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Abstract: Smart grid-training systems enable trainers to achieve the high safety standards required
for power operation. Effective methods for the rational segmentation of continuous fine actions
can improve smart grid-training systems, which is of great significance to sustainable power-grid
operation and the personal safety of operators. In this paper, a joint algorithm of a spatio-temporal
convolutional neural network and multidimensional cloud model (STCNN-MCM) is proposed to
complete the segmentation of fine actions during power operation. Firstly, the spatio-temporal
convolutional neural network (STCNN) is used to extract action features from the multi-sensor
dataset of hand actions during power operation and to predict the next moment’s action to form
a multi-outcome dataset; then, a multidimensional cloud model (MCM) is designed based on the
motion features of the real power operation; finally, the corresponding probabilities are obtained
from the distribution of the predicted data in the cloud model through the multi-outcome dataset
for action-rsegmentation point determination. The results show that STCNN-MCM can choose
the segmentation points of fine actions in power operation in a relatively efficient way, improve
the accuracy of action division, and can be used to improve smart grid-training systems for the
segmentation of continuous fine actions in power operation.

Keywords: power-grid training; cloud model; spatio-temporal convolutional neural network; action
segmentation

1. Introduction

In the process of power operations, safety accidents caused by operational errors often
occur, threatening the lives of front-line power workers. Increasingly, training which is
costly or dangerous in reality is being conducted in a virtual environment. For example, VR
training in medical-skills training can improve the technical skills of surgeons in orthopedic
surgery, while saving costs [1], and VR training for skills training in hazardous scenarios
can ensure the safety of trainers while learning basic fire-safety skills [2]. The smart grid-
training system mentioned in this paper evaluates the standardization of trainers’ operating
actions by conducting simulation experiments on the fine actions of power operation, which
improves the precision of power workers’ operations and reduces the potential risks of
man-made safety accidents.

A smart grid usually refers to the introduction of artificial-intelligence technology in
the traditional power grid, in order to achieve intelligent deployment of power resources;
intelligent monitoring of power-system security and other functions; and to improve the
reliability, efficiency, safety and environmental and energy sustainability of the power-grid
system operation [3]. The smart grid-training system is based on AI technology and VR
technology to achieve intelligent safety training, which can intelligently evaluate the ability
of operators to ensure personal safety and maintain the normal operation of the power-
grid system. For the intelligent evaluation of the standardization of actions during power

Energies 2023, 16, 1455. https://doi.org/10.3390/en16031455 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16031455
https://doi.org/10.3390/en16031455
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en16031455
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16031455?type=check_update&version=1


Energies 2023, 16, 1455 2 of 19

operations, intelligent segmentation of continuous fine actions is needed to analyze each
sub-action and then, finally, calculate a comprehensive score.

A prerequisite for the segmentation of fine actions during power operation is that
the data required for the experiments is obtained precisely during hand movements. VR
technology allows the real-time data monitoring of hand movements, which is an excellent
match for the need to obtain highly precise data. For example, calculating the degree of
a hand tremor in a virtual environment can be used to determine treatment options for
Parkinson’s, in reality [4]. This paper is based on artificial-intelligence algorithm and VR
technology to improve the smart grid-training system. Detailed data information from
hands can be easily and precisely captured through data gloves, as well as the digital
processing of target elements such as movements and objects in the virtual training systrm,
which is more conducive to extracting the needed features for analysis. A neural network
model is constructed to complete adaptive learning and improve the accuracy of action
prediction in order to achieve the segmentation of continuous fine actions during power
operations by combining with cloud models.

When analyzing the standardization of power operations, it is often necessary to break
it into several simple actions for analysis, and the several actions obtained by splitting
the continuous action are called sub-actions. The characteristics of each sub-action differ
substantially from each other, so it is necessary to perform action segmentation when
the difference in characteristics changes during a continuous action, and then evaluate
each sub-action. In a smart grid-training system, segmentation of the continuous fine
actions that exist during power operation is extremely important. How to decompose the
standard actions of power operation in smart grid-training systems and how to evaluate
the consistency of the decomposed action behaviors can greatly contribute to subsequent
research on action similarity.

The contributions of this paper are as follows: First, this paper proposes applying
VR technology in grid-related operation training projects to ensure the personal safety
of the trainers, and proposes the use of data gloves to capture data and dataize action
features. Second, this paper applies an attention mechanism to optimize spatio-temporal
convolutional neural networks to provide a neural network model which efficiently extracts
action features for action prediction of power operations. Third, multi-outcome datasets
are constructed based on the action prediction results of the spatio-temporal convolutional
neural networks, and STCNN-MCM is proposed to find reasonable action-segmentation
points in the process of power operation and improve the accuracy of action segmentation.

This paper is organized as follows: Section 1 introduces the grid-based training project
using VR technology, and the issue of how to improve the accuracy of action segmentation
in a smart grid-training system, and presents the solution of this paper. Section 2 introduces
the worldwide research achievements and solutions to related topics, and identifies the
problems that have not been solved, presents data gloves and proposes solutions. Section 3
introduces the STCNN used in this paper, and introduces the attention mechanism, the
method of constructing the normal cloud model and the action-segmentation logic based
on STCNN-MCM. In Section 4, the method of acquiring hand motion data is introduced,
and analysis of the available results of the experiments is performed. In Section 5, the
novelty of this paper and the limitations and deficiencies of STCNN-MCM are discussed,
in comparison with existing work. In this paper, the conclusion that STCNN-MCM can be
applied to the segmentation of continuous fine actions in power operation is justified, and
it is proven that STCNN-MCM jointly constructed with a spatio-temporal convolutional
neural network, attention mechanism and multidimensional cloud model can improve the
accuracy rate of action segmentation in a smart grid-training system.

