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Abstract: The paper describes the digital twin of a Li-ion battery cell based on the MATLAB/Simulink
generic model. The digital twin is based on measured data for constant current/constant voltage
charging and discharging cycles with State of Health (SoH) up to 79%, also including fast charging.
Mathematical equations used for the digital twin are obtained by 3D data fitting of measured SoH,
battery capacity, and battery cell current. The input to the proposed digital twin is only the measured
battery cell current, and its output includes State of Charge (SoC), SoH, and battery cell voltage. The
designed digital twin is tested and compared with MATLAB/Simulink generic model and battery
cell measurements for constant discharging current and dynamically generated discharging current
profile. The results show significant improvement in the generic MATLAB/Simulink model.

Keywords: digital twin; lithium-ion battery; MATLAB/Simulink; state of health prediction; state of
charge prediction

1. Introduction

With rapid development in electric vehicles and consumer electronics, smart grids,
etc., energy storage systems are becoming an important sector. Electrical energy generation
is shifting from predictable and stable sources such as power plants to less predictable and
stable sources such as renewable energy sources. Carbon neutrality, for example, net-zero
greenhouse gas emissions, which the EU aims to reach by 2050 [1], will place significant
emphasis on highly reliable battery energy storage systems (BESS) and advanced smart
grids. As the world’s second-largest producer of motor vehicles after China, the EU aims
for zero-emission vehicles from 2035 [2]. All these applications require high-energy BESS
to meet the demand for reliable systems used for a short time and highly efficient energy
storage. The BESS are small in size, portable, and can be placed everywhere. Batteries
are electrochemical energy storage systems; the energy stored in the battery cannot be
accessed directly as in chemical storage systems such as hydrogen. This implies that it
is not easy to assess the battery state-of-charge (SoC) instantaneously. The SoC is one of
the most important parameters of the BESS. In general, the battery SoC is defined as the
current capacity ratio to the battery’s nominal capacity. Moreover, the BESS must be safe
during the whole life cycle as the battery performance gradually deteriorates. Lithium-
ion (Li-ion) batteries are preferred over other battery chemistry in various applications
because of their long life, small self-discharge, high energy density, no requirement for
complete discharge (the memory effect), and lighter weight. The battery management
system (BMS) is responsible for ensuring that the BESS is operated within a safe operating
range. However, many accidents are being reported as a result of faults in the BESS [3]. In
this regard, the current research of BMS is focused on precise battery State-of-Health (SoH)
estimation, and Remaining-Useful-Life (RUL), which need to be monitored to prevent
failure [3,4]. The SoH is defined as a ratio of the maximal instantaneous releasable capacity
to the new battery’s capacity [5]. The RUL is a subjective estimate of the remaining number
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of months or years that the BESS is estimated to be able to function in accordance with its
purpose before it will need to be replaced [4].

The basic property of a battery is its SoC, which needs to be precisely monitored by
BMS. The existing methods for SoC estimation can be divided into three categories: direct,
indirect, and adaptive [4]. Direct methods are based on measuring the physically accessible
battery properties such as the battery voltage, or battery current [6-8]. Indirect methods
are data-based and use a database of measured battery properties within a cycle [9,10].
Finally, adaptive methods use adaptive filters formed from Fuzzy logic [11], artificial neural
networks [12], and the Kalman filter [12], which are based on adaptive algorithms for
adjusting parameters. The direct methods combining coulomb counting and open circuit
voltage measurements are the easiest to implement and provide reliable results in periodic
battery cycling [6-13].

The SoH is critical for the proper operation of the BMS as it represents the current
state of the battery within its lifetime. Four approaches are used for battery degradation
modelling [10]: physical-based models, equivalent circuit models, machine learning mod-
els, and empirical and semi-empirical models. Empirical models are simple and easy to
implement as they contain only mathematical formulas which try to describe complex
electrochemical processes. This approach is intuitive for non-chemical engineers; however,
the empirical models often over-simplify the complex behaviour of Li-ion batteries. Em-
pirical models are based on curve fitting the relationship of various factors influencing
the performance of the battery, such as cut-off charge voltage, temperature, SoH, DoD etc.
Large data sets are necessary to decouple their mutual influence. Data sets for various
charging (usually constant current followed by constant voltage) and discharging profiles
with variable temperatures are available as open data [9,14-17]. They are used for devel-
oping ageing models, for example, for LiFePO4 with fast-charging up to 10C [18] or for
LiCoO2 degradation modelling [19]. However, these datasets usually do not include fast
charging and consider galvanostatic discharging.

