Linking Solar and Biomass Resources to Generate Renewable Energy: Can We Find Local Complementarities in the Agricultural Setting?
Abstract
:Highlights
- -
- Agricultural potential ~15 PJ/a biogas yield and ~10 TWh/a (36 PJ) solar electricity.
- -
- Several technologies have been identified as possibilities for local complementarities.
- -
- Temporal complementarity at the farm scale can only lead to partial autarchy.
- -
- Larger scales are more relevant for complementarities between solar and biomass resources.
Abstract
1. Introduction
2. Materials and Methods
2.1. Temporal and Spatial Resources Potentials
2.1.1. Agricultural Solar Potential
2.1.2. Agricultural Biomass Potential
2.2. Possible Complementarities
2.2.1. Seasonal Balance
2.2.2. Technologies
2.3. Case Studies at Farm Level for Decentralized Energy Generation
3. Results
3.1. Resources
3.1.1. Spatial Distribution
3.1.2. Temporal Distributions
3.2. Identified Technologies Combining Solar and Biomass Resources
3.2.1. Separation
3.2.2. Power to X
3.2.3. Biomethane Upgrading
3.2.4. PV Potential at New Biogas Plant Locations
3.2.5. Cooling
3.3. Case Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Y.; Lau, V.K.N.; Tsang, D.H.K.; Qian, L.P.; Meng, L. Optimal Energy Scheduling for Residential Smart Grid With Centralized Renewable Energy Source. IEEE Syst. J. 2014, 8, 562–576. [Google Scholar] [CrossRef]
- Spiecker, S.; Weber, C. The future of the European electricity system and the impact of fluctuating renewable energy—A scenario analysis. Energy Policy 2014, 65, 185–197. [Google Scholar] [CrossRef]
- Burg, V.; Bowman, G.; Thees, O.; Baier, U.; Biollaz, S.; Damartzis, T.; Hersener, J.-L.; Luterbacher, J.; Madi, H.; Maréchal, F.; et al. White Paper: Biogas from Animal Manure in Switzerland: Energy Potential, Technology Development and Resource Mobilization; SCCER-BIOSWEET; Swiss Federal Research Institute WSL: Birmensdorf, Switzerland, 2021; p. 20. [Google Scholar]
- Kober, T.; Bauer, C.; Bach, C.; Beuse, M.; Georges, G.; Held, M.; Heselhaus, S.; Korba, P.; Küng, L.; Malhotra, A.; et al. Perspectives of Power-to-X Technologies in Switzerland—A White Paper; PSI: Villigen, Switzerland, 2019; p. 40. Available online: https://www.psi.ch/sites/default/files/2019-07/Kober-et-al_WhitePaper-P2X.pdf (accessed on 1 January 2020).
- Kapica, J.; Canales, F.A.; Jurasz, J. Global atlas of solar and wind resources temporal complementarity. Energy Convers. Manag. 2021, 246, 114692. [Google Scholar] [CrossRef]
- Berger, M.; Radu, D.; Fonteneau, R.; Henry, R.; Glavic, M.; Fettweis, X.; Le Du, M.; Panciatici, P.; Balea, L.; Ernst, D. Critical time windows for renewable resource complementarity assessment. Energy 2020, 198, 117308. [Google Scholar] [CrossRef]
- Canales, F.A.; Jurasz, J.; Beluco, A.; Kies, A. Assessing temporal complementarity between three variable energy sources through correlation and compromise programming. Energy 2020, 192, 116637. [Google Scholar] [CrossRef]
- Burg, V.; Bowman, G.; Erni, M.; Lemm, R.; Thees, O. Analyzing the potential of domestic biomass resources for the energy transition in Switzerland. Biomass Bioenergy 2018, 111, 60–69. [Google Scholar] [CrossRef]
- Kahl, A.; Dujardin, J.; Lehning, M. The bright side of PV production in snow-covered mountains. Proc. Natl. Acad. Sci. USA 2019, 116, 1162–1167. [Google Scholar] [CrossRef]
- SFOE. Swiss Renewable Ernergy Statistics 2020. 2021, p. 28. Available online: https://www.bfs.admin.ch/bfs/de/home/statistiken/raum-umwelt/umweltindikatoren/alle-indikatoren/nutzung-natuerliche-ressourcen/erneuerbare-energien.html (accessed on 1 January 2022).
