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Abstract: The paper presents the results of the analysis of the resistance to hydrogen and high-
temperature salt corrosion of the developed alloy of the CM88Y type for the turbine blades of gas
turbine engines for marine and power purposes in comparison with the industrial heat-resistant
corrosion-resistant alloy CM88Y and the alloy for the protective coating of the SDP3-A blades. SDP3-
A alloy was chosen as a reference sample, which has high hydrogen and corrosion resistance. The
new heat-resistant alloy additionally contains such refractory metals as rhenium and tantalum,
which are added to the composition of the alloy in order to increase operational characteristics while
maintaining phase-structural stability. These are properties such as long-term and fatigue strength,
characteristics of plasticity and strength at room and elevated temperatures. Therefore, the purpose
of these studies was to determine the resistance to high-temperature salt corrosion of the developed
alloy in comparison with the industrial heat-resistant nickel alloy and to evaluate the influence of
alloying, hydrogen embrittlement of CM88Y and ZhS3DK alloys with different contents of chromium,
boron, zirconium, hafnium, and yttrium were compared. The corrosion resistance of the materials
was evaluated after crucible tests in a salt solution at a temperature of 900 ◦C for 30 h, according to
the standard method. The corrosion resistances of alloys were determined by the mass loss, corrosion
rate, and data from metallographic studies.

Keywords: heat-resistant alloy; high-temperature salt corrosion; gas turbine engine blade

1. Introduction

In the modern energy industry, almost 70 percent of all windings and rotor shafts of
power generators with a capacity of more than 60 MW are cooled with hydrogen to prevent
overheating under mechanical loads and friction [1–3]. The use of gaseous hydrogen as a
heat carrier is based on its properties, namely, low density, a high specific heat capacity,
and the highest thermal conductivity among all gases (0.168 W/(m·K). It is a 7–10 times
better cooler than air [1–3]. Hydrogen gas under a pressure of 0.6 MPa circulates in a closed
circuit to remove heat from the active parts and then is cooled by copper gas-water heat
exchangers on the stator frame. Hydrogen has a very low viscosity, which helps to reduce
the resistance losses in the rotor, which can be significant due to the high speed of rotation
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of the rotor. The relevance of the problems of the explosiveness of hydrogen in a mixture
with air oxygen and the hydrogen embrittlement of structural materials is increasing due
to the development of hydrogen energy [4–8], which is caused by environmental threats
associated with carbon dioxide emissions and their impact on climate change.

An important factor in the performance of an ecologically “green” hydrogen energy tur-
bine (GET) and traditional turbine units (TA) (turbine + turbogenerator) is the degradation
of structural materials under the influence of hydrogen contained in hydrogen-containing
environments (HCE)—fuel and a cooling system. Hydrogen significantly worsens the
operational characteristics of the engine combustion chamber, hot turbine track, turbine
discs, and cooled blades [4,5,7–9]. Thus, it is relevant, on the one hand, in determining the
influence of hydrogen on short-term strength and plasticity, low- and multi-cycle fatigue,
static and cyclic crack resistance during the long-term service of structural materials, and
on the other hand, the development of hydrogen-resistant steels and alloys and effective
and safe hydrogen-containing mixtures for use as fuel and the thermal protection of parts
of turbines and turbogenerators.

The trends in the development of cooling systems for high-temperature gas turbine
engines and gas turbine installations (power, aviation, sea, and land transport) are based
on modern technologies of the internal cooling of gas turbine blades (deformed, obtained
by equal axis, direct crystallization’s, single crystals technologies), external heat exchange,
cyclone and vortex cooling, which imposes additional restrictions on construction materials.
The external cooling of gas turbine blades, film cooling and technologies for obtaining
profiled, anti-vortex holes in surface recesses, internal wall cooling, trends in temperature
growth, and degree of compression require the creation of a new generation of alloyed
high-temperature monocrystalline superalloys with an operating temperature of more than
1150 ◦C. Open and closed schemes of convective and convective-film cooling significantly
affect the efficiency of gas turbines. Features of cooling nozzles and working blades
are related to the diagram of heat exchange intensification. Modern methods of cooling
different areas of the blade, improved schemes of the movement of the cooler in blades
with internal cooling, and therefore new designs of blades include micro-finning of internal
cooling channels (Figure 1) [8–10]. The distribution of the heat transfer coefficient along the
contour of the blade, detection of the most stressed points on the inlet and outlet edges of
the blade, the end surfaces of the nozzle apparatus are based on the concept of swirling flow
and two-dimensional and three-dimensional schemes of cyclonic cooling. Vortex matrices
for the internal cooling of gas turbine blades and their external and film cooling increase its
efficiency and heat transfer coefficient. Calculations of film cooling (slot and discrete holes)
and methods of increasing cooling efficiency by changing the geometry of the injection
with the transition to the gap contribute to the creation of promising film cooling schemes.