MATLAB/Simulink has been used for many applications in estimations of SoC and
SoH of a battery cell, including the Extended Kalman filter, artificial neural networks, neuro-
fuzzy systems and various equivalent circuit models. In [20], the battery SoC estimation
equivalent circuit provided in MATLAB has been modified by adding the 3-RC pairs in
series with its internal resistance. In [21], authors propose a MATLAB function with the
objective of providing a public tool that estimates the battery SoC and terminal voltage
at different temperatures using a second-order resistor-capacitor (2RC) ECM along with
an extended Kalman filter (EKF). In [22], authors propose a unified OCV-SOC model that
is intended for both SOC estimation and SoH monitoring. In [23], a universal method
for tuning the cell model against any standard dataset is proposed. A cell model of 1-RC
pair was developed using MATLAB/Simulink. A new methodology is adopted to better
estimate SoC by tuning the cell parameters. In [24], the authors propose a method for
estimating the SoH of a Li-ion battery based on the assumption that limited data is obtained
through a small number of reference performance tests (RPT). Performing frequent RPTs
causes unnecessary degradation of the Li-ion battery. The authors design a neural network
for SoH estimation using RPT-reduced experimental data proposed for achieving economic
efficiency and mitigating the dispensable degradation due to RPT operation.

The paper describes the development of an empirical battery model based on a pro-
prietary data set obtained by battery cycling for Samsung INR18650-25R cell (Figure 1b)
and also includes fast charging and its influence on battery lifetime. The empirical battery
model is developed in MATLAB/Simulink environment and is based on the generic battery
model from MATLAB/Simulink. SoC estimation is based on coulomb counting, as the
only measured variable which enters the model is the battery current. The initial capacity
of the battery cell (corresponding to the initial SoH) is measured by a single charge and
discharge cycle by a precise power analyser. The SoH model is based on data obtained from
cell cycling up to SoH equal to 80% of the initially measured SoH. The data for empirical
model creation, thus, contains information about the whole life cycle. The created model
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can be easily implemented for battery management system development. Comparison
between measured data and the designed empirical model shows a good correlation even
for randomly generated discharging profiles. Li-ion batteries are produced in various
shapes (cylindrical, prismatic, button, pouch, etc.) (Figure 1a).
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(a) Various types of Li-ion cells. Courtesy of RICHTEK  (b) Tested Li-ion cell.

Figure 1. (a) comparison of various Li-ion cells [25], (b) cell used for cycling testing.

In Section 2, the basic charging and discharging parameters of Li-ion batteries re-
garding the lifetime of the battery are presented. Section 3 describes a methodology for
collecting the data set used for model creation. Section 4 describes the test bench used
for data collection during the cyclic test. In Section 5, the battery tests are described and
obtained data sets are presented for SoH up to 79%. Section 6 presents the empirical model
and its concept. Moreover, data fitting and the final model are described in Section 6. In
Section 7, the comparison between measured data and created model summarises the
properties of the model for randomly generated battery discharging profile.

2. Li-Ion Batteries

Li-ion battery cells have many advantages when compared to other battery chemistry.
They offer relatively high capacities (188 mAh/g for NCA cathode cell) and high energy
density (260 Wh/kg for NCA cathode cell) whilst being lightweight, accept fast charging,
have very low self-discharge (0.35-2.5% per month) and have a long lifespan of the battery
cell [26-29]. They also have relatively high nominal voltage (2.5 V—4.2 V) and no memory
effect. Li-ion batteries can be operated in a wide temperature range from —20 °C to +60 °C

One of their disadvantages is that if we want to achieve a long service life for the
battery cell, it is necessary to treat them according to certain requirements:

* Do not exceed their maximal charging and discharging current

*  Maintain Constant Current-Constant Voltage (CC-CV) charging algorithm
*  Protect the cell from overcharging/undercharging

*  Protect the cell from over-temperature by proper thermal management.

Li-ion battery cells have a lifespan of approximately 300-2000 cycles, depending on
the cathode chemistry, Depth of Discharge (DoD), and temperature [30]. As can be seen in
Figure 1a, Li-ion batteries are produced in various shapes (cylindrical, prismatic, button,
pouch, etc.) and in most cases have a nominal voltage of 3.6 V or 3.7 V [30-32].

3. Testing Method of Li-Ion Batteries

Batteries can be tested from several points of view, such as the electrical, mechanical
or thermal properties. The main task was to retrieve models based on measured data from
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cycling testing accurately. This section focuses on the proper charging and discharging
process of Li-ion batteries. In addition, this section also describes the protections that
must be ensured during these processes. For this purpose, it was necessary to build test
equipment that performs cyclic charging and discharging of battery cells. The performed
tests were focused precisely on the electrical properties of the battery cell. These tests take
into account the battery’s ability to deliver a certain voltage, current and capacity. Such
testing takes place by repeatedly charging and discharging battery cells [33,34].