- Burg, V.; Troitzsch, K.G.; Akyol, D.; Baier, U.; Hellweg, S.; Thees, O. Farmer’s willingness to adopt private and collective biogas facilities: An agent-based modeling approach. Resour. Conserv. Recycl. 2021, 167, 105400. [Google Scholar] [CrossRef]
- Burg, V.; Rolli, C.; Schnorf, V.; Scharfy, D.; Ansprach, V.; Bowman, G. Agricultural biogas plants as a hub to foster circular economy and bioenergy: An assessment using material and energy flow analysis. Resour. Conserv. Recycl. 2023, 190, 106770. [Google Scholar] [CrossRef]
- IEA. Potential for Building Integrated Photovoltaics. 2002. Available online: https://iea-pvps.org/wp-content/uploads/2020/01/rep7_04.pdf (accessed on 1 June 2022).
- Wiginton, L.K.; Nguyen, H.T.; Pearce, J.M. Quantifying rooftop solar photovoltaic potential for regional renewable energy policy. Comput. Environ. Urban Syst. 2010, 34, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Farnham, C.; Emura, K.; Lu, S. A method to estimate the potential of rooftop photovoltaic power generation for a region. Urban Clim. 2016, 17, 1–19. [Google Scholar] [CrossRef]
- Hernandez, R.R.; Hoffacker, M.K.; Murphy-Mariscal, M.L.; Wu, G.C.; Allen, M.F. Solar energy development impacts on land cover change and protected areas. Proc. Natl. Acad. Sci. USA 2015, 112, 13579–13584. [Google Scholar] [CrossRef]
- Assouline, D.; Mohajeri, N.; Scartezzini, J.-L. Quantifying rooftop photovoltaic solar energy potential: A machine learning approach. Sol. Energy 2017, 141, 278–296. [Google Scholar] [CrossRef]
- Mavromatidis, G.; Orehounig, K.; Carmeliet, J. Evaluation of photovoltaic integration potential in a village. Sol. Energy 2015, 121, 152–168. [Google Scholar] [CrossRef]
- SFOE. Energieperspektiven 2050+. 2020, p. 112. Available online: https://www.bfe.admin.ch/bfe/fr/home/politik/energieperspektiven-2050-plus.exturl.html/aHR0cHM6Ly9wdWJkYi5iZmUuYWRtaW4uY2gvZnIvcHVibGljYX/Rpb24vZG93bmxvYWQvMTAzMjM=.html (accessed on 14 January 2021).
- Swisssolar. Detailanalyse des Solarpotenzials auf Dächern und Fassaden. 2020, p. 12. Available online: https://www.swissolar.ch/fileadmin/user_upload/Swissolar/Top_Themen/Detailanalyse_Solarpotenzial_Schweiz.pdf (accessed on 1 December 2022).
- Sterl, S.; Liersch, S.; Koch, H.; Lipzig, N.P.M.v.; Thiery, W. A new approach for assessing synergies of solar and wind power: Implications for West Africa. Environ. Res. Lett. 2018, 13, 094009. [Google Scholar] [CrossRef]
- Jurasz, J.; Canales, F.A.; Kies, A.; Guezgouz, M.; Beluco, A. A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Sol. Energy 2020, 195, 703–724. [Google Scholar] [CrossRef]
- Pérez-Collazo, C.; Jakobsen, M.M.; Buckland, H.; Fernández-Chozas, J. Synergies for a Wave-Wind Energy Concept. 2013. Available online: https://pearl.plymouth.ac.uk/handle/10026.1/12030 (accessed on 1 March 2022).
