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Highlights:

What are the main findings?

• Energy consumption reduction up to 24% with the use of ECMS algorithm
• Method for EMS algorithms comparison under the same required energy
• Back engineering extracted commercial algorithm based on experimental data

What is the implication of the main finding?

• ECMS adaptability advantage can be utilized under different driving conditions

Abstract: The study examines alternative on-board energy management system (EMS) supervisory
control algorithms for plug-in hybrid electric vehicles. The optimum fuel consumption was sought
between an equivalent consumption minimization strategy (ECMS) algorithm and a back-engineered
commercial rule-based (RB) one, under different operating conditions. The RB algorithm was first
validated with experimental data. A method to assess different algorithms under identical states of
charge variations, vehicle distance travelled, and wheel power demand criteria is first demonstrated.
Implementing this method to evaluate the two algorithms leads to fuel consumption corrections of up
to 8%, compared to applying no correction. We argue that such a correction should always be used in
relevant studies. Overall, results show that the ECMS algorithm leads to lower fuel consumption than
the RB one in most driving conditions. The difference maximizes at low average speeds (<40 km/h),
where the RB leads to more frequent low load engine operation. The two algorithms lead to fuel
consumption differences of 3.4% over the WLTC, while the maximum difference of 24.2% was
observed for a driving cycle with low average speed (18.4 km/h). Further to fuel consumption
performance optimization, the ECMS algorithm also appears superior in terms of adaptability to
different driving cycles.

Keywords: fuel consumption optimization; energy management system; hybrid vehicle control

1. Introduction

Global warming due to increasing emissions of greenhouse gases (GHG) appears
today as the main environmental pressure [1]. Transport is one of the key sources of
manmade carbon dioxide (CO2) emissions [1–3]. This has led authorities around the world
to set targets and take measures to reduce these emissions [3,4]. The European Union
(EU) has set a target of reducing CO2 levels from new passenger cars by 37.5% by 2030,
compared to 2021 [5]. Therefore, solutions such as electrified vehicles are promoted by the
automotive industry to meet these targets [6].

Hybrid Electric Vehicles (HEVs) and Plug-in Hybrid Electric Vehicles (PHEVs) are cur-
rently the most widespread options for electrified vehicles in the market. HEVs and PHEVs
have two independent energy sources, namely the battery and the fuel tank. However,
only PHEVs can be charged directly by grid power and can cover substantial ranges (e.g.,
the latest models appear to have an electrical range of 100 km or 65 miles [7]) with electric

Energies 2023, 16, 1497. https://doi.org/10.3390/en16031497 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16031497
https://doi.org/10.3390/en16031497
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-9883-151X
https://orcid.org/0000-0001-6981-1395
https://orcid.org/0000-0002-5823-3814
https://orcid.org/0000-0002-5630-9686
https://doi.org/10.3390/en16031497
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16031497?type=check_update&version=2


Energies 2023, 16, 1497 2 of 17

power alone [6]. The share and mix between battery and engine power are constantly being
decided during operation by an on-board energy management system (EMS) [1,6,8,9]. The
EMS performance has a significant impact on fuel consumption (FC), which is directly
linked to CO2 emissions. Therefore, EMS supervisory algorithms can be optimized to
further decrease CO2 emissions from PHEVs.

Wu et al. [10] showed that there are a variety of principles for EMS algorithms. The
main categories can be distinguished into rule-based (RB), optimization-based (OB), and
learning-based (LB) ones. RB algorithms rely on a fixed set of rules, without a priori
knowledge of driving conditions. OB algorithms are further split to offline or online ones.
In online OB algorithms, such as the Equivalent Consumption Minimization Strategy
(ECMS) [10–13], an instantaneous optimization is conducted based on current vehicle oper-
ation. In offline OB algorithms, a cost function is optimized for the complete driving cycle.
Dynamic Programming (DP) [14,15] and Pontryagin’s Minimum Principle (PMP) [10,16] are
some of the common offline OB algorithms. LB algorithms are capable of instantaneously
and in real time controlling and learning the optimal power split operations. Reinforcement
Learning [17,18] and Artificial Neural Networks are some principles that are used in LB
algorithms implementation [10].