3.1. Charging

The optimal charging process for Li-ion cells is called CC/CV (Constant Current/
Constant Voltage) and consists of two phases:

¢  The constant current (CC) phase is the phase during which a regulated current with a
constant value flows into the battery cell. A constant current in the range of 0.5-1 C
is usually chosen (if the cell has a capacity of 2500 mAh 1C = 2.5 A), depending on
the exact type of the battery cell. This current must be maintained by a converter
with current control. Thus, the current is constant, and the voltage on the battery cell
slowly begins to increase. This first phase, i.e., the constant current phase, is used
until the moment when the battery cell’s maximum allowable voltage, determined by
the manufacturer, appears on the battery cell terminals. In most cases, it is a value of
around 4.2 V. After reaching this voltage value, the charging process continues with
the next phase [35,36].

¢ The constant voltage phase (CV) is followed by the CC phase and is the phase during
which the battery cell is no longer able to receive a current with the value used in the
first phase without its output voltage increases above the maximum allowed voltage
value set by the manufacturer. Since the battery cell is not yet fully charged at the
beginning of this phase, the charger creates a constant voltage applied to the cell
with the maximum value determined by the manufacturer. In most cases, this value
is around 4.2 V. Thanks to this, the battery will not exceed this voltage value at its
terminals. However, a current will start flowing to the battery cell and will charge it up
to 100%. The cell current is exponentially decreasing during the CV phase. The current
value decreases until the minimum current value when the battery is considered fully
charged and the charging process is terminated [35,36].

The overall charging process described above can be seen graphically in Figure 2. The
length of the individual phases is significantly influenced by the exact type of battery and
especially by the maximum current in the first phase. The boost charging method uses an
additional higher current at the beginning of the charging cycle to shorten the charging
time without compromising the cycle life. Moreover, the charging time is influenced by the
value of the changing current in the classical CC-CV charging method [37-39].
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Figure 2. Constant voltage/Constant current charging waveform [40]. Courtesy of CADEX.
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3.2. Discharging

From the operation point of view, the discharge process of the battery cell is signifi-
cantly simpler as it consists only of one phase. The discharge profile can be set to constant
current (e.g., galvanostatic) and is terminated by reaching the cut-off voltage. However,
in real applications, the discharging current is variable, and it is important to monitor the
current during discharge, the minimum (cut-off) voltage and the temperature of the cell.
The DoD significantly influences the cell cycle life as Li-ion cells prefer shallow discharge,
and lowering DoD increases the cyclability of the battery cell [41,42].

Discharging with higher than permitted currents, under-discharging below minimum
voltages and discharging the battery cell outside the working temperature range have
a significant impact on its lifetime. Typical discharge characteristics for various current
values can be seen in Figure 3. During discharging with low current, the cell remains
relatively cold and discharging lasts longer. With higher discharging current also increase
cell temperature and decreases discharging time. The discharging, which includes micro-
cycling, for example, a small swing in the state of charge, can have a significant impact on
the cycle life of the battery cell and its influence on the cycle life needs to be studied [42].

Discharge characteristics

Model: INR18650-25R (1.0CmA =2500mA)
Charge: CC-CV4A 4.2V, 100mA cut-offat23T

isch 3 1CI5AMDAMSA! / , 2.5V cut-off T
45 Discharge: CC A 2.5V cut-offat 23 120
4.3 1 110
4 100

Cell Voltage (V)
w
w
-
[=]
Temperature(T)

00 02 04 06 08 10 12 14 18 18 20 22 24 28
Discharge capacity (Ah)

Discharge current

1c 5A 10A 15A 20A 25A
Capa.(Ah) 2.496 2518 2.556 2.550 2525 2.472
Temp.(C) 316 412 60.6 78.4 952 106.8
Time(min.) 59.9 302 15.3 10.2 7.6 59

Figure 3. Discharging characteristics for various discharge currents [43]. Courtesy of SAMSUNG.

4. Device for Cyclic Testing of Battery Cells

The battery cell data, such as its voltage and current during charging and discharging,
are necessary to create the empirical model of the cell. These data can be found in open
access databases such as [14], but we have decided to obtain our own data for the modelled
battery cell Samsung INR18650-25R. There are many different types of battery testers with
different features and prices on the market, but we have decided to use our own tester
whose design was part of a PhD thesis. The designed testing device for battery cell cycling
ensures the charging and discharging of battery cells throughout its lifetime and is used
for testing the chosen battery cell model. The designed device can also be extended by a
thermal box with very precise temperature control in the future. The requirements for the
test equipment are as follows:

¢  Charging and discharging of various types of Li-ion cells
*  Possibility to charge/discharge up to 6 battery cells together in one group.
*  The possibility of setting the charging and discharge profile
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¢  Charging current max 5 A, discharging max 30 A

*  Current accuracy with a sampling rate

*  Protections: reverse voltage, undervoltage, overvoltage, short circuit, overheating
*  Monitoring of voltage, current, temperature and battery cell DoD

Based on these requirements, the concept of the entire test equipment was designed.

