Experimental and Numerical Studies on Interaction Mechanism between Joints and a Hole in Rock-like Materials under Uniaxial Compression
Abstract
:1. Introduction
2. Experimental Methodology
2.1. Setup of Jointed Specimens with a Hole
2.2. Specimen Preparation and Test Procedure
3. Laboratory Test Results
3.1. Strength and Deformability
3.2. Cracking Process
3.3. Collapse Modes of the Hole
- (1)
- Mode Ih—without removable blocks, where the linked tensile cracks or shear–tensile cracks around the hole may extend to the boundary of the specimen, and therefore, no removable blocks can be formed;
- (2)
- Mode IIh—with removable blocks formed by upper joints, where the linked tensile cracks or shear–tensile cracks around the hole may extend to the upper joints, leading to the formation of one or several removable blocks;
- (3)
- Mode IIIh—with removable blocks formed by the nearest inclined joints, where coalescence type HSTB may occur from the nearest inclined joints to the hole, leading to the formation of a pair of removable blocks.
3.4. Failure Modes
- (1)
- Mode I—axial cleavage, in which linked vertical tensile fractures may break the specimens into several parts or pillars;
- (2)
- Mode II—crushing, in which linked vertical tensile fractures together with preexisting low inclination angle joints may break the specimens into many small blocks;
- (3)
- Mode III—stepped, in which mixed tensile–shear cracks and the preexisting inclined joints in neighbor columns form one or several stepped failure planes;
- (4)
- Mode IV-sliding, in which quasi-coplanar shear cracks and the preexisting joints form one or several failure planes and lead to sliding along those joint planes.
4. FE Analysis Based on the MPD Model
4.1. A brief Introduction to the MPD Model for Rocks
4.2. FE Model and Calibration of the Material Parameters
4.3. Numerical Results of Macroscopic Mechanical Response
4.4. Failure Mechanism of the Intact Specimen with the Hole
4.5. Failure Mechanism of the Jointed Specimens with the Hole
4.5.1. Influence of Joints on Stress Concentration at Elastic Stage
4.5.2. Influence of Joints on Damage Evolution and Stress Loosening
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martini, C.D.; Read, R.S.; Martino, J.B. Observations of brittle failure around a circular test tunnel. Int. J. Rock Mech. Min. Sci. 1997, 34, 1065–1073. [Google Scholar] [CrossRef]
- Martino, J.B.; Chandler, N.A. Excavation-induced damage studies at the Underground Research Laboratory. Int. J. Rock Mech. Min. Sci. 2004, 41, 1413–1426. [Google Scholar] [CrossRef]
- Thury, M.; Bossart, P. The Mont Terri rock laboratory, a new international research project in a Mesozoic shale formation, in Switzerland. Eng. Geol. 1999, 52, 347–359. [Google Scholar] [CrossRef]
- Li, S.J.; Yu, H.; Liu, Y.X.; Wu, F.J. Results from in-situ monitoring of displacement, bolt load, and disturbed zone of a powerhouse cavern during excavation process. Int. J. Rock Mech. Min. Sci. 2008, 45, 1519–1525. [Google Scholar] [CrossRef]
- Germanovich, L.N.; Dyskin, A.V. Fracture mechanisms and instability of openings in compression. Int. J. Rock Mech. Min. Sci. 2000, 37, 263–284. [Google Scholar] [CrossRef]