2. Related Works

Action segmentation and action recognition are usually achieved by extracting and
learning features, and feature-extraction technology is constantly being updated to become
more accurate and efficient [5]. In [6], Wu and Shao proposed a hierarchical dynamic
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framework which can extract high-level skeletal joint features from 3D skeletal data and
used the learned representations to estimate firing probabilities, inferring action sequences
by replacing Gaussian mixture models with deep neural networks, while segmenting
and identifying actions. In [7], Zhu et al. proposed an online continuous human action-
recognition algorithm based on a Kinect sensor, which has high efficiency for the recognition
of continuous human behavior. In [8], a temporal convolutional network (TCN) was
proposed by Lea et al., which uses a hierarchy of temporal convolutions for fine-grained
action segmentation or detection, and is able to capture action composition, segment
duration, and long-range dependencies, outperformed recurrent neural networks (RNN) [9]
and long short-term memory (LSTM) [10], which are recognized as suitable for processing
timing problems, on a variety of tasks. On this basis, multi-stage temporal convolutional
networks were proposed by Farha and Gall in [11]; each stage uses a multi-layer null
convolution with increasing sensory field layer by layer, and the range of the field of
view obtained increases as the number of layers deepens, to better capture information
over a prolonged period of time. This multi-frame model is effective in capturing long-
range dependencies and identifying action segments. Introducing external information can
increase the accuracy of action segmentation, a boundary-aware cascade network (BCN)
incorporating action boundary information was proposed by Wang et al. in [12], which
uses a multi-stage network structure with dynamic modeling capability and adaptively
employs different sub-networks to process samples according to their difficulty level, with
shallow sub-networks for simple samples and deep sub-networks for difficult samples,
as a way to improve the classification accuracy of difficult samples. In [13], Gao et al.
proposed a human-activity classification and recognition model based on smartphone
inertial sensor data, which segmented human-activity data and recognized it based on
different classifiers. In [14], dos Santos et al. proposed semi-supervised and iterative
reinforcement learning (RL-SSI) with the purpose of improving the recognition accuracy of
human actions in videos.

CNNs have been used in the field of action recognition and action segmentation in
stages [15]. 3DCNN, as an improved CNN algorithm, can extract features from spatial and
temporal dimensions by performing 3D convolution, which captures the motion information
encoded in multiple adjacent frames and provides a significant improvement in the accuracy
of human-action recognition [16]. In [17], Molchanov et al. proposed an algorithm to identify
drivers’ gestures from depth and intensity data using a 3D convolutional neural network,
combining information from multiple spatial scales for prediction, and employing spatial-
temporal data augmentation for more efficient training and reducing potential overfitting.
In [18], Lea et al. proposed an action-segmentation model to convolve temporal and spatial
features separately, which combines low-level spatio-temporal features and high-level
segmentation classifiers to complete action segmentation based on captured features through
semi-Markov models. Given the ability of 3DCNNs to extract spatio-temporal features
within video frames, various resource-efficient 2DCNNs were converted to 3DCNNs and
the performance was evaluated. It was found that the performance after conversion to
3DCNNs can be considerably accurate and memory usage in terms of classification accuracy
for different levels of complexity is reduced [19]. In [20], Martin et al. proposed an “end-to-
end” scheme using deep neural networks to extract features for action-recognition tasks,
and 3DCNN can effectively capture spatio-temporal features for action classification from
videos. In [21], Chen et al. presented a novel CNN-based motion estimator developed for
complex fluid flows using multiscale cost volumes, with state-of-the-art evaluation results
on a public fluid dataset.

Many studies have optimized deep-learning models by adding attention modules, and
attention mechanisms have become one of the most important concepts in the field of deep
learning [22]. In [23], an attention module based on the spatial domain and channel domain
is proposed by Kim et al., and the attention module is based on a triplet loss function to
distinguish the action part from the non-action part. In [24], Zhu et al. proposed a spatio-
temporal graph modeling method to build a spatio-temporal graph attention network
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(STGATP) for traffic prediction, which captures both spatial and temporal dependencies
in the road network and achieves excellent prediction performance for traffic problems.
In [25], He et al. proposed a vector graph convolution deep-learning model optimized for
virtual hand data to modify the spatial graph convolutional layer and introduce a graph
attention module to improve the accuracy of action recognition in virtual environments.
In [26], a sea surface temperature (SST) prediction method based on 3DCNN and LSTM
networks was proposed by Qiao et al., adding an attention mechanism to weight the output
of each step of the LSTM model to improve the prediction accuracy. In [27], Wei et al.
proposed a TPA-LSTM hybrid model for predicting future ridership at subway stations
which is based on the TPA mechanism and LSTM networks.