- Ren, G.; Wan, J.; Liu, J.; Yu, D. Spatial and temporal assessments of complementarity for renewable energy resources in China. Energy 2019, 177, 262–275. [Google Scholar] [CrossRef]
- Zemo, K.H.; Termansen, M. Farmers’ willingness to participate in collective biogas investment: A discrete choice experiment study. Resour. Energy Econ. 2018, 52, 87–101. [Google Scholar] [CrossRef]
- Portmann, M.; Galvagno-Erny, D.; Lorenz, P.; Schacher, D. Sonnendach. ch: Berechnung von Potenzialen in Gemeinden. Swiss Fed. Off. Energy (SFOE) 2016, 952, e4plus. [Google Scholar]
- Swiss Federal Office of Energy; Federal Office of Meteorology and Climatology MeteoSwiss; Federal Office of Topography swisstopo. Sonnendach. Available online: https://www.uvek-gis.admin.ch/BFE/sonnendach/?lang=en (accessed on 1 January 2023).
- Meteotest. Dokumentation Geodatenmodell, Solarenergie: Eignung Dächer (Sonnendach.ch), Solarenergie: Eignung Fassaden (Sonnenfassade.ch); SFOE: Bern, Switzerland, 2016; p. 18. [Google Scholar]
- BFS. Schweizerische Statistik der Landwirtschaft, Dataset; This data set was provided by the Swiss Federal Office of Statistics and is not publically available. It can be obtained under restrictions directly from the Swiss Federal Office of Statistics; BFS: Bern, Switzerland, 2018. [Google Scholar]
- Burg, V.; Bowman, G.; Haubensak, M.; Baier, U.; Thees, O. Valorization of an untapped resource: Energy and greenhouse gas emissions benefits of converting manure to biogas through anaerobic digestion. Resour. Conserv. Recycl. 2018, 136, 53–62. [Google Scholar] [CrossRef]
- BFS. Schweizer Landwirtschaft—Ergebnisse der Zusatzerhebung 2010; BFS: Bern, Switzerland, 2010; p. 36. [Google Scholar]
- FOAG. RAUS-Programm für die Weidetiere—Anforderungen im Sommerhalbjahr, Probleme, Fragen und Antworten. In Referenz/Aktenzeichen: 03.08.2020 blw-zbd-sct; The Swiss Confederation: Bern, Switzerland, 2020. [Google Scholar]
- Huber, T. Opportunities between Biomass and Solar Energy: Assessment of Applications in the Agricultural Sector; ETHZ: Zürich, Switzerland, 2022. [Google Scholar]
- Hüsser, P. Load Profile of a Farm; Nova Energie GmbH: Aarau, Switzerland, 2022. [Google Scholar]
- Treichler, A.; Warthmann, R.; Baier, U.; Hersener, J.L.; Meier, U.; Büeler, E.; Hommes, G. LEVER Leistungssteigerung der Vergärung von Rindergülle zu Biogas durch Innovative Vorbehandlung und Neuartige Reaktorsysteme; LEVER: Bern, Swizterland, 2016. [Google Scholar]
- Meier, U.; Hersener, J.-L.; Bolli, S.; Anspach, V. RAUS—REIN“: Feststoffe „RAUS“ aus der Gülle und „REIN“ in die Vergärung, Neuartiges Konzept zur Verbreitung der Vergärung von Hofdünger in der Schweiz. SFOE: Bern, Switzerland, 2016; p. 50. [Google Scholar]
- Meier, U.; Hersener, J.L.; Baier, U.; Kühni, M.; Künzli, S. Vergärung von Gülle und Cosubstraten im Membran-Bio-Rektor; SFOE: Bern, Switzerland, 2013. [Google Scholar]
- Bowman, G.; Burg, V.; Hersener, J.-L.; Keel, T.; Mehli, A.; Musiolik, J.; Nägele, H.-J.; Rüsch, F.; Senn, M.; Sentic, A.; et al. VP NETZ VORPROJEKT NETZ: Nährstoff- und Energietechnik-Zentrum. 2022, p. 138. Available online: https://www.aramis.admin.ch/Default?DocumentID=69603&Load=true (accessed on 1 September 2022).