- Lee, C.; Wang, S.J.; Yang, Z.F. Geotechnical aspects of rock tunnelling in China. Tunn. Undergr. Space Technol. 1996, 11, 445–454. [Google Scholar] [CrossRef]
- He, M.C.; Gong, W.L.; Zhai, H.M.; Zhang, H.P. Physical modeling of deep ground excavation in geologically horizontal strata based on infrared thermography. Tunn. Undergr. Space Technol. 2010, 25, 366–376. [Google Scholar] [CrossRef]
- Huang, F.; Zhu, H.; Xu, Q.; Cai, Y.; Zhuang, X. The effect of weak interlayer on the failure pattern of rock mass around tunnel—Scaled model tests and numerical analysis. Tunn. Undergr. Space Technol. 2013, 35, 207–217. [Google Scholar] [CrossRef]
- Lajtai, E.Z.; Lajtai, V.N. The collapse of cavities. Int. J. Rock Mech. Min. Sci. 1975, 12, 81–86. [Google Scholar] [CrossRef]
- Wong, R.; Lin, P.; Tang, C.; Chau, K. Creeping damage around an opening in rock-like material containing non-persistent joints. Eng. Fract. Mech. 2002, 69, 2015–2027. [Google Scholar] [CrossRef]
- Sagong, M.; Park, D.; Yoo, J.; Lee, J.S. Experimental and numerical analyses of an opening in a jointed rock mass under biaxial compression. Int. J. Rock Mech. Min. Sci. 2011, 48, 1055–1067. [Google Scholar] [CrossRef]
- Yang, S.Q.; Yin, P.F.; Zhang, Y.C.; Chen, M.; Zhou, X.P.; Jing, H.W.; Zhang, Q.Y. Failure behavior and crack evolution mechanism of a non-persistent jointed rock mass containing a circular hole. Int. J. Rock Mech. Min. Sci. 2019, 114, 101–121. [Google Scholar] [CrossRef]
- Kawamoto, T.; Ichikawa, Y.; Kyoya, T. Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory. Int. J. Numer. Anal. Methods Geomech. 1988, 12, 1–30. [Google Scholar] [CrossRef]
- Swoboda, G.; Shen, X.P.; Rosas, L. Damage model for jointed rock mass and its application to tunnelling. Comput. Geotech. 1998, 22, 183–203. [Google Scholar] [CrossRef]
- Yeung, M.R.; Leong, L.L. Effects of joint attributes on tunnel stability. Int. J. Rock Mech. Min. Sci. 1997, 34, 348.e1–348.e18. [Google Scholar] [CrossRef]
- Einstein, H.H.; Veneziano, D.; Baecher, G.B.; O”Reilly, K.J. The effect of discontinuity persistence on rock slope stability. Int. J. Rock Mech. Min. Sci. 1983, 20, 227–236. [Google Scholar] [CrossRef]
- Lajtai, E.Z. Strength of discontinuous rock in direct shear. Geotechnique 1963, 19, 218–233. [Google Scholar] [CrossRef]
- Chen, X.; Liao, Z.H.; Li, D.J. Experimental study on the effect of joint orientation and persistence on the strength and deformation properties of rock masses under uniaxial compression. Chin. J. Rock Mech. Eng. 2010, 30, 781–789. [Google Scholar]
- Chen, X.; Liao, Z.; Xi, P. Deformability characteristics of jointed rock masses under uniaxial compression. Int. J. Min. Sci. Technol. 2012, 22, 213–221. [Google Scholar] [CrossRef]
- Su, H.; Zhang, H.; Qi, G.; Lu, W.; Wang, M. Preparation and CO2 adsorption properties of TEPA-functionalized multi-level porous particles based on solid waste. Colloids Surf. A Physicochem. Eng. Asp. 2022, 653, 130004. [Google Scholar] [CrossRef]
- Han, W.; Jiang, Y.; Luan, H.; Du, Y.; Zhu, Y.; Liu, J. Numerical investigation on the shear behavior of rock-like materials containing fissure-holes with FEM-CZM method. Comput. Geotech. 2020, 125, 103670. [Google Scholar] [CrossRef]
- Bažant, Z.P. Microplane Model for Strain-Controlled Inelastic Behavior; Chapter 3, Mechanics of engineering materials; Desai, C.S., Gallagher, R.H., Eds.; Wiley: London, UK, 1984. [Google Scholar]
