Mitigation of Insulator Lightning-Induced Voltages by Installing Parallel Low-Voltage Surge Arresters
Abstract
:1. Introduction
2. Theoretical Review
2.1. Interaction of Quasi-Magnetostatic Fields
2.2. The FDTD Method and Computational Modelling of Residual Voltage Test Environment
2.2.1. Review of the FDTD Method
2.2.2. Accuracy and Stability
2.2.3. The Excitation Source: Lightning Current
3. Research Proposal: Geometric and Parametric Configurations for Installing Distribution Surge Arresters and Insulators
4. FDTD Computational Modelling
Parameters of the Conceived FDTD Model
5. Numerical Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leal, A.F.R.; de Oliveira, R.M.S.; Lopes, N.M.; de Lima, T.S.; Ferreira, E.R.; Rodrigues, N.R.N.M. Lightning Protection Design for Small Riverboats Using the FDTD Method. J. Microw. Optoelectron. Electromagn. Appl. 2021, 20, 307–319. [Google Scholar] [CrossRef]
- Schumacher, V.; Setzer, A.; Saba, M.M.F.; Naccarato, K.P.; Mattos, E.; Justino, F. Characteristics of lightning-caused wildfires in central Brazil in relation to cloud-ground and dry lightning. Agric. For. Meteorol. 2022, 312, 108723. [Google Scholar] [CrossRef]
- Cummins, K.L.; Krider, E.P.; Malone, M.D. The US National Lightning Detection NetworkTM and applications of cloud-to-ground lightning data by electric power utilities. IEEE Trans. Electromagn. Compat. 1998, 40, 465–480. [Google Scholar] [CrossRef] [Green Version]
- Neto, E.T.W.; Martinez, M.L.B.; Diniz, A.M.M.; dos Santos, G.J.G.; Campos, B.N. 10 kA Distribution Arresters: The Adequate Choice for Medium Voltage Networks. In Proceedings of the 2012 International Conference on Lightning Protection (ICLP), Vienna, Austria, 2–7 September 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Brignone, M.; Delfino, F.; Procopio, R.; Rossi, M.; Rachidi, F. Evaluation of Power System Lightning Performance—Part II: Application to an Overhead Distribution Network. IEEE Trans. Electromagn. Compat. 2017, 59, 146–153. [Google Scholar] [CrossRef]
- Souza, R.P.; Lopes, I.J.S.; Paulino, J.O.S. Influence of the Return Stroke Velocity and the Statistical Method used in Distribution Lines Indirect Lightning Performance Estimation Considering the Ground Resistivity. In Proceedings of the 2011 International Symposium on Lightning Protection, Fortaleza, Brazil, 3–7 October 2011; pp. 200–204. [Google Scholar] [CrossRef]
- Paulino, J.O.S.; Barbosa, C.F.; Lopes, I.J.S.; Boaventura, W.C.; Cardoso, E.N.; Ávila, A.F.; Guimarães, M.F. Improving the lightning performance of distribution lines using high CFO structures. Electr. Power Syst. Res. 2021, 194, 107063. [Google Scholar] [CrossRef]
- Piantini, A.; Janiszewski, J.M.; de Carvalho, T.O.; Obase, P.F.; dos Santos, G.J.G. Lightning-caused Transformer Failures in Distribution Systems. In Proceedings of the 2014 International Conference on Lightning Protection (ICLP), Shanghai, China, 11–18 October 2014; pp. 955–960. [Google Scholar] [CrossRef]
- CIGRE–CIRED JWG C4.4.02. Protection of MV and LV Networks Against Lightning. Part I: Common Topics. CIGRE Technical Brochure 2006. Available online: https://e-cigre.org/publication/287-protection-of-mv-and-lv-networks-against-lightning--part-1-common-topics (accessed on 12 December 2022).