Cloud models belong to the category of AI with uncertainty and are mainly used for
interconversion between qualitative and quantitative measurements [28], and have been
used in several fields. In [29], a generic multidimensional cloud model was proposed by
Deng et al., which can reasonably characterize spatial entities, reveal the spatial distribution
of potential information, and achieve more accurate spatial delineation in complex situa-
tions based on the ideas of non-homogeneity and non-symmetry. The multidimensional
similarity cloud model (MSCM) was combined with a stochastic weighting method to
reduce the impact of random errors in eutrophication monitoring data and ambiguity in the
definition of lake eutrophication on the consistency and reliability of lake-eutrophication
evaluation [30]. In [31], Wang et al. proposed a novel multidimensional connected cloud
model to describe the uncertainty and distribution characteristics of indicators, as well
as the fuzziness of classification boundaries, so as to predict rock bursts with numerous
random and fuzzy indicators. In [32], Zhang and Liu proposed a HHCE-MOPSO hybrid
model based on a normal cloud model and entropy, and verified the feasibility of the hybrid
particle-swarm algorithm.

In the above, many existing methods are able to extract action features from video or
continuous frame images. However, there are few procedures for processing data obtained
based on data gloves to segment continuous fine actions in power operation. In grid-related
training based on VR technology, human–machine interaction and data acquisition are
performed by the data glove, which is shown in Figure 1. Although cloud models are
widely used in several fields, there is no research on applying multidimensional cloud
models to action recognition and action segmentation in virtual environments.

Figure 1. VR data glove.

In response to the problems of the above studies, data is captured with data gloves
in a virtual-reality environment in this paper. Firstly, the data is preprocessed, a hand
spatial-temporal data matrix is constructed, and STCNN-MCM completes the segmentation
of continuous fine actions in power operation.

3. System Model

Human action segmentation is an active research area in computer vision and has
a wide range of applications in major fields. However, traditional action segmentation
often relies on hand-extracted features, and these methods tend to ignore many high-level
features that are embedded in the hand structure. Dynamic hand movements convey
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significant information; the segmentation of hand movements in grid-related operation
training requires a higher degree of accuracy.

Therefore, this paper proposes STCNN-MCM for solving some of the problems of
traditional action segmentation and improving the accuracy of action segmentation. Firstly,
the hand action data is obtained during the operation through the data gloves, and the
hand spatial-temporal data matrix is constructed based on the hand-structure sequence;
the convolutional layer is then modified to add the attention mechanism to complete the
training of STCNN, and the multi-result dataset constructed based on the prediction results
of STCNN. Finally, the corresponding probability is obtained through the distribution of the
predicted data in the cloud model in the multi-result dataset for the action-segmentation
points, which are determined to complete the segmentation of the testers’ actions.

3.1. Joint Algorithm Design

In this paper, a database was constructed by applying the hand information data which
was received from the data gloves, and the segmentation of hand movements based on the
dataset was completed for continuous fine actions to assist the action evaluation system
later. Thus, the grid operators can correct irregular operations during their own training.
Unreal Engine is an open and advanced real-time 3D authoring tool which provides realistic
visuals and immersive experiences, and the entire smart-grid training system was built
on UE4. By collaborating with industry-related professional practitioners, UE4 was used
and blueprints were programmed for glove data collection of the professionals’ hand
operation data. For readability considerations, the hand information data were recorded in
an XML format with the hand nodes, and preprocessed to process one frame of data into a
two-dimensional matrix. The training data sets of different lengths were set for the STCNN
based on the action data from the previous moment of the operation, and the prediction of
the hand action at the latter moment could be completed based on the obtained training
model to build a prediction set for each moment. The prediction result set of each moment
was constructed based on the obtained training model. All the prediction datasets together
constitute a multi-outcome dataset, and the multidimensional cloud model constructed
based on the prediction results was compared with the multidimensional cloud model
constructed based on the real actions, to obtain the probability that the next moment of
movement would conform to the degree of human motion change. The motion features in
the prediction result set are matched in the cloud space, and when the data features of the
predicted action had a probability lower than a certain value in the space, the corresponding
moment was used as the termination decision of the sub-action and at the same time as
the start of the next sub-action. This start and end determination was used to partition the
overall action into actions and obtain a standard set of sub-actions. The refined flow chart
of the joint algorithm for the segmentation of hand actions for continuous fine actions is
shown in Figure 2.

Figure 2. Joint-algorithm-refined flow chart.

3.2. Spatio-Temporal Convolutional Neural Network

For the action segmentation of the grid class, the input data features to be identified are
continuous, with multiple operational video frames of data containing temporal features;
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therefore, a spatio-temporal convolutional neural network (STCNN) was used to extract
data features in temporal and spatial terms.

STCNN is convolved with a three-dimensional convolution kernel in both the temporal
dimension and the spatial dimensions of width and height, so that the feature maps
acquired by convolution contain spatial features of multiple consecutive frames, which
means that the spatial features with a temporal dimension are learned. Three-dimensional
convolution is achieved by convolving a three-dimensional kernel with a cube formed by
stacking multiple consecutive frames together.

In 2DCNN, the convolutional layer performs 2D convolution to extract features from
local neighborhoods on the feature maps of the previous layer. A 2D convolution is per-
formed on the image, and the value v of the (x, y) of the j-th feature map of the i-th layer
can be derived from the following formula.