The physical structure of the flow behind the profiled holes and anti-vortex holes, the
geometrical parameters of the systems of paired holes, the use of additional anti-vortex
holes, the supply of coolant in the trench, craters of different shapes and hemispherical
recesses in the vanes with cooling inside the wall (Figure 1) are promising schemes, but
have certain limitations that are superimposed with difficult-to-process modern superalloys
made by single-crystal, directional crystallization, or powder metallurgy technologies.

An important problem of marine gas turbines is ensuring the resistance of materials
against high-temperature salt corrosion. It is known that high-temperature salt corrosion
leads to dangerous damage to the working blades of gas turbine engines (GTE). At the
same time, damage to the hard-to-reach internal surfaces of the cooling channels signifi-
cantly complicates the restoration of the blades. Working blades for new engines being
developed must withstand a temperature of 950 ◦C, compared to the blades currently
working (working temperature 900 ◦C). Blades for turbines of various purposes are made
of heat-resistant nickel-based alloys. To reduce the high-temperature corrosion of blades,
3 to 20% chromium is added to these alloys. Therefore, when improving the chemical
composition of heat-resistant alloys for the blades of gas turbines for marine and energy
purposes, it is necessary to conduct research on corrosion resistance [11,12].
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Figure 1. Blade of a DN80 power gas-turbine engine (a), cross-sections of its parts (b–d) and struc-
ture of the advanced cooling turbine blade: stationary blade (1—combustion gas, 2—core plug, 3—
cooling air, 4—pin fin, 5—impingement cooling, 6—film cooling hole) (e); moving blade (1—turbu-
lence promoter, 2—serpentine cooling channel, 3—pit fin, 4—cooling air) (f). 
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Figure 1. Blade of a DN80 power gas-turbine engine (a), cross-sections of its parts (b–d) and structure
of the advanced cooling turbine blade: stationary blade (1—combustion gas, 2—core plug, 3—cooling
air, 4—pin fin, 5—impingement cooling, 6—film cooling hole) (e); moving blade (1—turbulence
promoter, 2—serpentine cooling channel, 3—pit fin, 4—cooling air) (f).

The formation of an updated phase composition of alloys by alloying with a complex of
refractory elements, which would combine a high resistance to high-temperature corrosion
with heat resistance, is an important urgent fundamental material science problem. The
additional introduction of refractory elements, such as rhenium, tantalum, ruthenium, etc.
with a balanced chromium content, will provide an increase in heat resistance without the
deterioration of corrosion resistance [13–22].

In gas turbine engines, high-temperature corrosion manifests itself mainly due to the
increased content of sulphur in diesel and turbine fuel and additionally the ingress of
seawater salts in ship engines. The presence of sodium and sulphur in diesel fuel leads
to the formation of a certain amount of liquid sodium sulphated particles in the hot part
of the turbine in a dusty state. The salt accumulated in the compressor is separated from
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the blades in the form of fractions of different sizes and enters the hot part of the turbine,
mostly on the engine blades. Salt mixtures on the blades, depending on the operating
temperature of the gas turbine engine during operation, can be both in a solid and liquid
state [20–25].