- Zhao, G.; Kraglund, M.R.; Frandsen, H.L.; Wulff, A.C.; Jensen, S.H.; Chen, M.; Graves, C.R. Life cycle assessment of H2O electrolysis technologies. Int. J. Hydrog. Energy 2020, 45, 23765–23781. [Google Scholar] [CrossRef]
- Gantenbein, A.; Kröcher, O.; Biollaz, S.M.A.; Schildhauer, T.J. Techno-Economic Evaluation of Biological and Fluidised-Bed Based Methanation Process Chains for Grid-Ready Biomethane Production. Front. Energy Res. 2022, 9, 775259. [Google Scholar] [CrossRef]
- CVIS. Biogas Installations in Switzerland: Processes, Inputs and Outputs; The Inspektorat der Kompostier- und Vergärbranche der Schweiz: Münchenbuchsee, Switzerland, 2020. [Google Scholar]
- Sun, Q.; Li, H.; Yan, J.; Liu, L.; Yu, Z.; Yu, X. Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew. Sustain. Energy Rev. 2015, 51, 521–532. [Google Scholar] [CrossRef]
- Rorhbach, N.; Hertach, M.; Buchs, M.; Biogasanlagen. Dienst Geoinformation, SFOE, Bern, Switzerland, Ed. 2022, 14p. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjd7pGzg-X8AhXF9rsIHdUxBiwQFnoECAkQAQ&url=https%3A%2F%2Fpubdb.bfe.admin.ch%2Fde%2Fpublication%2Fdownload%2F9660&usg=AOvVaw2FA78c2ehS1O1H-ZJhMNxQ (accessed on 1 January 2023).
- FOEN. Baulicher Umweltschutz in der Landwirtschaft—Ein Modul der Vollzugshilfe in der Landwirtschaft; FOEN: Bern, Switzerland, 2021. [Google Scholar]
- BFE. Schweizerische Statistik der Erneuerbaren Energien 2018. 23 September 2019. p. 75. Available online: https://www.bfe.admin.ch/bfe/de/home/versorgung/statistik-und-geodaten/energiestatistiken/teilstatistiken.exturl.html (accessed on 1 January 2022).
- BFE. Schweizerische Gesamtenergiestatistik 2018. 2019, p. 72. Available online: https://www.bfe.admin.ch/bfe/de/home/versorgung/statistik-und-geodaten/energiestatistiken/gesamtenergiestatistik.html/ (accessed on 1 January 2022).
- Calvert, K.; Mabee, W. More solar farms or more bioenergy crops? Mapping and assessing potential land-use conflicts among renewable energy technologies in eastern Ontario, Canada. Appl. Geogr. 2015, 56, 209–221. [Google Scholar] [CrossRef]
- Bowman, G.; Burg, V.; Erni, M.; Lemm, R.; Thees, O.; Björnsen Gurung, A. How much land does bioenergy require? An assessment for land-scarce Switzerland. GCB Bioenergy 2021, 13, 1466–1480. [Google Scholar] [CrossRef]
- Hälg, L.; Nipkow, F. «LÄNDERVERGLEICH 2021» Solar- und Windenergie-Produktion der Schweiz im Europäischen Vergleich; Energiestiftung SES, Zurich, Switzerland. 2022. Available online: https://energiestiftung.ch/files/energiestiftung/Studien/2022_Laendervergleich_Wind&Sonne/202200610_Kurzstudie_Laendervergleich_2021.pdf (accessed on 1 January 2023).
- SFOE. Measures for the Development of Renewable Energies. Available online: https://www.bfe.admin.ch/bfe/en/home/policy/energy-strategy-2050/initial-package-of-measures/measures-for-the-development-of-renewable-energies.html (accessed on 1 January 2023).
