX scaler is calculated as follows:

f (xi) =
xi −min(x)

max(x)−min(x)
, (19)
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where max(x) is the maximum value in x, and min(x) is the minimum value in x.

3.1.3. Hyper-Parameters

Hyper-parameters of training models are presented in Table 1. The early stopping [28]
is applied during the training process. The hyper-parameters are optimized by trial
and errors.

Table 1. Hyperparameters of training models.

VAE-GAN 1D-CNN

batch size 100 100
epoch 10,000 1000

learning rate 0.0004 0.002
optimizer Adam Nadam

3.1.4. Structure of VAE-GAN Network

The structure of VAE-GAN network is summarized in Table 2. The encoder consists of
three convolutional (Conv) layers with a rectified linear unit (ReLU) activation function
for mapping input to a latent vector. The generator is composed of three transposed
convolutional layers with ReLU activation function and one transposed convolutional
(ConvT) layer with sigmoid activation function to reconstruct the input from the latent
vector (i.e., it generates a new sample from the latent vector). The discriminator is comprised
of three fully connected (FC) layers with leaky ReLU activation function and one fully
connected layer with sigmoid activation function for distinguishing real data and fake
data. It has been widely known that for the GAN-type approaches, the bounded activation
functions such as ReLU and LeakyReLU, have achieved superior performance compared
with other activation functions by accelerating the training leading to fast convergence [29].
Therefore, the ReLU and the LeakyReLU were employed in designing both the generator
and discriminator.

Table 2. Structure of VAE-GAN.

Layer Type (with Activation Function)

encoder (Conv + ReLU) × 3

generator (decoder) (ConvT + ReLU) × 3
ConvT + Sigmoid

discriminator
(FC + LeakyReLU) × 3

FC + Sigmoid

3.1.5. Structure of Detector

The specification of detector is detailed in Table 3. The 1D-CNN layers are used for
dealing with energy consumption data which are one-dimensional data type. The models
designed with 1D-CNN have relatively lower computational complexity and shallower
architectures than other deep learning models [30]. Then, the models may be fast for
training due to low computational requirements. Scaled exponential linear unit (SELU)
is selected as activation function of each layer, except of output layer. SELU relieves the
vanishing gradient problem of deep neural networks. Furthermore, SELU learns faster and
better than other activation functions [31]. The activation function of output layer is used
as sigmoid function for binary classification.
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Table 3. Specification of detector.

Layer Type
(with Activation Function) # of Neurons Size of Kernel Stride # of Parameters

1 Conv1D + SELU 256 7 1 2048
2 AvgPool - 4 3 -
3 Conv1D + SELU 128 7 1 229,504
4 AvgPool - 4 3 -
5 Conv1D + SELU 64 7 1 57,408
6 AvgPool - 4 3 -
7 Conv1D + SELU 32 7 1 14,368
8 AvgPool - 4 3 -
9 GlobalAvgPool - - - -
10 Linear + SELU 512 - - 16,896
11 Linear + SELU 256 - - 131,328
12 Linear + SELU 128 - - 32,896
13 Linear + SELU 64 - - 8256
14 Linear + SELU 32 - - 2080
15 Output (Sigmoid) 1 - - 33

3.2. Performance Analysis

The proposed model was compared with three other models and the baseline model to
evaluate the performance. The data augmentation schemes used in comparison models are
VAE, GAN and SMOTE. By comparing three generative model-based models with baseline
model, the influence of applying generative model can be analyzed in energy theft detection
field. The effect of combining VAE and GAN in the proposed model can be confirmed
by comparing with the models applied as VAE and GAN, respectively. By comparing
the proposed model with the model applied SMOTE, which is the sampling method, the
applicability of generative model and the ability of the proposed model to alleviate the
overfitting problem can be confirmed. The IS and FID are displayed for validating the
performance in point of data generation in Table 4.

Table 4. IS and FID of proposed and conventional models.

VAE-GAN VAE GAN SMOTE

IS 1.13 1.01 1.08 1.00
FID 13.99 14.13 14.21 14.33

It is shown that the IS of the VAE-GAN model is the highest and the FID is the lowest
in Table 4. The higher the IS and the lower the FID, the better the generation performance
of the model. Therefore, it can be demonstrated that the generation performance of the
proposed model is relatively better than the other models. The IS and FID of the VAE
model is lower than the GAN model. It may be analyzed that the VAE model generates
more diverse data than the GAN model while the GAN model generates better quality
data than the VAE model. It can be found the reason in the difference of learning objective.
VAE aims to learn the distribution of original data. Consequently, the various data can be
generated from the learned distribution. In contrast, the learning objective of GAN is to
create data like original data. Accordingly, generated data from GAN have superior quality
than diversity. It is shown in simulation results that data quality and diversity may be
improved compared with VAE and GAN by combining VAE and GAN. In the instance of
SMOTE, the IS is lowest and the FID is highest among them. It can be said that data with
low quality and diversity is generated due to overfitting.