When sodium sulphate is deposited on the surface of the alloy and interacts with
the latter, sodium oxide and reducing metal are formed, as well as sulphur, which forms
one or another type of sulphide with the components of the alloy. In particular, nickel
sulphide can form eutectics of the M-MS type with a melting point of 645 ◦C. The latter
reacts with oxygen penetrating through the molten salt, with the formation of metal oxide
(MO), metal sulphides, and selenides (MS). The metal sulphide dissolves the metal again
with the formation of the M-MS eutectic.

This process is enhanced by the fact that molten salt easily penetrates to the surface of
the metal through pores and microcracks in the scale. Atomic oxygen leads to the rapid
impoverishment of the surface layers of the metal with alloying elements (to obtain almost
pure nickel) and intensively moves deep into the metal. At the same time, elements with a
high affinity for oxygen are oxidized, and islands of unoxidized nickel join the scale mass,
being oxidized to NiO. Taking into account the above analysis of the scale composition
that forms on the turbine blades during operation and is the cause of high-temperature
salt corrosion, the purpose of the work is the evaluation of the performance of a new
heat-resistant alloy in comparison with other known and standardized alloys used for a
similar application and to carry out a study of the corrosion and hydrogen resistance of
heat-resistant nickel alloys for the working blades of gas turbine engines.

2. Materials and Methods

The research was conducted on samples of a new heat-resistant alloy [23–47],
a heat-resistant nickel alloy that is widely used in the production of CM88Y
(Ni60Cr16Co11Mo2Ti4Al4W6NbHfYBZr) [10] and the SDP3-A (Cr32Ni8) alloys. The de-
veloped heat-resistant alloy (Ni base; 0.04–0.07 C; 12.3–13.2 Cr; 3.0–3.5 Al; 1.8–2.3 Ti;
6.8–7.5 Co; 0.03–0.05 Zr; 0.45–0.50 Fe; 0.9–1.4 Mo; 6.0–6.6 W; 0.1–0.5 Nb; 2.5–4.3 Ta;
3.7–4.3 Re by weight), which is additionally alloyed with rhenium and tantalum, was
created in order to increase operational properties (long-term strength, fatigue strength,
plasticity characteristics, and strength at room and elevated temperatures) while main-
taining phase-structural stability and corrosion resistance [25,26]. The SDP-3A alloy is
mainly used as a protective coating for high-pressure turbine blades of modern marine and
gas pumping gas turbine engines [26]. The choice of such alloys is due to the purpose of
comparing the received evaluation criteria regarding the stability of the new heat-resistant
alloy. Castings with an oriented dendritic structure were obtained by vacuum remelting in
a ceramic mold with a diameter of 200 mm and a height of 400 mm by the method of direc-
tional crystallization in a foundry unit VIM-25-175C (manufactured by SECO-WARWICK,
Poland) [21,25]. To obtain cylindrical samples of each alloy, a standard block (a corundum
(Al2O3) mold was used to obtain eight samples weighing 7.2 kg. The temperature of pour-
ing the melt was 1560–1580 ◦C. The temperature was controlled by a thermocouple and an
optical two-color pyrometer (Mikron type device, model M-780). Samples of the SDP-3A
alloy were cut from castings that were melted by electron beam melting at the production of
special alloys for protective coatings. The chemical composition of superalloys is developed
in such a way that the oxides of chromium, aluminum, and tantalum on the surface of the
blades protect them from high-temperature corrosion [12,15–113], so it is advisable to study
the corrosion resistance on samples with oxides. Hydrogen embrittlement was studied on
polished samples.

The microstructure of the surface layer of samples from the experimental alloy is
similar to the structure of the CM88Y alloy. In addition to the depth of surface corrosion,
the amount of penetration of defects into the alloy along the interphase grain boundaries
was assessed, which was studied using a Neofot-3M optical microscope. Grain sizes and
the depth of corrosion defects were determined with the help of an optical microscope
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Neofot-3M with an accuracy of ±1 µm. Average values of grain sizes were obtained by the
random secant method [112,113]. Additionally, a visual method was used to estimate the
macrograin size in the polycrystalline sample according to the instructions of gas turbine
engine manufacturers. The method consists in comparing the macrostructure of the test
samples with reference scales, which are a set of standard macrophotographs, each of
which shows grains of a certain size at the same magnification. At the same time, the grain
size is characterized by a reference structure that corresponds to certain cross-sectional
dimensions of the grain.