[conv(a, w)]aij xy = tanh(bij + ∑m ∑Pi−1
p=0 ∑Qi−1

q=0 wpq
ijma(x+p)(y+q)

(i−1)m ), (1)

where tanh denotes the hyperbolic tangent function, which represents the bias of this
feature map; m is the index between the (i− 1)-th layer feature map and the current feature
map; wpq

ijm is the value of the (p, q) position in the kernel connected to the m-th layer feature
map; Pi is the height of the kernel; and Qi is the width of the kernel.

STCNN can calculate features from spatial and temporal dimensions, and the value of
(x, y, z) in the j-th feature map of the i-th layer can be derived from the following formula.

[stconv(a, w)]aij xyz = tanh(bij + ∑m ∑Pi−1
p=0 ∑Qi−1

q=0 ∑Ri−1
r=0 wpqr

ijmv(x+p)(y+q)(z+r)
(i−1)m ), (2)

where Ri is the size of the 3D kernel in the time dimension and wpqr
ijm is the value of the

(p, q, r) position in the kernel connected to the previous layer of the feature map. The
STCNN structure used in this paper is shown in Figure 3.

Figure 3. STCNN model structure.

The process of training the STCNN involves optimizing the parameters W of the network
to minimize the cost function of the data set D. Negative log likelihood is used to construct
the cost function.

T(W, D) = − 1
|D| ∑

|D|
i=0 log(P(Ri|vi, W)). (3)

After completing the optimization of the parameter W, the trained STCNN model is
obtained. Using the n-frame hand spatial-temporal data matrix as the input of the model,
the action feature of the n + 1 frame can be predicted.

3.3. Construction of Hand Spatial Temporal Data Matrix

After determining the use of STCNN, the hand spatial-temporal data matrix is required
to be constructed for this model as input. The hand spatial data matrix needs to be con-
structed based on the hand-structure map of the data glove in order to be able to express the
motion characteristics of the whole hand movement. The construction of the whole hand
spatial-temporal data matrix can be performed in two steps. First, all the hand-joint point
data is visualizes in each frame sequence and the hand spatial data matrix of the current
frame constructed; second, for different joint points of the hand, the same joint points are
connected in consecutive frames to construct the hand spatial data matrix of consecutive
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frames. The construction process of the hand spatial-temporal data matrix is shown in
Figure 4.

Figure 4. Diagram of the process of constructing the hand spatial-temporal data matrix.

Firstly, the spatial data matrix of the hand for each frame of action is constructed.
In the space, the hand wrist is connected to each finger, and the joints at the wrist are
kept relative to each joint of the finger. In this paper, the model hand data are visualized
by setting the representative letters from thumb to little finger as a, b, c, d, and e. The
corresponding joints are represented in the form of a2, b1, c3, d4, etc. As the thumb lacks a
node shared with the other fingers, there is no a1 in the matrix. The first of the two nodes
of the joint at the wrist is set to the thumb as the starting item of the data, and is denoted
by S (start), and the last node ending item is denoted with E (end). The joints of the finger
roots are adjacent to the wrist, and the joints of the remaining corresponding fingers are
adjacent to the joints of the adjacent fingers in the space position. Among them, the joints
of the thumb and pinky fingers are located at the edge of the space, and the joints of index,
middle, ring and oinky fingers are located at the top of the palm in space. A frame of data
is processed into a two-dimensional matrix with a size of 5*6 and thirty nodes, as shown
in Figure 5. The data thus processed maintains the relative position of each finger joint in
space, from left to right is the distribution of joints according to the order of the virtual
hand model, and from top to bottom is the adjacent distribution according to the joint
connection of each finger of the virtual hand. The bottom layer is set with multiple end
joints, which is to ensure that the joints near the wrist of each finger can be directly adjacent
to the wrist joints, so it can be effectively ensured that each finger is directly adjacent to the
wrist. In addition, for each finger, it is only necessary to consider the information of each
joint in the space.

Figure 5. One-frame hand spatial data matrix.

The data glove, during motion, records the motion data of each joint node, and the
data includes the three values of the coordinate offset, rotation angle, and scaling factor
of that joint in the virtual space. The focus of this study is to consider the information
of the virtual hand’s position change in the virtual space. After placing the information
of the spatial coordinates in the matrix in Figure 5, a 5*6 matrix is obtained, which is the
form of the original data after pre-processing. In a segment of hand action, 10 frames are
extracted by taking 1 frame at a certain frame interval, and the same nodes of the hand
spatial data matrix of these 10 frames are connected in temporal order to form the hand
spatial-temporal data matrix.

The input training data set is determined according to the operation segments of the
power operation; the previous part of the data which does not affect the real operation
is used as the first set of input training data in this paper. During training, the operation
actions are divided into multiple groups according to time frames, and the first set of input
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data predicts the next frame or the last frame of this set of data, i.e., the next frame of all
data input for training. The training data is set up by first taking the whole set of data as
input, and then decreasing the first frame, the second frame, and up to the Nth frame, in
turn. By setting the training data in this way, the predicted frames can be fully considered
as input, and reducing the data far from the predicted frames can strengthen the influence
of the closer action data on the model parameters, so as to better optimize the model. The
convolution process of the hand spatial-temporal data matrix is shown in Figure 6.

Figure 6. Hand spatial-temporal data matrix convolution process diagram.