- Clausen, L.T.; Rudolph, D. Renewable energy for sustainable rural development: Synergies and mismatches. Energy Policy 2020, 138, 111289. [Google Scholar] [CrossRef]
- Rossi, A.M.; Hinrichs, C.C. Hope and skepticism: Farmer and local community views on the socio-economic benefits of agricultural bioenergy. Biomass Bioenergy 2011, 35, 1418–1428. [Google Scholar] [CrossRef]
- Siegrist, A.; Bowman, G.; Burg, V. Energy generation potentials from agricultural residues: The influence of techno-spatial restrictions on biomethane, electricity, and heat production. Appl. Energy 2022, 327, 120075. [Google Scholar] [CrossRef]
- Dong, F.; Lu, J. Using solar energy to enhance biogas production from livestock residue—A case study of the Tongren biogas engineering pig farm in South China. Energy 2013, 57, 759–765. [Google Scholar] [CrossRef]
- Raitila, J.; Tsupari, E. Feasibility of Solar-Enhanced Drying of Woody Biomass. BioEnergy Res. 2020, 13, 210–221. [Google Scholar] [CrossRef] [Green Version]
Technology | Description |
---|---|
Anaerobic digestion and combined heat and power (CHP) plant | Manure and agricultural by-products are fermented in a digester, and the produced biogas is then used to produce electricity and heat with a combined heat and power (CHP) plant. This represents the standard case today (if agricultural residues are used for energy). |
Raw manure separation | Raw manure collected from stables is separated with a screw press into two fractions: solid and liquid. |
Biomethane upgrading | Electricity generated from PV panels can be used to purify biogas into biomethane. Thus, a portion of the energy can be stored in the natural gas grid. |
Power to X and electrolysis | The biogas provides CO2 for the methanation process, while the electrolyzer is operated with PV electricity to produce the required hydrogen. The product is synthetic natural gas and can be stored in the natural gas grid. |
Cooling | The heat produced during biogas combustion in a CHP can be converted to provide cooling with a heat pump powered by PV electricity. |
Photovoltaic on biogas facilities | PV panels can be installed on extra infrastructure provided by the biogas facilities, mainly on additional biomass storage halls. |
Category | Description/Requirements |
---|---|
Potentials in agricultural settings | 15 PJ/a of biogas from biomass. 10 TWh/a or 36 PJ/a of electricity from solar PV panels on roofs. |
Raw manure separation | Minimum farm size of 1.3 t/d manure equivalent to 474.5 t/a. The power demand depends on the volume of the collected raw manure and is calculated with Equation (2). Electricity demand [kWh] = Volume raw manure [m3] × 1.5 [kWh/m3 separated liquid manure] (2). |
Power to X, Electrolysis | PEM electrolyzer with an installed capacity of 2 MW and 4360 operation hours per year. At least 23.8 TJ of biogas during the same period. Installation close to the gas grid for injection. |
Biomethane upgrading | Biomethane upgrading installations with capacities between 8 TJ/y and 40 TJ/y (which corresponds to biogas plants with installed CHP capacities approximately between 100 kWhe and 500 kWhe). |
Cooling | Installation close to the district heating grid or the consumer of cooling. |
PV on biogas facilities | Area [m2] = total biomass from October to February [m3]/storage building height [m] (3). Considering a standard hall height of 6 m and the complete storage of the biomass occurring from October to February, when it is not allowed to be spread on fields (45% of total yearly production or 9.25 million m3), these lead to a potential surface for PV panels of 1.5 km2. Covering these roofs with solar panels assuming tilts of 11°, 20° and 30°, a total of 183 GWh, 191 GWh and 196 GWh electricity could be produced. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bowman, G.; Huber, T.; Burg, V. Linking Solar and Biomass Resources to Generate Renewable Energy: Can We Find Local Complementarities in the Agricultural Setting? Energies 2023, 16, 1486. https://doi.org/10.3390/en16031486
Bowman G, Huber T, Burg V. Linking Solar and Biomass Resources to Generate Renewable Energy: Can We Find Local Complementarities in the Agricultural Setting? Energies. 2023; 16(3):1486. https://doi.org/10.3390/en16031486
Chicago/Turabian StyleBowman, Gillianne, Thierry Huber, and Vanessa Burg. 2023. "Linking Solar and Biomass Resources to Generate Renewable Energy: Can We Find Local Complementarities in the Agricultural Setting?" Energies 16, no. 3: 1486. https://doi.org/10.3390/en16031486
APA StyleBowman, G., Huber, T., & Burg, V. (2023). Linking Solar and Biomass Resources to Generate Renewable Energy: Can We Find Local Complementarities in the Agricultural Setting? Energies, 16(3), 1486. https://doi.org/10.3390/en16031486