4.1. Concept

A concept with one master unit and several slave units was chosen for the development
of the device for cycling testing. In this concept, every battery cell was measured by a
dedicated device with its own microcontroller, which is able to work independently of the
remaining test devices. The advantage of this solution is the robustness of the system when
the devices will be able to work even in the event of failures on the remaining devices.
Figure 4 shows a block diagram of the cycling battery cell tester. The blocks are divided
into three groups with different colours.

Cell voltage *

\

»| Temperature sensor

Superior system

Control MCU (> with HMI

CELL

A l A

Constant current
controller for charging
and discharging

Constant voltage
controller for charging

Figure 4. Testing system topology.

The power parts and paths where a higher current is expected are shown in red.
The sensing, control and communication parts of the device are marked by blue. The
yellow colour shows the controllers. In the case of digital control, these regulators were
implemented in a microcontroller. According to the requirements, we want to test at least
six battery cells together in one group. It means that at least six test modules will be
connected to the master processor equipped with the HMI interface [44,45].

4.2. Developed Test Device

The test device, which was developed based on requirements, is shown in Figure 5.
The device is based on Cortex M4 single-core ARM architecture microcontroller from the
STM32 family. The microcontroller provides a sufficient number of GPIO pins, PWM pins
and pins for the AD converter. The microcontroller also offers a hardware interface for
CAN bus connection.

The power stage of the device is based on two buck DC/DC converters connected in
parallel. The first converter ensures the charging of the battery cell. The second DC/DC
converter ensures discharging battery cell through 0.05 () resistor with rated power 100 W.
Measured data are collected to the SD card.
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Figure 5. Developed device for cycling battery cell testing.

The current version of the developed device has these options:

¢  Constant current load test. Charging current to 5 A and discharging current to 20 A
with auxiliary cooling.

*  Possibility to load discharging profile in .csv format, which can be modified later.

*  DPossibility to cycle power charging/discharging cells to the defined SoH value. the
SoH value can be set in a graphical user interface.

*  Possibility to simulate the overcharging, undercharging and fast charging.

* Implemented protections: overvoltage, undervoltage, overheating and short circuit

5. Cell Tests

The Li-ion cell Samsung INR18650-25R was chosen as a reference for testing. The
parameters of this battery cell are shown in Figure 6. The designed testing device for cycling
tests uses the Nucleo STM32F303-K8 microcontroller with 12-bit ADC. The resolution for
charging and discharging current was 4.8 mA and 13.3 mA, respectively. To keep the error
low, an open-loop hall-effect current sensor was used for charging and discharging current
measurements. The sampling rate of the ADC was set to 10 ksps. The testing device was
used only to “wear out” the battery cells, and current sensors were needed to maintain
constant charging and discharging current. Data for model creation and curve fitting
(discharging curves and SoH measurement) was by a programmable DC load IT8518E and
precision power analyser LMG500. The discharge process was terminated by reaching the
cut-off voltage set in the programmable DC load. The accuracy of the current and voltage
measurement for discharge curves and SoH measurement (Figures 7-12) was 0.045% and
0.05%, respectively. The battery cell was subjected to several hundreds of charge and
discharge cycles, and then the SoH was measured.

Chemistry NCA
Initial IR (mQ AC 1kHz) 13.20 + 2
Initial IR (mQ DC (10A-1A)) 2215+ 2
Nominal Voltage (V) 364
Charge Method (100mA cut-off) CC-CV (4.240.05V)
Standard (min), 0.5C 134min
Charge Time
Rapid (min), 4A 55min
Standard current (A) 1.25
Charge Current
Max. current (A) 4.0
End voltage (V) 25
Discharge Max. cont. current (A) 20
Max. momentary pulse .

(A, <1sec)

Standard (mAh) (0.2C)
Rated discharge Capacity
rated (mAh) (10A)

2.560

2.639

Figure 6. Parameters of the Samsung INR18650-25R battery cell [43]. Courtesy of SAMSUNG
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Figure 7. Discharge characteristics for SoH = 100%.

4.5

—1A
——2.5A

Voltage (V)

2.5 | | |
0 0.5 1 1.5 2 25

Capacity (Ah)

Figure 8. Discharge characteristics for SoH = 94%.
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Figure 10. Discharge characteristics for SoH = 85%.
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Figure 11. Discharge characteristics for SoH = 79%.
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Figure 12. Discharge characteristics for 5 A a SoH = 100%, 94%, 89%, 85%, 79%.