3.4. Attention Mechanism

During movement, different trunks are important in different ways. For example, the
movement of the legs may be more important than the neck, and jogging, rising and sitting
can be distinguished by the legs, whereas the movement of the neck could contain little
valid information; therefore, various weights for different trunks can be assigned. In this
paper, the attention module will be added to weight some key hand skeleton nodes to make
the hand spatial information predicted by STCNN more accurate.

The motion of the entire wrist and arm is relative to the spatial position of the overall
human model, and more attention should be paid to the wrist during the motion. The
convolutional layer is modified to introduce a spatial attention module to increase the
weight of spatial information of key nodes such as wrist joints. The processed data can
ensure the overall motion information and the feature information of each joint point
comprehensively, and the spatial attention module is shown in Figure 7.

Figure 7. Spatial attention module.

The original STCNN implementing feature extraction in the spatial dimension is given
by:

fout = ∑k
i wi( fin(Ai

⊙
Mi)), (4)

where fin denotes the input to the convolutional layer of a normal STCNN, and fout denotes
the output of the input data after convolution; K denotes the size of the convolution kernel;
A is the matrix normalized by the hand space information matrix; M is a learnable weight
matrix; and the symbol

⊙
denotes the dot product.
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With the addition of the attention module, the convolution formula in the spatial
dimension can be expressed as:

Fout = ∑k
i wi(Fin(A

′
i + Bi)), (5)

where Fin denotes the input of the convolutional layer with the addition of the spatial
attention module, and Fout denotes the output of the input data after convolution; A′ is
the spatial information matrix obtained by the joint action of A and the weight matrix M;
and B denotes the attention matrix, which helps the model to better target each sample for
feature extraction.

The attention module calculates the similarity between the two based on the current
target features and all source features at all times by means of a scoring function, which is
as follows:

S(Ft, Fk) = vT
a tanh(Wa[Ft; Fk]). (6)

A simple neural network is constructed to obtain a learnable two-dimensional parame-
ter matrix and a one-dimensional parameter vector to calculate the score. In this paper, two
full connection layers were used to implement this network in the scoring function, and the
alignment weights can be calculated by the softmax function after the scores are obtained,
calculated as follows:

at(k) =
exp(S(Ft, Fk))

∑k′ exp(S(Ft, Fk′ ))
. (7)

The alignment weight at is the similarity between the target feature Ft and all source
features Fk, which is the element of matrix B in Formula (5). It can be seen that the matrix B
is also obtained entirely by learning different action samples, and it can effectively learn the
weights of any hand joints in different actions, which increases the flexibility and generality of
the model and makes the model effective in action prediction even in the face of diverse data.

By introducing an attention mechanism into the convolutional layer, this method
can effectively extract effective joint information from hand movements and improve the
accuracy of action prediction.

3.5. Construction of Normal Cloud Model

The numerical characteristics of the cloud include expectation Ex, entropy En and
hyperentropy He, which are the parameters used for the quantitative analysis of hand
sub-actions in continuous fine actions. Expectation, Ex, is the expected distribution of
cloud droplets in the domain space from which the qualitative concept of a certain stage
of a hand sub-action in a continuous fine actions can be quantitatively defined. Entropy,
En, is a measure of the uncertainty associated with the qualitative concept of a particular
stage of a sub-action. Entropy represents the degree of the dispersion of cloud droplets and
the range of cloud droplets in the domain space which can be accepted as belonging to
each hand sub-action. Thus, entropy can be used to effectively represent the qualitative and
inherently ambiguous concepts of hand sub-actions. The super entropy He is a measure
of the uncertainty associated with entropy, which reflects the degree of cohesion between
cloud drops. A schematic representation of the numerical characteristics of a normal cloud
model is shown in Figure 8.



Energies 2023, 16, 1455 10 of 19

Figure 8. Cloud-model digital features schematic.

By taking the action characteristics of hand sub-actions at a certain stage as the input of
the forward cloud generator, the affiliation degree scores of hand sub-actions at that stage
can be calculated, and the analysis of hand sub-actions at that stage from qualitative to
quantitative can be completed. On the contrary, using the random hand-action sample data
as the input of the reverse cloud generator, the cloud digital features of that hand action
can be calculated, and the analysis of the hand sub-action at that stage, from quantitative to
qualitative, can be completed.

In this paper, the normal cloud model is constructed by the forward cloud generator
to analyze the characteristics of hand sub-actions from qualitative to quantitative, so as
to complete the hand action segmentation for continuous fine actions. The construction
process of the forward cloud generator is as follows.

(1) Determination of Ex

For a variable which has a certain range of variation, shaped as VQa[Bmin, Bmax], Ex
can generally be calculated by the following formula.

Ex = (Bmin + Bmax)/2, (8)

where Bmin and Bmax denote the minimum and maximum boundaries of the variable
VQa. For a variable with unilateral boundaries, shaped as VQa[Bmin,+∞] or VQa[−∞, Bmax],
default boundary parameters or expected values can be determined first based on the
upper and lower boundaries of the variable, and then the numerical characteristics of the
cloud Ex calculated according to Formula (8).

(2) Determination of En

Since the established multidimensional cloud model has to consider all the changes
in each variable comprehensively, the value of change in each variable in this paper, to
determine the numerical characteristics of the cloud En according to the maximum range of
its change, and the En of this evaluation factor were kept constant, as determined by the
following formula.