- Bažant, Z.P.; Oh, B.H. Microplane model for progressive fracture of concrete and rock. J. Eng. Mech. 1985, 111, 559–582. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Caner, F.C.; Carol, I.; Adley, M.D.; Akers, S.A. Microplane model M4 for concrete. I: Formulation with work-conjugate deviatoric stress. J. Eng. Mech. 2000, 126, 944–953. [Google Scholar] [CrossRef]
- Caner, F.; Bažant, Z. Microplane model M7 for plain concrete: I. Formulation. J. Eng. Mech. 2013, 139, 1714–1735. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Prat, P.C. Creep of Anisotropic Clay: Microplane Model. J. Geotech. Eng. 1986, 112, 458–475. [Google Scholar] [CrossRef]
- Prat, P.C.; Bažant, Z.P. Microplane model for triaxial deformation of saturated cohesive soils. Int. J. Rock Mech. Min. Sci. 1992, 117, 891–912. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Zi, G. Microplane constitutive model for porous isotropic rocks. Int. J. Numer. Anal. Methods Geomech. 2003, 27, 25–47. [Google Scholar] [CrossRef]
- Chen, X.; Bažant, Z.P. Microplane damage model for jointed rock masses. Int. J. Numer. Anal. Methods Geomech. 2014, 38, 1431–1452. [Google Scholar] [CrossRef]
- Gowd, T.N.; Rummel, F. Effect of confining pressure on the fracture behaviour of a porous rock. Int. J. Rock Mech. Min. Sci. 1980, 17, 225–229. [Google Scholar] [CrossRef]
- Chen, X.; Fu, Y.; Feng, Z.L. Microplane Damage Model for Rocks and Its Application. In Proceedings of the 14th International Congress on Rock Mechanics and Rock Engineering, Foz do Iguassu, Brazil, 13–18 September 2019; pp. 2984–2992. [Google Scholar]
- Prudencio, M.; Jan, M.V.S. Strength and failure modes of rock Mass models with non-persistent joints. Int. J. Rock Mech. Min. Sci. 2007, 44, 890–902. [Google Scholar] [CrossRef]
- Chen, X.; Liao, Z.H.; Peng, X. Cracking process of rock mass models under uniaxial compression. J. Cent. South Univ. 2013, 20, 1661–1678. [Google Scholar] [CrossRef]
- Jaeger, J.C.; Cook, N.G.W.; Zimmerman, R.W. Fundamentals of Rock Mechanics, 4th ed.; Blackwell: Hoboken, NJ, USA, 2007; p. 218. [Google Scholar]
- Lajtai, E.Z. A theoretical and experimental evaluation of the Griffith theory of brittle fracture. Tectonophysics 1971, 11, 129–156. [Google Scholar] [CrossRef]
Number | Serie | With an Opening | k | β | Lj (mm) |
---|---|---|---|---|---|
1 | A | No | - | - | - |
2 | HA | Yes | 0.0 | - | 0 |
3 | HB0 | Yes | 0.2 | 0° | 10 |
4 | HB30 | Yes | 0.2 | 30° | 10 |
5 | HB45 | Yes | 0.2 | 45° | 10 |
6 | HB60 | Yes | 0.2 | 60° | 10 |
7 | HB90 | Yes | 0.2 | 90° | 10 |
8 | HC0 | Yes | 0.5 | 0° | 25 |
9 | HC30 | Yes | 0.5 | 30° | 25 |
10 | HC45 | Yes | 0.5 | 45° | 25 |
11 | HC60 | Yes | 0.5 | 60° | 25 |
12 | HC90 | Yes | 0.5 | 90° | 25 |
13 | HD0 | Yes | 0.8 | 0° | 40 |
14 | HD30 | Yes | 0.8 | 30° | 40 |
15 | HD45 | Yes | 0.8 | 45° | 40 |
16 | HD60 | Yes | 0.8 | 60° | 40 |
17 | HD90 | Yes | 0.8 | 90° | 40 |
Density ρ (g/cm−3) | Young’s Modulus E (GPa) | Poisson’s Ratio v | UCS σc (MPa) | Brazilian Tensile Strength σt (MPa) | Cohesion c (MPa) | Friction Angle φ (°) |
---|---|---|---|---|---|---|
1.22 | 3.17 | 0.23 | 10.86 | 2.25 | 2.2 | 34 |
Types | TT1 | TT2 | SS | TS1 | TS2 | HTTm | HTTj1 | HTTj2 | HSTm | HSTj | HSTB | Collapse Mode |