The following series of tests were performed on this type of Li-ion cell with the aim of
obtaining the maximum possible amount of data to create an accurate empirical model of
the Li-ion cell:

1.  Determining the maximum number of cycles which the battery cell can perform before
its SoH drops to 80% at nominal charging and discharging current.

2. Determining the influence of discharging current changes to the battery cell ageing
with nominal charging current and discharging current 5A, 10A, 20A to 80% SoH.

3. Determining the influence of change charging current to battery cell ageing with
nominal discharging current and different charging current up to 80% SoH.

4.  Fast charging with maximal current and subsequent discharging with current up to
20 A till the SoH reached 80%

5. Measuring of battery capacity with different charging and discharging currents and
different SoH up to 80% SoH.

6.  Measuring shapes of charging and discharging curves for different charging and
discharging currents and different SoH up to 80% SoH.

Measured results are shown in the figures below. In Figure 7, discharging charac-
teristics for SoH 100% reflect the ability to supply high current while preserving high
capacity—it can be achieved by a small voltage drop on the internal resistance of the
battery cell.

Figure 7 also shows a ripple in discharging part of the curve for current 1 A. This
ripple does not apply to higher current curves.

Qmux

nom

SoH =

-100[%] 1)

where:
Qmax—maximal capacity for a given cycle in which SoH is being calculated,
Qnom—initial capacity of a new cell measured by one charge and discharge cycle.
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One cycle consisted of a CC-CV charge with an initial current value of 0.4 C followed
by a predefined constant current discharge (from 0.4 C to 8 C) until the cut-off voltage was
reached. Then the next cycle was initiated without any rest period.

Characteristics in Figure 8 were measured at SoH = 94%. The effect of increasing
internal resistance elements between curves for currents of 5 A and 10 A is clearly visible.
It is also possible to see nonlinearities at less than the nominal current for this SoH. It can
be seen that the cell at SoH = 94% does not achieve such excellent results, especially at
currents higher than 10 A. At SoH = 94% and a current of 20 A, it is able to deliver only
about 78% of the nominal capacity of the battery cell. As the SoH decreases, the increase in
the losses on the internal elements of the battery cell, which results in lower voltage values,
is present. The battery cell is able to deliver only a smaller capacity. In this case, it is only
around 73% of the battery cell’s nominal capacity for the maximum permitted current.

With further reduction of SoH, this trend continues. Losses on the internal elements of
the battery cell increase. It confirms Figure 10 for SoH 85% and Figure 11 for SoH 79%.

Figure 12 shows the changes in the shape of the curves at a current of 5 A; it is
possible to see how the shape changes, especially in the end positions of the curves, i.e., in
SoC = 100% and SoC = 0%. In addition to these measured curves, changes in the battery
cell’s capacity based on the currents taken were also measured. A comparison of discharge
capacities for different currents can be seen in Figure 13. The cell’s maximal capacity is
significantly influenced by the drawn current.

2.6 T T T

N
i
I
|

——SO0H 100%
——SO0H 94%
SOH 89% |
——SO0H 85%
———SOH79%

e
(Y

Capacity (Ah)
N

Current (A)

Figure 13. Influence of discharge current and SoH on maximal capacity.

Waveforms in Figures 14 and 15 show the dependence of battery cell ageing depending
on charge/discharge currents. The y-axes show the number of cell cycles which the cell
is able to perform before reaching SoH = 80%. The value of the SoH was obtained by
measuring one charge and discharge cycle with a power analyzer after a certain number of
charge and discharge cycles and comparing it to the reference first cycle with SoH = 100%.

* Measured data
—Fitted curve

1200 T T

1150

-

=y

(=]
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T T
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o

o
T

| | | |
1.5 2 2.5 3 3.5 4
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©
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Figure 14. Influence of the charging current on the maximal number of cycles before the battery cell
reaches SoH = 80%.
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Current (A)

Figure 15. Influence of the discharge current on the maximal number of cycles before the battery cell
reaches SoH = 80%.

Measured data also allows us to describe capacity degradation due to a number of
cycles and charging and discharging current. Waveforms in Figure 16 show dependency
between capacity degradation and the number of cycles with constant charging current
and different discharging currents.

2.5 T T T T T T T T T
Qo @t 0.5C charge and 1C discharge
QNOM at 0.5C charge and 2C discharge
25 Qo at 0.5C charge and 4C discharge | 7|

Qy oy at 0.5C charge and 8C discharge

24

Capacity (Ah)

21

1C=25A

Qo = Capacity measured after number of cycles with nominal current [0.4C]

1
0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Number of cycles

Figure 16. Influence of the number of cycles and discharging current on capacity degradation.

Based on these measured data, all the necessary dependencies were obtained to
accurately determine the value of the voltage during discharge at every moment of the
cell’s lifetime.