En = (Ex)/3, (9)

where Ex is the different expected values corresponding to a certain variable. The formula
here is set according to the 3Ex rule.

(3) Determination of He

He, the numerical characteristic of the cloud, can be chosen as a suitable constant
k according to the maximum range of each evaluation factor, in general. If the distance
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between cloud drops is too large as well as scattered, the qualitative concept is not well-
expressed. He is calculated as follows.

He = kEn. (10)

(4) Forward cloud generator

The three numerical characteristics of the cloud are input and the affiliation degree
scores calculated to determine the distribution of cloud drops. The schematic diagram of
the forward cloud generator is shown in Figure 9.

Figure 9. Schematic diagram of the forward cloud generator.

The affiliation degree score is calculated by the following formula.

µi = exp[−1
d ∑d

j=1
(xji−Exj)

2

y2
ji

], (11)

where d denotes the maximum dimensionality of the generated cloud model, xji is the i-th
j-dimensional normal random number generated with (Ex1, Ex2, . . . , Exj) as expectation
and (En1, En2, . . . , Enj) as variance, and yji is the i-th j-dimensional normal random num-
ber generated with (En1, En2, . . . , Enj) as expectation and (He1, He2, . . . , Hej) as variance.
Finally, let (xi, µi) be the cloud drops.

3.6. STCNN-MCM Joint Algorithm

Fuzziness and stochasticity can be integrated by the cloud model. By upgrading
the traditional fuzzy and probabilistic theories, the qualitative concept of operational
action changes conforming to the operational motion characteristics is converted with
the quantitative numerical results obtained from STCNN prediction, and the actions of
specified tasks in power operations are segmented, thus making the data glove a better
data application.

The result set after performing STCNN prediction is diversity. If the change in the
motion position of the virtual hand in accordance with the change in the operational ac-
tion is considered as a qualitative concept, each outcome in the predicted result set can
be considered as a stochastic realization of this qualitative concept in the quantitative
domain. The spatial location of each result expresses the degree to which the predicted
result supports the qualitative concept of conformity to operational changes in the oper-
ation. Therefore, this paper adopts a cloud model to deal with the relationship between
quantitative-prediction result distribution and qualitative human-hand motion characteris-
tics, and designs STCNN-MCM to segment grid-related continuous fine actions.

STCNN-MCM consists of the following main steps. 1. Tk, . . . , Tk+m, m frames of data
as the input of STCNN to predict the action features of Tk+m+1 frames. 2. n predictions
are made, and the prediction results Tk+m+1, . . . , Tk+m+1+n for a total of n frames together
form the set of prediction results as the action features for the next moment. 3. Cloud
transformation is used to convert the motion features in the prediction-result set into
numerical features of clouds. 4. The affiliation degree scores calculated from all the predicted
motion results obtained from each cloud to determine the attribution of each prediction
result to the cloud. 5. For each prediction result set, the forward cloud generator is used
to generate the same number of cloud drops to construct a multidimensional cloud model.
6. The multidimensional cloud model constructed from the predicted dataset is compared
with the multidimensional cloud model constructed from the real action data to obtain the



Energies 2023, 16, 1455 12 of 19

probability of the predicted motion position in the real action. The construction process of
the multidimensional cloud model for predicting actions is shown in Figure 10.

Figure 10. Flowchart of cloud model generation for predicting actions.

4. Application Instances

This paper conducts repeated virtual operation experiments for power operations with
more risk points to reveal safety issues in the process of power operations. The electrical
inspection is a continuous fine action, which is difficult to match with the standard action
directly, and the spatial information of each hand node is extremely important, so it needs
to be divided when evaluating such actions, and after the division, the sub-actions can be
evaluated more finely, so as to complete the standard evaluation of such actions as a whole.
The flow chart of smart grid-training system operation is shown in Figure 11.

Figure 11. Smart-grid-training-system operation flow chart.

4.1. Action-Data Acquisition Method

The standard action data were established by skilled operators of the power grid, and
after operating in the training system, a set of these actions was selected that could be used
as the judging standard. The whole operation process took about 23 s and a total of 678
frames of data were obtained. Each frame of data included three values of coordinate offset,
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rotation angle, and scaling factor in virtual space for 27 nodes (24 finger nodes, 1 wrist
node, 1 hand center node, 1 node representing the entire hand model), which could be
obtained based on the virtual glove. Some of the data for the standard action are shown in
Figure 12.

Figure 12. Standard-action data display.

From the collected data, it can be seen that the last three scaling factors of each joint are
1. These values indicate that the model constructed by the data glove has a 1:1 ratio to the
real hand when the operation is carried out, and this part of the data is eliminated during
pre-processing. The study in this paper aims to judge the operation process of electrical
inspection; the finger joint angle changes very little after picking up the electric test pen
until the pen is put down, so the rotation angle data during the operation has a small impact
on the overall movement. During the virtual motion, no activities such as finger rotation
occurred during the behavior of the motion, and the significance of studying the rotation
angle data is not significant. The first group of three digits is to represent the movement of
x, y, z of each joint, respectively, and the unit of data during the movement is 0.001 m.