To study the corrosion properties, cylindrical samples with a diameter of 8 mm and
length of 15 mm were cast, which were subjected to mechanical and thermal treatment
according to the standard regime: 1170 ± 10 ◦C, 4 h, cooling in air; 1050 ± 10 ◦C, 4 h,
cooling in air; and 850 ± 10 ◦C, 16 h, cooling in air. The dimensions of the samples were
determined using a micrometer MK 50–1 with an accuracy of ±5 µm (Figures 1a and 2a).
The studied materials were degreased by washing three times in ethyl alcohol or acetone.
After that, they were air-dried for 20 min. Then, they were weighed on analytical scales
VLR-200 with an accuracy of ±1×10−4 g. Metal samples were placed in dried corundum
crucibles and filled to the top with a mixture of 25% NaCl + 75% Na2SO4 salts. The amount
of this mixture (Q) was calculated according to the known formula [21,26]:

Q = h·r(ST − So), (1)

where h—salt melt height; r—salt density (for this mixture r = 2.5 g/cm3); ST—the area
of the internal section of the bottom of the crucible; and So—total surface area of the
sample, m2.
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Figure 2. The appearance of samples before (a) and after corrosion tests (b,c) from the CM88Y alloy
(left) and the experimental alloy (right).

The crucibles with samples were placed in a metal container with a lid, which is
made of a heat-resistant alloy of the XH60BT type (EI 868). The tests were carried out
at a temperature of 900 ◦C in molten salts for 30 h in a resistance furnace of the SNOL-
2,5.1,6.1/9 type. After that, the samples were extracted from the molten salt with tweezers
and washed under running water for 15 min. The samples cleaned in this way were then
boiled for one hour in heat-resistant glasses to separate scale and salt from their surface. It
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was washed again under running water for 10 min and dried at a temperature of 120 ◦C for
10 min. The final removal of scale from the surface of the samples was carried out in a melt
of the following composition: 70% NaOH, 25% NaNO3, and 5% NaCl at a temperature
of 450 ◦C for 1.5 h. After that, the samples were removed from the crucibles, cooled, and
thoroughly washed with a solution of soda ash (Na2CO3) for 15 min. The final removal
of the oxide film from the surface of the sample was carried out in a solution with the
following composition: 20% H2SO4, 1.5% HNO3, and 2.5% NaCl, and the rest distilled H2O
at room temperature for 3–5 min. After that, the samples were dried, finally degreased, and
weighed [26].

The resistance of alloys to high-temperature salt corrosion was determined on the basis
of mass loss and data from metallographic studies (the depth of the spread of corrosion in
the metal). After removing the corrosion products, the mass of the samples was determined
on analytical scales with an accuracy of 0.0001 g. The amount of specific mass loss was
calculated according to the formula

q = (m0 − m)/S (2)

where m0—mass of the sample before the corrosion test, m—mass of the same sample after
the removal of corrosion products, and S—initial surface area of the sample.

A well-known formula was used to calculate the corrosion rate:

Vq = ∆m/Sτ, (3)

where Vq—average corrosion rate; ∆m = m0– mк; m0—the initial mass of the sample;
mк—the mass of the sample after the tests; S—the total frontal area of corrosion damage;
and τ—exposure time.

The depth of corrosion damage on the surface d and the internal corrosion h of
the samples were studied using a Neofot-3M optical microscope. The depth of external
corrosion was determined by the half difference of the initial and final diameters of the
sample:

d = (d0 − dк)/2, (4)

where d—the depth of external corrosion; d0—the initial diameter of the sample, m; and
dк—the diameter of the sample after testing, m. This procedure dissolves only the corrosion
products that formed on the surface of the samples and as a result of the penetration of
defects into the alloy along the grain boundaries [20–22,29].