---|---|---|---|---|---|---|---|---|---|---|---|---|
HB0 | ★ | □ | □ | Ih | ||||||||
HC0 | ★ | ● | □ | Ih | ||||||||
HD0 | ★ | ● | □ | IIh | ||||||||
HB30 | ★ | ● | □ | Ih | ||||||||
HC30 | ★ | ▲ | ● | □ | IIh | |||||||
HD30 | ★ | ▲ | ● | □ | IIh | |||||||
HB45 | ★ | ● | □ | Ih | ||||||||
HC45 | ★ | ▲ | ● | □ | □ | IIIh | ||||||
HD45 | ▲ | ▲ | ● | □ | □ | IIIh | ||||||
HB60 | ★ | ● | □ | IIh | ||||||||
HC60 | ★ | ▲ | ▲ | ● | □ | □ | IIIh | |||||
HD60 | ★ | ▲ | ▲ | ▲ | ● | □ | Ih | |||||
HB90 | ★ | □ | □ | IIh | ||||||||
HC90 | ★ | ● | □ | Ih | ||||||||
HD90 | ★ | ● | □ | Ih |
Parameter | Value | Meaning or Function |
---|---|---|
E(R) | 3.2 GPa | Young’s modulus of the rock matrix |
E(J) | 3.2 GPa | Young’s modulus of the rock joint or crack |
v(R) | 0.23 | Poisson’s ratio of the rock matrix |
v(J) | 0.23 | Poisson’s ratio of the rock joint or crack |
T(R) | 3.2 MPa | Microplane tensile strength of the rock matrix |
T(J) | 0 MPa | Microplane tensile strength of the rock joint |
α0 | 5.0 | Ratio of the minimum compressive strength to tensile strength of the rock matrix |
βc | 0.5 | Maximum value of the joint mobilization factor of the rock joint |
ε0V | 0.001 | Volumetric strain threshold for strain hardening of the rock matrix |
ε0N | 0.0005 | Normal strain threshold for strain hardening of the rock matrix |
c1 | 0.2 | Control dependence of compressive stress boundary of the rock matrix phase on εN |
c2 | 0.005 | Control dependence of compressive stress boundary of the rock matrix phase on εV |
c3 | 0.001 | Control dependence of shear stress boundary on normal stress of the two phases |
c4 | 0.05 | Control dependence of shear stress boundary on the confinement of the two phases |
a1 | 0.007 | Control dependence of damage evolution on volumetric expansion |
a2 | 0.006 | Control dependence of damage evolution on deviatoric tensile strain accumulation |
a3 | 0.05 | Control dependence of damage evolution on shear strain accumulation |
q1 | 1.5 | Control speed of damage evolution due to volumetric expansion |
q2 | 1.5 | Control speed of damage evolution due to deviatoric tensile strain accumulation |
q3 | 1.0 | Control speed of damage evolution due to shear strain accumulation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Liu, X.; Lu, R.; Feng, Z. Experimental and Numerical Studies on Interaction Mechanism between Joints and a Hole in Rock-like Materials under Uniaxial Compression. Energies 2023, 16, 1489. https://doi.org/10.3390/en16031489
Chen X, Liu X, Lu R, Feng Z. Experimental and Numerical Studies on Interaction Mechanism between Joints and a Hole in Rock-like Materials under Uniaxial Compression. Energies. 2023; 16(3):1489. https://doi.org/10.3390/en16031489
Chicago/Turabian StyleChen, Xin, Xiaoliang Liu, Ruiquan Lu, and Zhongliang Feng. 2023. "Experimental and Numerical Studies on Interaction Mechanism between Joints and a Hole in Rock-like Materials under Uniaxial Compression" Energies 16, no. 3: 1489. https://doi.org/10.3390/en16031489
APA StyleChen, X., Liu, X., Lu, R., & Feng, Z. (2023). Experimental and Numerical Studies on Interaction Mechanism between Joints and a Hole in Rock-like Materials under Uniaxial Compression. Energies, 16(3), 1489. https://doi.org/10.3390/en16031489