As shown in Figure 13, below, the offset of the human right-hand middle joint on the
x-axis changes. In the virtual space of the movement process, joints need to first move in
the counterclockwise direction, in the early move to the tool table to pick up the apparatus
faster, pick up when the offset becomes smaller, and then slowly move to the distribution
box for power testing operations; the x-direction offset becomes smaller and there is a
smaller moving distance during electricity testing. Finally, returning to the tool table, the
horizontal offset is negative, and the initial direction of movement is opposite, in line
with the law of motion. This shows that the experimental data obtained from the overall
operation is reliable.

Figure 13. Human right-hand middle joint x offset.

4.2. Action Segmentation of Standard Electricity Inspection

The continuous fine actions studied in this paper constitute the electrical inspection
process. The overall process is: picking up the electron microscope and then transporting
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it to the electrical box waiting to be inspected. The operation in the smart grid-training
system is shown in Figure 14.

Figure 14. Electrical inspection in smart grid-training system.

After the action of the power operation training combined with the summary analysis
of the operating instructions, experts believe that when the human hand carries out a
movement to being stationary, maintaining a certain range of motion can be regarded as the
operating movement of the human-hand change characteristics. For example, the human
hand, maintaining a horizontal movement, may be offset in all directions; when the offset
angle is less than 30◦ it can still be regarded as a movement in line with operational changes.
The results of each set of predictions can be used to calculate the numerical characteristics
of clouds by Formulas (8)–(10) in Section 3.5 and then generating cloud droplets using
Formula (11). Multiple cloud drops with numerical characteristics of clouds collectively
compose the multidimensional cloud model.

Figure 15, below, shows the cloud model generated with the change in motion features
at a certain moment. The vertical axis in the figure refers to the affiliation degree, which is a
measure of the stability of the tendency of the current motion to belong to the target motion,
and the horizontal axis is the feature values of the longitudinal features of the hand motion
and the transverse features of the hand motion in the multidimensional cloud model. From
the figure, it can be seen that the points with probabilities greater than 0.7 are more dense,
indicating that most of the predictions are in accordance with the changes in real power
operations when the STCNN prediction is performed.

Figure 15. Cloud model generated by motion features at a certain moment.

Based on the multidimensional cloud model constructed by the actual action, the
predicted action features are computed and generated as cloud drops and then compared
in cloud space to obtain their probability of conforming to the change in power operation.
All the collected frames in every 20 frames and all the previous frames can be used to build
a 3D cloud model representing the actual action features. The 3D cloud model includes the
offset features in x, y and z directions, and the affiliation of each cloud droplet in the set is
actually a four-dimensional value.
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As shown in Figure 16, below, the blue color indicates the multidimensional cloud
model generated by the real motion features of the first 120 frames, and the green color
indicates the multidimensional cloud model generated by the motion features of the next
moment after the prediction of 110 frames. It can be seen that the two cloud models have a
large difference, and the coordinate area with more dense points in green are the coordinate
areas with affiliation degree scores lower than 0.7 in the blue cloud model; thus, it is decided
that the action segmentation should be carried out at this time, the segmentation of the first
action: turn to the tool table.

Figure 16. Comparison of cloud models for judgmental segmentation.

Based on the distribution of multi-outcome dataset predicted by STCNN in cloud
space, the established multidimensional cloud model is a single-moment cloud model.
When the probability value of the predicted operation action at a moment in the cloud
model is lower than the expected probability, the moment is identified as the operation
action segmentation point, thus completing the hand-action segmentation for continuous
fine actions.

4.3. Experiments and Analysis of Results

In this paper, 50 sets of standard electrical detection operations are repeated, and the
data are recorded and extracted to construct a hand spatial-temporal data matrix database
to train and test the STCNN. A total of 80% of the data were used to train the model, and
the remaining 20% of the data were used for testing; the experimental results of action
feature-prediction accuracy are shown in Figure 17.

Figure 17. STCNN-model test results graph.

As seen in Figure 17, when the hand spatial-temporal data matrix is constructed with
10 frames, the accuracy of action feature prediction increases and the loss value decreases
with the increase in training times, and the accuracy can reach 93.78% after 200 training
times. In this paper, the prediction accuracy of both 2DCNN and BPNN were compared
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with that of STCNN after training 200 times, and the results are shown in Table 1. From
the comparison results, it can be seen that the prediction accuracy of 2DCNN and BPNN
is significantly lower than that of STCNN, because these two neural networks can only
extract spatial features, which proves that STCNN can effectively predict the features of
continuous fine actions.

Table 1. Comparison of prediction results of three methods.

Method Epochs Accuracy Loss

STCNN 200 93.78% 0.2509
2DCNN 200 74.00% 0.6537
BPNN 200 63.76% 1.2119

According to the operation process of electrical inspection, the operation can be
manually segmented into four phases, including moving, grasping, electrical testing and
returning. The manual action segmentation combined with the workflow was compared
with the action segmentation performed by the joint algorithm studied in this paper.
The affiliation degree scores of the predicted operational action in the cloud model after
using the joint algorithm for action segmentation is 0.512 at frame 94, 0.661 at frame 236,
0.663 at frame 367, 0.339 at frame 443, and 0.545 at frame 558, which is lower than the
expected probability. The lower affiliation indicates the more obvious difference between
the predicted action and the real action; therefore, five segmentation points are obtained
and the overall operational action is divided into six segments. Combined with the whole
operation process corresponding to the time, overall action segmentation included six
sub-actions: steering tool table movement, grasp the electric pen, move to distribution
box, contact test, return to the tool table, and put down the test pen. This is more than the
four steps of the previous grid expert manual segmentation, but from the segmentation
of the action results through the data, the segmentation of the action is more refined. The
more points of division there are in the evaluation of continuous fine actions, the more
details can be noticed, and the more detailed and comprehensive the evaluation of this
action will be. The change in the distribution probability of action segmentation is shown
in Figure 18, below.