There are only limited works in the literature on how different algorithm categories
compare to each other under different operation conditions. Actually, Torreglosa et al. [19]
mentioned that the optimization algorithms presented in the literature are seldom com-
pared against commercial RB strategies. In their study, they compared different EMSs
for HEVs with RB strategies using FASTSim, an open-source tool that includes validated
HEV RB models. That analysis showed that optimum EMSs may provide fuel consump-
tion benefits of 5% to 10%, compared to commercial RB EMSs. Wu et al. [20] proposed
an optimization-based strategy that appeared to reduce the fuel consumption of a 2010
Toyota Prius hybrid by 3.5–6%, compared to an RB algorithm that was earlier published by
Kim et al. [21]. Hwang et al. [22] applied particle swarm optimization to improve the fuel
economy of a power split hybrid, and showed up to 9.4% improvement compared to an RB
algorithm. This limited previous work showed that there are further margins to improve
fuel consumption over commercially applied algorithms.

In assessing the performance of different algorithms, one needs to make sure that
the exact operation profile is followed over computer simulations or real-world experi-
mentation with the various EMS approaches. Fuel consumption differences of only a few
percentage units, such as those expected when varying the EMS, can be observed only
due to slight deviations of the original speed profile in consecutive simulations, e.g., due
to underpowering accelerations. Moreover, it needs to be ensured that fuel consumption
improvement is assessed under the same state of charge levels (SOC) to avoid part of the
difference only being due to variation in the battery depletion levels, e.g., over consecutive
simulations. Although such conditions may be self-evident, these are seldom if at all
demonstrated in published EMS algorithm comparison studies.

The article focuses on the comparative assessment of commercial RB and ECMS based
algorithms for a plug-in hybrid vehicle powertrain. The purpose is to examine if further
FC reduction can be achieved by introducing an enhanced EMS over a commercial one.
A method is first presented to compare fuel consumption over identical battery state of
charge (SOC) levels, vehicle distance traveled and wheel power demand. The proposed
method suggests novel corrections for the fuel energy consumption of the compared EMS
algorithms. More specifically, the method introduces correction terms for the deviations in
the final SOC values, propulsion energy and benefits from regenerative braking between
the compared EMS algorithms. We propose that such a method needs to be used in all
similar studies of fuel consumption comparison.
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2. Methods
2.1. Back-Engineered EMS Algorithm

A vehicle simulator of a parallel P2 PHEV [23] has been built in the AVL Cruise simu-
lation platform. Its overall performance has been validated with actual experimental data
collected by tests on an actual vehicle in the chassis dynamometer of Aristotle University.
The vehicle’s technical specifications are listed in Table 1.

Table 1. Parallel P2 PHEV Technical Specifications.

Component Specifications

Vehicle test mass 1700 kg

Fuel-type, displacement, engine power Gasoline, 1560 cm3, 77.2 kW

Battery, type 8.9 kWh Li-Ion Polymer

Electric motor 44.5 kW

Gearbox 6-speed dual-clutch automatic

Table 2 shows the tests conducted in the lab on the particular vehicle to understand
the performance of its stock EMS algorithm. A Worldwide harmonized Light vehicles Test
Cycle (WLTC) [24] and an ERMES cycle [25] have been used for the tests. The different
cycles are distinguished into cold and hot start ones, depending on whether the start engine
coolant temperature was lower than 35 ◦C or higher than 70 ◦C, respectively. A single case
with intermediate start temperature is identified as warm start in Table 2.

Table 2. Driving cycles and specifications use for experimental validation of the back-engineered
algorithm.

Cycle ICE Condition Initial SOC Vehicle Mode Short Name

ERMES Cold start 35.7% Charge depleting/sustain mode ERMES CDCS

ERMES Hot start 11.8% Charge sustain mode ERMES CS

WLTC Hot start 20.4% Charge sustain mode WLTC CS HOT2

WLTC Cold start 12.9% Charge sustain mode WLTC CS COLD

WLTC Hot start 13.7% Charge sustain mode WLTC CS HOT1

WLTC Cold start 71.4% Charge depleting mode WLTC CD

WLTC Warm start 28.2% Charge depleting/sustain mode WLTC CDCS

These experiments have been used to back-engineer the rules of the heuristic controller
on-board the commercial vehicle. In this paper, the RB algorithm is a specialization of
the general methodology described by Doulgeris et al. [26], while the specific controller
algorithm is described in detail by Doulgeris et al. [27].