Short-term stretching (static tensile tests) was carried out at a speed of 0.1 mm/min
(by displacement rate Vd = 6.7 × 10−5 s−1) in the air and gaseous hydrogen under the
pressure 0 . . . 30 MPa on standard cylindrical specimens with a working part diameter of
5 mm. This type of sample was used to determine the high-cycle durability submitted to
cyclic loading on the scheme “pure bending with rotation” at a fixed strain amplitude with
a 50 Hz frequency at temperature 800 ◦C.

3. Results
3.1. High-Temperature Salt Corrosion of Alloys

The resistance of alloys to high-temperature salt corrosion was determined by mass
loss and according to data from metallographic studies (the depth of the spread of corrosion
in the metal). The results of studies of corrosion resistance of the samples are presented in
the table. The appearance of the samples after corrosion tests is shown in Figures 2 and 3,
and their structure is shown in Figure 4. The macrostructure of all alloy samples has a
polycrystalline structure with an average grain size of 0.5–4.0 mm. (Table 1). A statistical
analysis of experimental data was carried out based on the values of at least five obtained
results. Average values of determined quantities and root mean square deviations were
calculated. The testing of the null statistical hypothesis showed that all experimental results
meet the Pearson consistency criterion [114] with a significance level of α = 0.05.
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Table 1. Results of high-temperature salt corrosion tests.

Alloy Experimental CM88Y SDP 3-A
Sample Number 1 2 3 4 5 6

Grain size in the alloy, ×10−3 m 1.0–2.0 1.5–3.0 1.0–3.0 3.0–4.0 0.5–1.0 0.5–1.0
Specific mass loss, after 30 h, kg/m2 0.287 0.278 0.353 0.289 0.053 0.121

Corrosion rate, Vq, kg/m2 h 0.0089 0.0096 0.0118 0.0096 0.0018 0.004
Depth of external corrosion, d × 10−3 m 0.28 0.05 0.05 0.24 0.30 0.27
Depth of internal corrosion, h ×10−3 m 0.05–0.10 0.05–0.10 0.12–0.15 0.10–0.12 0.20–0.40 0.05–0.30

The determined indicators of corrosion resistance, namely the rate of corrosion and
the specific mass loss of the new heat-resistant alloy, are at the level of the indicators of
the industrial alloy CM88Y and meet the requirements of the standard [24–29]. It was
established that the same corrosion damage of intergraine boundaries is observed in the
samples from the CM88Y alloy and the experimental alloy. The depth of internal damage,
on average, is 0.05–0.28 mm. When examining the scale of experimental samples of the
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developed alloy, the presence of refractory oxide Ta2O3 is observed along with protective
oxides NiO and Cr2O3. The test results showed that, with increased strength characteristics,
the developed alloy has resistance to high-temperature salt corrosion at the level of standard
heat-resistant nickel alloy CM88Y and meets the requirements of regulatory documents.
Alloying the melt with tantalum in the amount (2.5–4.3% by weight) allows for reducing the
chromium content in castings from 15.5–16.0 to 12.3–13.2% by weight and makes it possible
to obtain vanes with high corrosion resistance in high-temperature salt environments from
the experimental alloy. The depth of corrosion defects was studied using a Neofot-3M
optical microscope. The structure of the surface layer of samples from the experimental
alloy is similar to the structure of the CM88Y alloy. In addition to the depth of surface
corrosion, the amount of penetration of defects into the alloy along the grain boundaries
was evaluated. It was established that the same corrosion damage of intergraine boundaries
is observed in the samples from the CM88Y alloy and the experimental alloy. The depth of
internal damage, on average, is 0.05–0.28 mm. The smallest depth of corrosion damage is
observed in samples of SDP3-A alloy.

On the basis of previous studies of this experimental alloy, in particular, a micro-X-ray
spectral analysis of blades and literary sources, Ta2O3 oxide is formed during tests in
molten salts [20–23]. Ta2O5 can be formed with free access to oxygen.