6. Proposed Model

The concept of the battery cell model was designed depending on measured data and
parts of the generic battery model from MATLAB. From MATLAB, a part for coulomb
counting was used, and other parts of the proposed model were derived based on fitting
functions of measured data. We took into account all relationships between these measured
data, and the overall concept of the battery cell model is in Figure 17. The proposed model
consists of eight blocks with defined relationships.

e Current Sensor block, which measures the charging and discharging current of the
battery cell model.
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¢  Coulomb Counting and SoC evaluation—these two blocks can be combined into
one block. The Coulomb counting block integrates the value of current from the
current sensor over time. Subsequently, the current SoC value is determined. These
phenomena can be described by the following equations:

i_count = /t idt[Ah] )

Qc_act —i_count
Qc_act

SoC = -100[%) 3)

Current Sensor 2 g Coulumb Counting SOC evaluation

Actual capacity Output voltage
calculation calculation

Average Current

calculation = 4 DOD Calculation SOH evaluation

Figure 17. Concept of the proposed model.

Internal connections of this block from MATLAB/Simulink are shown in Figure 18.

Qc_act

O— [ 2

i_count

P up

1/3600 > % > fi_coun |
it_sal
lo ‘
ini(i) II'—

h 4

SOC calculation

(u(1u(2))u(1) 2
S0C

i_count

Figure 18. Coulomb counting and SoC evaluation. Where Q_act parameter computing is based
on the equation described below in the Actual capacity calculation block section, i is the actual
sensed current.

*  Average Current calculation block—the block processing the value from the current
sensor and distinguishes whether it is a charging or discharging current. The output
from this block are two values. The value of Idis_ave corresponds to the average
discharge current in the previous cycle, and Ichar_ave corresponds to the charging
current. Values of Idis_ave and Ichar_ave are calculated as average integrated current
divided by the number of measured samples.

*  Block DoD Calculation—the block calculates and stores the depth of discharge of
the cell from the last three measured cycles. It has 4 outputs, three of which give
information about three consecutive DoD states from previous cycles. The fourth
output is a coefficient determining the number of transitions between the charging
and discharging process.
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*  Actual capacity calculation block—the block recalculates the currently maximum
available capacity of the battery cell based on SoH and current consumption. These
values are then fed back to the SoC evaluation block. The calculations in the block are
based on real measured data, which can be seen in Table 1.

Values of SoH were defined during measurements. A new cell from the manufacturer
was tested with one charge and discharge cycle to determine the initial reference SoH. The
SoH of the cell was considered equal to 100% after this first cycle. As initial capacity was
considered, the capacity is given by the manufacturer in the datasheet. After that first cycle,
all further measurements were taken, and the SoH of cells decreasing during these mea-
surements was captured. Values of SoH for Table 1 were intended by decreasing capacity
during measurements compared to the nominal capacity specified by the manufacturer.

Table 1. Battery cell capacity at different discharge current and different SoH.

SoH (%) 100 94 89 85 79
1A 2.5 Ah 2.35 Ah 222 Ah 217 Ah 2.05 Ah
25A 2.48 Ah 2.30 Ah 2.19 Ah 2.13 Ah 1.98 Ah
5A 2.45 Ah 2.28 Ah 2.17 Ah 1.99 Ah 1.88 Ah
10 A 2.43 Ah 212 Ah 2.00 Ah 1.92 Ah 1.79 Ah
15 A 242 Ah 2.04 Ah 1.96 Ah 1.85 Ah 1.74 Ah
20A 2.38 Ah 1.96 Ah 1.85 Ah 1.74 Ah 1.64 Ah

All measured data were transferred to a 3D graph, where they were fitted by a
MATLAB extension-Curve Fitter (Figure 19). By using this extension, we found the best-
fitting functions for measured data. In this case, the founded fitting function is a polynomial
of degree 2 when the fitting method used was a nonlinear least square.

2.6 \/////’T—'_EPACITY vs. CURRENT vs. SOH

- ! . {

N
/

Capacity (Ah)

%
/

>
I

|

100
95

90
SOH (%

85 20
)

18
80 14 16

10 12
75 o 2 4 B 8 Current (A)

Figure 19. Fitted date based on measurements from Table 1.

All fitting functions mentioned above were selected as the best compromise between
accuracy and simplicity for using these functions in the Li-ion battery model.
The final equation for actual cell capacity unify the format.

Q_act = p00 + p10- I 4 p01 - SoH + p20 - I 4 p11- I - SoH + p02 - SoH? )

Figure 20 shows the connection of the block based on (4). This block has 4 outputs. The
first output gives us information about the maximum capacity at the actual load current.
The second output represents nominal cell capacity at actual SoH. The remaining two
outputs recalculate the capacitance value based on the temperature. Data for determining
the temperature equations were obtained from the battery cell datasheet.
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Capacity at actual SOH and current
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Figure 20. Block for calculating capacity.