Figure 1 shows the flowchart of the RB algorithm. The engine switches on if the power
demand, vehicle speed or acceleration, and SOC level are above specific thresholds. The
power demand threshold for engine start depends on the SOC level. The engine always
shuts off when the power demand becomes negative.

Figure 2 shows the engine power output decided by the algorithm curve, depending
on the gear engaged (x-axis) and the vehicle speed (parameter). If the engine meets the
criteria for switch-on according to Figure 1, then the engine power output is determined by
Figure 2 depending on current vehicle speed and gear.
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2.2. Alternative Algorithm Description

An Equivalent Consumption Minimization Strategy (ECMS) algorithm has been de-
veloped in the current study, as an alternative to the back-engineered RB one. Both of
the algorithms—ECMS and the back-engineered one—are applied to the same vehicle
simulator platform of parallel P2 PHEV that has been built in the AVL Cruise simulator
platform. The ECMS algorithm aims at optimizing a predefined FC cost function for given
operation conditions. The general cost function for fuel consumption optimization of a
hybrid vehicle is given in Equation (1), where J is a performance index that needs to be
minimized. The integral term represents the total fuel consumption over a complete driving
profile, as it integrates the instantaneous FC (

.
mfuel) from an initial (t0) to a terminal time

stamp (tf). FC depends on the normalized engine load function u that ranges between
0 (engine shut off) to 1 (operation at full power—Pe,max), according to Equation (2). The
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first term in Equation (1) is used as a soft constraint for the value of the SOC at the end
of the cycle (SOCf). With the use of the ϕ function, SOC deviations from the final target
value (SOCtarget) are being penalized. The choice of the SOCtarget value depends on the
examined study. Usually, in PHEVs applications, the charge depletion is permitted because
the battery can be charged from the electric power grid. As a result, for PHEVs applications,
the SOCtarget can be lower than the initial value of SOC [8,9].

J = ϕ
(
SOCf, SOCtarget

)
+
∫ tf

t0

.
mfuel(u(t), t)d (1)

u =
Pe

Pe,max
(2)

The optimization of Equation (1) leads to the determination of the u for every second
of the driving cycle, which in turn gives the instantaneous engine power output by means
of Equation (2).

The ECMS optimization is subject to the conditions of the set of Equations (3)–(6).
Equation (3) presents the power balance for the powertrain of a P2 parallel hybrid vehi-
cle [28]. The sum of the demanded power at wheels (Preq,wheels) and the mechanical power
losses (Pmech,losses ) must be equal to the mechanical power output from the main power
units (electric motor power—Pem and engine power—Pe). If the vehicle velocity is known,
then the Preq,wheels and Pmech,losses can be determined by a vehicle power-based model. We
have set up a vehicle model in AVL Cruise for this purpose. So, with the use of Equation (3),
the power output of the electric motor is determined.

Preq,wheels + Pmech,losses = Pe + Pem (3)

Pe ≤ Pe,max (4)

Pem,min ≤ Pem ≤ Pem,max (5)

SOCmin ≤ SOC ≤ SOCmax (6)

Equations (4)–(6) correspond to the physical constraints of the powertrain components.
Equation (4) suggests that the engine cannot overcome its full load curve, represented by
the maximum engine power output (Pe,max). The electric motor is also limited by its full
load curve, depending on whether it works as a motor (Pem > 0) or generator (Pem < 0)
(Equation (5)), with corresponding limits given by Pem,max and Pem,min. Finally, the battery
SOC cannot exceed a range of maximum (SOCmax) and minimum (SOCmin) levels for the
purpose of maintaining battery life (Equation (6)).