- McDermott, T.E.; Short, T.A.; Anderson, J.G. Lightning Protection of Distribution Lines. IEEE Trans. Power Deliv. 1994, 9, 138–152. [Google Scholar] [CrossRef]
- Nakada, K.; Yokota, T.; Yokoyama, S.; Asakawa, A.; Nakamura, M.; Taniguchi, H.; Hashimoto, A. Energy Absorption of Surge Arresters on Power Distribution Lines due to Direct Lightning Strokes—Effects of an Overhead Ground Wire and Installation Position of Surge Arresters. IEEE Trans. Power Deliv. 1997, 12, 1779–1785. [Google Scholar] [CrossRef]
- Bassi, W.; Janiszewisk, J.M. Evaluation of Currents and Charges in Low-Voltage Surge Arresters Due to Lightning Strikes. IEEE Trans. Power Deliv. 2003, 18, 90–94. [Google Scholar] [CrossRef]
- Rocha, G.V.S.; Barradas, R.P.S.; Muniz, J.R.S.; Bezerra, U.H.; Araújo, I.M.; Costa, D.S.A.; Silva, A.C.; Nunes, M.V.A.; Silva, J.S. Optimized Surge Arrester Allocation Based on Genetic Algorithm and ATP Simulation in Electric Distribution Systems. Energies 2019, 12, 4110. [Google Scholar] [CrossRef] [Green Version]
- Yee, K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar] [CrossRef] [Green Version]
- Taflove, A.; Hagness, S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed.; Artech House Inc.: London, UK, 2005. [Google Scholar]
- Tanabe, K. Novel Method for Analyzing the Transient Behavior of Grounding Systems Based on the Finite-Difference Time-Domain Method. Power Eng. Rev. 2001, 21, 1128–1132. [Google Scholar] [CrossRef]
- Baba, Y.; Nagaoka, N.; Ametani, A. Modeling of Thin Wires in a Lossy Medium for FDTD Simulations. IEEE Trans. Electromagn. Compat. 2005, 47, 54–60. [Google Scholar] [CrossRef]
- Tuma, E.T.; de Oliveira, R.M.S.; Sobrinho, C. New Model of Current Impulse Injection and Potential Measurement in Transient Analysis of Grounding Systems in Homogeneous and Stratified Soils Using the FDTD Method. In Proceedings of the 2005 International Symposium on Lightning Protection, São Paulo, Brazil, 21–25 November 2005; pp. 200–204. [Google Scholar]
- Xiong, R.; Chen, B.; Mao, Y.; Deng, W.; Wu, Q.; Qiu, Y. FDTD Modeling of the Earthing Conductor in the Transient Grounding Resistance Analysis. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 957–960. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, R.M.S.; Sobrinho, C. Computational Environment for Simulating Lightning Strokes in a Power Substation by Finite-Difference Time-Domain Method. IEEE Trans. Electromagn. Compat. 2009, 51, 995–1000. [Google Scholar] [CrossRef]
- Natsui, M.; Ametani, A.; Mahseredjian, J.; Sekioka, S.; Yamamoto, K. FDTD Analysis of Nearby Lightning Surges Flowing into a Distribution Line via Groundings. IEEE Trans. Electromagn. Compat. 2020, 62, 144–154. [Google Scholar] [CrossRef]
- Tatematsu, A.; Noda, T. Three-Dimensional FDTD Calculation of Lightning-Induced Voltages on a Multiphase Distribution Line with the Lightning Arresters and an Overhead Shielding Wire. IEEE Trans. Electromagn. Compat. 2014, 56, 159–167. [Google Scholar] [CrossRef]
- Namdari, M.; Khosravi-Farsani, M.; Moini, R.; Sadeghi, S.H.H. An Efficient Parallel 3-D FDTD Method for Calculating Lightning-induced Disturbances on Overhead Lines in the Presence of Surge Arresters. IEEE Trans. Electromagn. Compat. 2015, 57, 1593–1600. [Google Scholar] [CrossRef]
- Thang, T.H.; Baba, Y.; Rakov, V.A.; Piantini, A. FDTD computation of lightning-induced voltages on multi-conductor lines with surge arresters and pole transformers. IEEE Trans. Electromagn. Compat. 2015, 57, 442–447. [Google Scholar] [CrossRef]
- Thang, T.H.; Baba, Y.; Piantini, A.; Rakov, V.A. Lightning-Induced Voltages in the Presence of Nearby Buildings: FDTD Simulation Versus Small-Scale Experiment. IEEE Trans. Electromagn. Compat. 2015, 57, 1601–1607. [Google Scholar] [CrossRef]
- Chen, H.; Du, Y.; Yuan, M.; Liu, Q.H. Lightning-Induced Voltages on a Distribution Line with Surge Arresters Using a Hybrid FDTD–SPICE Method. IEEE Trans. Power Deliv. 2018, 33, 2354–2363. [Google Scholar] [CrossRef]
- Sugimoto, H.; Asakawa, A.; Yokoyama, S.; Nakada, K. Effectiveness of Installing Two Pairs of Distribution Surge Arresters in Parallel. In Proceedings of the 1999 Eleventh International Symposium on High Voltage Engineering, London, UK, 23–27 August 1999; Volume 2, pp. 246–249. [Google Scholar] [CrossRef]