SoH evaluation block—the main goal of this block is to recalculate the SoH state
during the simulation and adjust model parameters. The state of SoH changes during
its ageing. The calculation of ageing in the model is based on the ageing coefficient ¢,
which assumes a value of zero at the beginning of the lifetime and 1 at its end—80%
SoH for in our case.

For determination of the actual SoH, we used [46]:

©)

e(n)=¢e(n—1)+ 05 | ( _ DoD(n—2)+ DoD(n)>

N(n-1) DoD(n—1)

Coefficients DoD are obtained from the DoD Calculation block, while the last unknown
in this block is the value of the coefficient N, which indicates the maximum estimated
number of cycles at the actual testing current and the DoD. It can be described by the
following equation [46]:

N(n) = H(([Mllgén)f (%Idis_ave(n)*m) : ('YHOZIch_ave(n)%z)> 6)

where:

- H—number of cycles at standard currents and DoD = 100% after which cell
achieves 80% SoH

- DoD(n)—DoD value from the previous cycle

—  ¢—influence DoD coefficient

- 7o01,Y02—coefficient for value to percentage

- 7y11—exponent for influence of discharge current

- 7y1p—exponent for influence of charging current

- Idis_ave(n)—median of discharging current in previous discharging cycle

-  Ich_ave(n)—median of charging current in previous charging cycle

After transferring these equations into the model, the overall wiring of the ageing

estimation block looks like in Figure 21.

N(n) calc

Epsilon to Age converter

Fne Epsilon to SOH convert
yoop1 (-0.2*(u)+1)*100-»(_ 4 )
) Epsilon SOH
DOD2  fen
(u)*Batt.H
Joob3 Age
)

k
SOH Evaluation

Figure 21. Block for approximation cell ageing.
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*  Block Output voltage calculation—the output of this block is the battery cell voltage.
Block is based on dependencies listed in (7).

Vbﬂt == f(I, SOC, SOH, Q, Qnom) (7)

where:

—  [—actual load current (A)

- SoC—state of charge (%)

—  SoH—state of health (%)

- Q/Quom—actual/nominal capacity of the battery cell (Ah)

The battery cell voltage accordingly depends on load current, SoC, SoH, actual capacity
and nominal capacity. All of these dependencies can be defined by one equation. We obtain
this equation by fitting data from Figures 7-11. For fitting were tested different polynomial,
exponential and Furier-based fitting functions. Some of these functions did not achieve
accuracy in SoC > 95% and SoC < 5% areas. As a best final fitting function was selected
exponential function of the third degree listed below:

a-exp(b-x)+c-exp(d-x)+e-exp(f-x) 8)

This one equation describes every measured current waveform at all selected values
of SoH. Subsequently, the individual coefficients of the equation were compared between
different current waveforms for one selected SoH. Dependencies between these coefficients
were fitted by a polynomial of degree 2, and final equations for individual coefficients we
can see below the equation for Uy,

Uy = a-exp(b-SoC) +c-exp(d-SoC) +e-exp(f - SoC) )
where
a=al-I*+a2-1+a3 (10)
b="bl-1>+b2-1+b3 (11)
c=cl-’+c2-1+c3 (12)
d=dl-1>+d2-1+d3 (13)
e=el-I>+e2-1+¢e3 (14)

The value of coefficient f is equal for all current waveforms with constant value
f =100. Therefore, the equation for coefficient f is not described. Equations of coefficients
are second-degree polynomial functions Based on these equations of coefficients; it was
possible to include another variable in the equations, namely the current. After fitting all
the curves, we can obtain the following three-dimensional model of the battery cell for a
given SoH, which is dependent on SoC and current (Figures 22 and 23).
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Figure 22. Data fitted by the third-degree exponential function for SoH = 100%.
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Figure 23. Data fitted by the third-degree exponential function of for SoH = 89%.
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After calculating these coefficients for each SoH value, we find out that changes in
these coefficients are linearly dependent on each other, and each coefficient is possible
to describe with another equation in which SoH will appear as a variable. Equations for
description coefficients dependent on SoH are first-degree polynomial functions. As a
result, for each coefficient, we obtain an equation that depends on SoC, current and SoH.

al = ala-SoH + alb; a2 = a2a -
a3 = a3a - SoH + a3b; bl = bla -
b2 = b2a - SoH + b2b; b3 = b3a -

¢l = cla-SoH + clb; c2 = c2a -
¢3 = c3a-SoH + ¢3b; d1 = dla -
d2 = d2a - SoH + d2b; d3 = d3a -

el = ela-SoH + elb; d2 = e2a -

SoH + a2b
SoH + b1b
SoH + b3b
SoH + ¢2b
SoH + d1b
SoH + d3b
SoH + e2b

e3 = e3a - SoH + e3b; f = 100

A final simulation model of the battery cell is shown in Figure 24.