In Table 5, it is shown the simulation results in terms of data classification varying
data augmentation schemes. The confusion matrices of classification result on the proposed
model and conventional models are depicted in Figure 3.
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Table 5. Classification performance metrics on proposed and conventional models.

VAE-GAN VAE GAN SMOTE Baseline

PPV 0.925 0.754 0.733 0.783 0.661
TPR 0.909 0.803 0.693 0.729 0.65

F1-score 0.905 0.76 0.622 0.677 0.567
MCC 0.834 0.62 0.446 0.517 0.352
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From Table 5 and Figure 3, it can be confirmed that all performance metrics of the
proposed model are higher than those of other schemes. PPV is related to the number of
correctly classified energy thieves among all predicted energy thieves. TPR is related to the
accurately classified energy thieves among all actual energy thieves. It is indicated that the
energy thieves are effectively classified by the proposed model compared to other models.
F1-score and MCC are related to the number of overall accurately classified data. Therefore,
the classification performance is improved by applying the VAE-GAN.

According to Tables 4 and 5, the proposed model was very advantageous in detecting
theft data compared with other models. It has been generally known that performance
of deep learning algorithms depends on how component blocks such as encoder, gener-
ator and discriminator are efficiently and optimally designed. The proposed VAE-GAN
approach combined enhanced discrimination capability of the discriminator and higher
fidelity of mapping of the encoder by jointly training the encoder, generator and discrimi-
nator. From the improved encoder, generator and discriminator capabilities, the proposed
VAE-GAN approach achieved superior performance by generating data with higher diver-
sity by VAE and higher fidelity by GAN compared with other algorithms. The performance
of the energy theft detection model can be improved by utilizing the balanced dataset by
the synthetic data from VAE-GAN in the training process.

Furthermore, the simulation results are shown on balance rate in Figure 4. The VAE-
GAN is not applied to the proposed model at BR = 0, while the generation data are only
used to learn the model based on the VAE-GAN at BR = 1. In Figure 4, all performance



Energies 2023, 16, 1109 11 of 13

metrics have an increasing trend depending on BR. The tendency can be described that the
new types of data with similar features to energy theft data augmented by VAE-GAN. The
more detector is learned by new types of data, the better its performance. Then, it can be
confirmed that the proposed model is more effective in extreme imbalance situations than
other situations from Figure 4.
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In Table 6, the number of weights of the employed generative models is described.

Table 6. Model complexity for various generative models.

Generative Models Model Complexity (the Number of Weights)

VAE 134,165
GAN 1,248,642

VAE-GAN 5,689,813

In this paper, the model complexity of the employ generative models is analyzed
by the number of weights. instead of time complexity [32]. The model complexity of
the generative models can be represented as O(|W|log(|W|)), where O(·) denotes big
O notation; |W| is the cardinality of total number of weights. It was confirmed that the
complexity is increased by combining a couple of generative models.

4. Conclusions and Discussions

In this paper, an energy theft detection model based on VAE-GAN was proposed to
overcome the imbalanced data problem and simulated under the practical dataset environ-
ment. It was demonstrated from simulation results that the proposed model outperformed
various existing generative models in terms of both data generation and classification. The
generated data by VAE-GAN showed relatively high quality and diversity compared to the
other schemes. This was achieved by slightly improving the data generation performance
metrics while considerably doing the classification performance metrics. Moreover, it was
demonstrated that the proposed model is helpful in applying to extreme environments by
investigating the performance of a detector depending on the balance rate. The proposed
model will be applied to anomaly detection problems with an imbalanced dataset such as
fault diagnosis of electrical devices and machines.

Despite the result that the imbalanced data problem was effectively alleviated by
generating data with fidelity and diversity from VAE-GAN, the complexity of the proposed
model was increased due to employing GAN combined with VAE in the augmentation
process. The deep learning-based energy theft methods are relatively complicated due to
the learning process and structure of detector. The employment of VAE-GAN with high
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complexity will inevitably increase its complexity. Consequently, the deep learning model
with low complexity should be developed in the augmentation process.

The deep learning-based model like VAE-GAN may be interpreted as a black box.
In the augmentation process, it is actually challenging to figure out which features of the
original data are most reflected into the generated synthetic data. The identification of the
features in the augmentation process can help generate more meaningful synthetic data.

From the aforementioned limitations of this study, future research will concentrate
on a data augmentation method with low complexity producing data with fidelity and
diversity. In addition, research will be conducted to design an efficient detector to minimize
the increased complexity for solving imbalanced data problem.
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