- He, J.; Chen, S.; Zeng, R.; Liang, X.; Guan, Z.; Han, S.; Cho, H. Electrical Parameter Statistic Analysis and Parallel Coordination of ZnO Varistors in Low-voltage Protection Devices. IEEE Trans. Power Deliv. 2005, 20, 131–137. [Google Scholar] [CrossRef]
- Haddad, A.; Waters, R.T.; German, D.M.; Abdul-Malek, Z. Current Disparity in Multi-column Surge Arresters. IEE Proc.-Gener. Transm. Distrib. 2005, 152, 945–951. [Google Scholar] [CrossRef]
- Tuczek, M.N.; Bröker, M.; Hinrichsen, V.; Göhler, R. Effects of Continuous Operating Voltage Stress and AC Energy Injection on Current Sharing Among Parallel-Connected Metal–Oxide Resistor Columns in Arrester Banks. IEEE Trans. Power Deliv. 2015, 30, 1331–1337. [Google Scholar] [CrossRef]
- Sabiha, N.A.; Mahmood, F.; Abd-Elhady, A.M. Failure Risk Assessment of Surge Arrester Using Paralleled Spark Gap. IEEE Access 2020, 8, 217098–217107. [Google Scholar] [CrossRef]
- Sadiku, M.N.O. Elements of Electromagnetics, 5th ed.; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Jin, J.M. The Finite Element Method in Electromagnetics, 3rd ed.; Wiley-IEEE Press: Piscataway, NJ, USA, 2014. [Google Scholar]
- Gibson, W.C. The Method of Moments in Electromagnetics, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Chapman, N. When One Wire is Enough. Transm. Distrib. World 2001, 53, 56. [Google Scholar]
- Xu, X.; Zhang, B.; Liu, K.; Xing, L.; Liu, D.; Bai, M. Measurements and Analysis of the Dielectric Properties of Aramid/Epoxy Composites Based on Free Space Method under Stress Conditions. Polym. Test. 2018, 72, 55–62. [Google Scholar] [CrossRef]
- de Oliveira, R.M.S.; Fujiyoshi, D.M.; Araújo, R.C.F.; Nascimento, J.A.S.; Carvalho, L.F.P. Finite-difference Modeling of Dispersive Soils Validated via Experimental Evaluation of Transient Grounding Signals. J. Electrost. 2017, 87, 263–275. [Google Scholar] [CrossRef]
- Madhavi, T.C.; Annamalai, S. Electric Conductivity of Concrete. ARPN J. Eng. Appl. Sci. 2016, 11, 5979–5982. [Google Scholar]
- Eaton’s Cooper Power Systems Division, Secondary Arresters and Protective Gaps Catalog. 2022. Available online: https://www.eaton.com/content/dam/eaton/products/medium-voltage-power-distribution-control-systems/line-installation-and-protective-equipment/secondary-arresters-and-protective-gaps-catalog-ca235001en.pdf (accessed on 4 April 2022).
- Hileman, A.R. Insulation Coordination for Power Systems; CRC Press Taylor and Fracis Group: Boca Raton, FL, USA, 1999. [Google Scholar]
- Visacro, S.; Soares, A.; Aurélio, M.; Schroeder, O.; Cherchiglia, L.C.L.; De Sousa, V.J. Statistical Analysis of Lightning Current Parameters: Measurements at Morro do Cachimbo Station. J. Geophys. Res. 2004, 109, D01105. [Google Scholar] [CrossRef]
- Pergentino, L.A. Impact Assessment of Lightning Strikes on Distribution Systems from Field Measurements. Master’s Dissertation, Engineer School of São Carlos, University of São Paulo, São Paulo, Brazil, 2019. [Google Scholar] [CrossRef]
Identification (Figure 9a) | Material | |||
---|---|---|---|---|
C and F | Epoxy resin | 4 | 0.0005 | 1 |
Concrete | 8 | 1 | ||
Soil | 4 | 0.022 | 1 | |
K | Air | 1 | 0 | 1 |
Identification | |||
---|---|---|---|
Reference Case 1 (RC1) | 5 | 280 | - |
Reference Case 2 (RC2) | 10 | 170 | - |
Proposed Case 1 (PC1) | 5 | 280 | 0.8 |
Proposed Case 2 (PC2) | 10 | 170 | 0.8 |
Proposed Case 3 (PC3) | 5 | 280 | 0.6 |
Proposed Case 4 (PC4) | 10 | 170 | 0.6 |
Proposed Case 5 (PC5) | 5 | 280 | 0.4 |
Proposed Case 6 (PC6) | 10 | 170 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Morais, A.M.; de Oliveira, R.M.S.; Nunes, M.V.A. Mitigation of Insulator Lightning-Induced Voltages by Installing Parallel Low-Voltage Surge Arresters. Energies 2023, 16, 1111. https://doi.org/10.3390/en16031111
de Morais AM, de Oliveira RMS, Nunes MVA. Mitigation of Insulator Lightning-Induced Voltages by Installing Parallel Low-Voltage Surge Arresters. Energies. 2023; 16(3):1111. https://doi.org/10.3390/en16031111
Chicago/Turabian Stylede Morais, André M., Rodrigo M. S. de Oliveira, and Marcus V. A. Nunes. 2023. "Mitigation of Insulator Lightning-Induced Voltages by Installing Parallel Low-Voltage Surge Arresters" Energies 16, no. 3: 1111. https://doi.org/10.3390/en16031111
APA Stylede Morais, A. M., de Oliveira, R. M. S., & Nunes, M. V. A. (2023). Mitigation of Insulator Lightning-Induced Voltages by Installing Parallel Low-Voltage Surge Arresters. Energies, 16(3), 1111. https://doi.org/10.3390/en16031111