(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
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Figure 24. Interconnection of an individual block within the model.

The main outputs of the block Output voltage calculation are outputs for controlling the
supplies connected at the dynamic sub-model of the battery cell. These supplies can be
seen in Figure 25 and provide the correct function of the overall battery model. In addition
to these control outputs, the model also has several information or measurement outputs
such as the current value of SoC, SoH, current nominal capacity and, of course, the terminal
voltage of the simulated cell.

Dynamics

Ibat ibat

soc TEMP

SOH 2 SOH

S0C

Qnom Qnom

il

Ubat

[« R
Ubat ﬁl

Figure 25. Final digital twin based on an empirical model of the Li-ion cell.

7. Comparison of Model and Real Battery Cell

After completing the digital twin, it was necessary to verify its accuracy by comparing
it with the real battery cell. Real data from the battery cell was measured using a pro-
grammable DC electronic load (IT8518E from Itech, 60 V, 240 A, 6 kW) and a high-precision
power analyzer (LMG500 from ZES Zimmer) which were also used for cycling tests. Several
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measurements took place with a constant value of current. These measurements were static,
so the value of the current was constant. Results for different values of discharging current
are in Figure 26a. Besides that, several dynamic measurements were performed with a
variable current value to determine the accuracy of the model. Some of these measurements
were selected for the results section to demonstrate the accuracy of the digital twin. In
addition to the data from the real battery cell and the presented empirical model, a battery
cell model available in MATLAB/Simulink, called the Generic Battery model, was also
added to the comparison. This model was configured according to the manual in MATLAB.
A comparison of dynamics of the real battery cell, the developed digital twin and the
MATLAB model is in Figure 26b.

The digital twin utilises the Coulomb counting method for SoC estimation, which is
prone to integration error due to the current measurement error and simplified integration.
Moreover, this error will accumulate over time. Despite these disadvantages, Coulomb
counting is still used due to its simplicity. The influence of the current measurement can
be minimised by an open-loop hall-effect sensor, which is superior when compared to
the shunt current sensing. A detailed discussion and analysis of the Coulomb counting
approach for SoC estimation can be found in [47]. The SoH is estimated based on the
DoD, and, thus, it contains the error generated by SoC estimation. It requires calibration in
regular intervals. Another approach to improving the SoC is presented in [48]. The authors
used the Kalman filter to correct the estimation of SoC by the Kalman filter through the
feedback based on the relationship between SoC and OCV. The authors achieved the SoC
estimation absolute error of 1.08%.
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Generic battery model
Measured data

Created model 4.5 .
* | == Generic battery model
0.8 1 Measured data
4 _\i a Created model
- VAR
% | L | ——— ™
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(a) Comparison during static measurements.

(b) Comparison during dynamic measurements.

Figure 26. Comparison of (a) static measurement and (b) dynamic measurements for SoH = 100%.
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8. Conclusions

Battery cell models are a crucial part of any BMS. Successful implementation of a
battery cell model into MATLAB/Simulink can help with the development of control
methods for cell lifetime optimization. An empirical model of a battery cell can be easily
generated from measured data obtained by the battery cell cycling by utilising the curve
fitting functions. The empirical SoH model is based on data obtained from cell cycling up
to SoH equal to 80% for the NR18650-25R cell. The data for empirical model creation, thus,
contains information about the whole life cycle. Hence, the MATLAB/Simulink digital
twin of the Li-ion cell from Samsung was developed based on the measured data. The data
from battery cell cycling include fast charging, which is well known to accelerate the ageing
process of the battery cell. However, it is not always included in publicly available battery
cell data sets. The created digital twin provides information about SoC, SoH, cell voltage
and cell capacity based only on the cell current. The model was successfully tested and
compared to the Generic Simulink model of a Li-ion cell based on the data provided by
the manufacturer. From the comparison, one can conclude that the static accuracy of the
developed digital twin is better than the accuracy generic Simulink model. However, data
used for digital twin creation from cycling tests are obtained by galvanostatic discharging.
This leads to less accurate model performance for dynamic current changes. The digital
twin could be improved by adding information to the charging and discharging cycles by
implementing Hybrid Pulse Power Characterization (HPPC) and micro-cycling. It would
enhance the data sets by the dynamical response of the battery cell, which would lead to
more realistic parameter estimation. Moreover, the model could be extended to the battery
pack. However, this would require a cell balancing technique to prevent the mismatch
between cells, as the only parameter that is sensed is the battery current.
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