Figure 18. Segmentation results graph.

In this paper, the action segmentation of the operation process of electrical inspec-
tion using sliding-window and dynamic-programming methods is used as a comparison
experiment, and the segmentation results of each method are shown in Table 2. The
sliding-window and dynamic-planning methods segment the operation process of elec-
trical inspection into five sub-actions, but the segmentation results are not as fine as the
joint algorithm proposed in this paper, and there is a large discrepancy between the seg-
mentation time and the real change time of the action. Neither the manual method nor
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the sliding-window and dynamic-programming methods segment the contact test action,
which is an important scoring point in the overall electrical inspection training process.

Table 2. Comparison of different segmentation methods.

Manual Segmentation Sliding Window and
Dynamic Programming

STCNN-MCM

Number of
sub-actions 4 5 6

Result

Move to tool table.
Electric pen pick up.

Move to the electric box.
Put back the electric pen.

Move to tool table.
Electric pen pick up.
Move to electric box.

Return to the tool table.
Put back the inspection pen.

Steer tool table movement.
Grasp the electric pen.

Move to distribution box.
Contact test.

Return to the tool table.
Put down the test pen.

In this paper, the reliability and complexity of the procedure is measured by the num-
ber of sub-action segmentations and running time, and the STCNN-MCM joint algorithm
outperforms the manual method and sliding-window and dynamic-programming methods
in terms of the number of segmentations. In other vision-based action-segmentation meth-
ods, more time needs to be consumed for model training when the amount of video data is
large [5]. The STCNN-MCM joint algorithm proposed in this paper achieves the effect of
reducing the model complexity by introducing a cloud model in order to reduce the overall
number of network layers and related parameters of the model. It took 252 s to train the
STCNN-MCM on an NVIDIA GeForce RTX 1060 GPU. The runtime of the STCNN-MCM
joint algorithm will outperform action segmentation using only a single neural network.

5. Discussion

Most of the current studies only perform action segmentation on common actions
with distinct features in videos, but rarely on continuous fine actions in smart grid-training
systems [33,34]. There are few studies on the segmentation of continuous fine actions during
power operations. In this paper, STCNN-MCM is proposed for the action segmentation
of power operations in smart grid training. Action segmentation with multidimensional
cloud models can more significantly represent the differences between fine action features,
making the determination results of action segmentation more objective and accurate.

Most of the current action-based training systems only complete the identification
and segmentation of training actions based on spatial features or temporal features, which
can analyze the standardization of actions and realize the correction and evaluation of
trainers’ actions [35,36]. In this paper, the completeness of feature extraction is improved
by fusing the temporal and spatial information of hand-movement changes in the process
of power operation to construct a hand spatial-temporal data matrix. In addition, the
improved STCNN with added attention module is used to complete the prediction of the
next moment’s action feature, which contains both temporal and spatial information and
has high prediction accuracy to correctly describe the fine action of the next moment.

In summary, this paper proposes a new action-segmentation algorithm based on the
existing research, which can theoretically improve the segmentation efficiency of continuous
fine actions in power operations. However, this algorithm requires highly accurate data
extraction, and the features after combining the temporal and spatial information need to
be highly correlated with the fine hand movements. At present, only the continuous fine
action segmentation of the hands has been studied. In the subsequent process of improving
the training of the smart grid, if the analysis of other parts of the body needs to be added,
the importance of each part of the body in different actions needs to be further analyzed,
and the combination of data will be carried out after determining the weights of each part.
Limitations in data extraction and feature fusion will be improved in the subsequent work
of the group.
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6. Conclusions

In order to segment continuous fine actions during power operations, STCNN-MCM
is proposed in this paper. Firstly, the temporal and spatial information of hand-movement
changes during the power operation is fused to construct the hand spatial-temporal data
matrix; then, the hand spatial-temporal data matrix is used as input, and the next-moment
action features are predicted by the improved STCNN; finally, the corresponding probability
is obtained based on the distribution of the predicted data in the cloud model, and the
action segmentation point is determined based on this probability.

In application instances, this paper first validates the improved STCNN with an added
attention module, which is trained based on the hand spatial-temporal data matrix dataset.
From the test results, the improved STCNN can predict the motion features of fine hand
actions in the next moment with high accuracy. Then, the operation process of electrical
inspection in electric power operation as the experimental object, and the method proposed
in this paper, were used for action segmentation. From the results of the segmentation, the
segmentation of the action using this method is more precise. Therefore, STCNN-MCM can
be applied to smart grid training to complete the segmentation of continuous fine actions
in the process of power operation.

In the future, when using spatio-temporal convolutional neural networks to predict
features for the next moment, a temporal attention module can be added to extract features
of the action in the temporal dimension, so that the extracted features are more compre-
hensive and more consistent with the motion changes of the action. After the method is
perfected, experiments on action segmentation will be conducted for other continuous fine
actions during grid operations, to further improve the smart grid-training systems.
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