It can be seen from the table that CM88Y and experimental alloys are characterized by
a high resistance to salt corrosion. This is due to the fact that a dense oxide film forms on
the surface of samples from such alloys, which prevents the deep penetration of chemicals
into the volume of the material. The addition of tantalum leads to the formation of carbides
of the MeC type, and therefore chromium is not consumed for the formation of Cr23C6, but
remains in the matrix. As a result, protective oxide Cr2O3 is formed, which increases the
corrosion resistance of the material. When examining the scale of experimental samples
of the developed alloy, the presence of the refractory oxide Ta2O3 is observed along with
protective oxides NiO and Cr2O3. It is likely that Ta2O3 oxide, unlike Mo, W, and Nb
oxides, which react with Na2SO4 and contribute to the dissolution of NiO, does not interact
with sodium sulphate and thereby contributes to the formation of a protective film.

3.2. The Influence of Hydrogen on the Properties of Alloys for Gas Turbine Blades

The degree of hydrogen embrittlement (HE) of the CM88Y
(Ni60Cr16Co11Mo2Ti4Al4W6NbHfYBZr) alloy and the heat-resistant casting alloy ZhS3DK
(Ni74Cr12Co10Mo4Ti3Al4W3BCe), which is used for casting blades of aviation gas turbine
engines [32], were compared. The chemical composition of the materials is given in Table 2.
ZhS3DK alloy contains less chromium, which impairs its corrosion resistance, as well as
titanium and tungsten, which reduces its strength in the whole investigated temperature
range (Figure 5). The high corrosion and heat resistance of the CM88Y alloy is provided by
the presence in its composition of boron, zirconium, hafnium, and yttrium [11–22,33,34],
which are absent in the alloy ZhS3DK (Table 2). Rhenium significantly increases the melting
temperature of nickel alloys and has a noticeable effect on the thermal stability of the
γ-matrix and γ′-phase. It is included mainly in the γ-solid solution (its content in the
γ′-phase is small, about 0.2%), thereby contributing to the displacement of such effec-
tively stabilizing elements as aluminum and tantalum from the solid solution into the
γ′-phase. Rhenium slows down the diffusion processes occurring at high temperatures
in heat-resistant nickel alloys. Therefore, it is introduced into such materials to increase
heat resistance and creep [115]. Thus, the introduction of rhenium and tantalum into the
new heat-resistant, corrosion-resistant alloy contributed to an increase in the solidus and
liquidus temperatures from 1270–1330 (CM88Y alloy) to 1320–1370 ◦C, respectively, as
well as the dissolution temperature of the strengthening γ′-phase Ni3(Al, Ti). This made it
possible to increase the operating temperature of blades made of the new alloy compared to
the CM88Y alloy by ~50 ◦C [21]. The effect of Re on the corrosion and hydrogen resistance
has not been studied enough. There are no systematic data on the effect of Re on the
corrosion and hydrogen resistance in the literature.
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Table 2. Chemical composition of the investigated nickel superalloys.

Alloy Content of Elements, wt.% (Ni-Balance)

C Cr Co Mo Ti Al W Nb Hf Y B Zr Ce

CM88Y 0.07 15.6 11.0 2.0 4.20 3.8 5.90 0.2 0.3 0.3 0.07 0.05 –
ZhS3DK 0.07 12.0 10.3 4.2 2.99 4.4 2.96 – – – 0.01 – 0.01
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The strength of the heat-resistant alloy CM88Y changes little in the temperature range
of 20–800 ◦C, sharply decreases when the temperature rises to 900 ◦C, and almost does
not change under the influence of hydrogen (Figure 5a). The ultimate strength σu of the
ZhS3DK alloy with a lower content of refractory and intermetallic-forming elements is
significantly lower (Table 2, Figure 5b).

Dispersion-hardening nickel alloys with intermetallic strengthening are strongly embrit-
tled by gaseous hydrogen, which is manifested in the deterioration of plasticity characteristics
during short-term static stretching [35–41]. This is especially characteristic of cast materials
with a non-homogeneous structure, liquation, and coarse grains [29,36,47–115]. It is known
that the sensitivity to hydrogen and the number of areas of intergranular fracture in heat-
resistant nickel alloy samples decrease with decreasing grain size, even though the hydrogen
concentration in coarse-grained samples is lower than in fine-grained ones [35,37–75]. As in
the case of deformable alloys [38–42], the degree of hydrogen embrittlement of cast alloys
depends on their chemical composition and heat treatment regimes, which determine the
features of the material structure [29,36].

The plasticity characteristics of both alloys are greatly reduced in hydrogen at a pressure
of 30 MPa (Figures 5 and 6). Thus, at room temperature, the relative elongation of samples
from the CM88Y alloy decreases by 2.5 times, the reduction of area—by 2 times, from the
ZhS3DK alloy—by 3 and more than 5 times, respectively (Figure 5a,b). In accordance with
the ASTM standard G129-2000(R2013), the sensitivity of materials to hydrogen embrittlement
was compared by the coefficient of influence of hydrogen on the reduction of area of the
samples βψ (Figure 6). The CM88Y alloy with higher strength is significantly embrittled at
800 ◦C and is sensitive to the action of hydrogen even at 900 ◦C (Figures 5 and 6). It has been
established that increasing the hydrogen durability (HD) of austenitic iron-nickel steels and
alloys is achieved by forming a structure with thin grain boundaries with increased cohesive
energy by introducing boron, lanthanum, and zirconium, by optimizing the morphology
of intermetallic [35,39–42,44–115]. Therefore, the ZhS3DK alloy, in which there are none of
these alloying elements, is much more embrittled by hydrogen in the temperature range of
20–700 ◦C. At higher temperatures, its strength decreases sharply, and the effect of hydrogen
weakens (Figure 6).

High-cycle fatigue (HCF) is an important characteristic of the performance of rotating
parts of power equipment, such as rotors, discs and blades of turbines and engines [46–50].
The endurance limit of alloys was determined in a hydrogen chamber for the high-cycle
fatigue (HCF) materials [48] in air and hydrogen at a pressure of 30 MPa at a temperature of



Energies 2023, 16, 1154 10 of 15

800 ◦C. At this temperature, the CM88Y alloy retains high strength and sensitivity to hydrogen
embrittlement, both under static tensile tests (Figure 6) and under fatigue loads (Figure 7,
curves 1, 2). For all load amplitudes, the fatigue limit (FL) of the ZhS3DK alloy is significantly
lower and changes little under the influence of hydrogen (Figure 7, curves 3, 4).
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4. Conclusions

The carried out studies indicate that the resistance to high-temperature salt corrosion
of the experimental nickel alloy is close in value to the values characteristic of the standard
heat-resistant alloy CM88Y and meets the requirements of the regulatory documentation.
Alloying the developed heat-resistant alloy with tantalum in the amount (2.5–4.3% by
weight) allows for reducing the chromium content in castings from 15.5–16.0 to 12.3–13.2%
by weight and obtaining blades with high corrosion resistance in high-temperature salt
environments.

During static tensile tests, hydrogen at a pressure of 30 MPa has a negligible effect
on the strength and significantly reduces the plasticity characteristics of cast heat-resistant
nickel alloys CM88Y and ZhS3DK alloy, in which there are no boron, lanthanum, and
zirconium, which are much more embrittled by hydrogen in the temperature range of
20–700 ◦C. At temperature 800 ◦C the CM88Y alloy retains high strength and sensitivity to
hydrogen embrittlement both under static tensile tests and under fatigue loads. For all load
amplitudes, the fatigue endurance of the ZhS3DK alloy is significantly lower and changes
little under the influence of hydrogen.
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Nomenclature and Abbreviations

σu ultimate tensile strength (UTS)
σ0,2 yield strength (YS)
σ-1 fatigue limit (FL)
N number of cycles
δ elongation
ψ reduction of area
CH hydrogen concentration
wppm weight parts per millions
GTE gas turbine engine
GET environmentally ‘greener’ hydrogen energetic turbine
HCF high-cycle fatigue
LCF low-cycle fatigue
RPM rotation per minute
HD hydrogen durability
HCE hydrogen-containing environment
HE hydrogen embrittlement
MO metal oxide
MS metal sulphides and selenides
TA turboaggregate (turbine + turbogenerator)
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