Optimizing Equation (1) within the set of Conditions (3)–(6) is only possible when
the operation mission is known a priori. In the real-world, a priori knowledge of the
driving profile application is known only over in-lab tests and not for on-road driving. For
on-road operation, the ECMS will have to be locally optimized according to the present
driving conditions. Such local optimization is achieved by means of Equation (7), where
the integral term of Equation (1) has been eliminated. In Equation (7), the engine fuel
rate

( .
mfuel

)
and the battery power flow expressed in terms of an equivalent fuel rate( .

meq
)

(Equation (8)—where QLHV is the fuel’s lower heating value) result in an equivalent
total fuel mass rate

( .
mtot

)
by means of the equivalence factor s (Equation (9)). The latter

comprises the constant term s0 and a penalization term p(SOC) that depends on SOC. The
s0 term is used as the main weighting factor of the

.
meq inside the cost function. The p

penalizes deviations of the current SOC values from the target. The usage of the p term is
similar to the one of the ϕ term in Equation (1). The difference is that the penalization is
made for the instantaneous values of SOC instead of the SOC value at the end of the cycle,
because the optimization is only carried out locally. The battery power (Pbatt) in Equation (8)
can be positive for power outflux from the battery (Equation (10a)) and negative when the
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EM acts as a generator that charges the battery (Equation (10b)), with ηbatt and ηem being
the battery and electric motor efficiencies, respectively.

.
mtot =

.
mfuel + s× .

meq (7)

.
meq =

Pbatt
QLHV

(8)

s = s0 + p(SOC) (9)

Pbatt =

(
Pem

ηbatt × ηem
|P em ≥ 0

)
(10a)

Pbatt = (Pem × ηbatt × ηem |P em < 0) (10b)

The algorithm basically decides on the engine operation variable u(t) in Equation (2)
that leads to the lowest total equivalent fuel mass (

.
mtot). This procedure is repeated in every

second of the complete mission profile. The algorithm takes into account two conditions
regarding the potential battery charge or discharge. The first one is that a potential battery
charge will lead to an SOC surplus, which can be utilized in the future. The second
condition is that a present battery discharge generates a requirement for a future battery
charge in order to retain the battery SOC within certain limits. An optimal solution can
be guaranteed if the s term in Equation (7) is adapted appropriately (Equation (9)). In this
way, although the s-by-s optimization cannot achieve as good a performance as the global
optimal solution, it still produces a practical optimization solution that can be integrated in
EMS without knowledge of the forthcoming driving profile.

Three alternative expressions for p have been examined in the current work
(Equations (11a)–(11c)). In Type A expression, p is proportional to the difference of current
SOC over a constant reference value SOCref (Equation (12a)). Therefore, this expression tries
to keep SOC at a value close to the reference one over the complete driving profile—and
it is tuned by a proportional term (kp). In Type B, the SOCref value varies with travelled
distance D (Equation (12b) [29]). The algorithm also tries to keep the current SOC close to
the SOCref value, as in Type A. More specifically, in Type B, the SOCref value starts with an
initial value (SOCi) and then the SOCref decreases proportionally with the D until it reaches
the target SOC value (SOCtarget). In Type B, the total driving distance (Dfinal) must be either
known or estimated. Some research articles mention that this type of linear SOC trajectory
with distance seems to be close to the global optimal solution [30,31]. In Type C expression,
a specific SOC window is used for determining p [8] (Equation (11c)). More specifically, the
p value dependents on SOC, a target value for the SOC (SOCtarget), selected maximum and
minimum SOC values and a selected superscript for the penalization function (a). With
this expression, SOC is retained above a certain level in order to ensure the battery physical
constraints (SOC > SOCmin) proactively with the adaptation of the equivalence factor.
Moreover, this expression constrains battery charging during charge sustain operation until
a rational level (e.g., SOCmax = 18%).

Attention is required in selecting the parameters for each expression to achieve feasible
solutions. For example, in our effort for parameters tuning, we spotted that some parameter
combinations led to extremely low SOC levels or even that the vehicle could not follow
the speed profile. So, after a trial-and-error basis in order to achieve feasible solutions, the
setup of the algorithm parameters is presented in Table 3.

p(SOC) = kp× (SOC− SOCref) (11a)

p(SOC) = kp× (SOC− SOCref(D)) (11b)

p(SOC) = kp×
(

1−
( (

SOC− SOCtarget
)

0.5(SOCmax − SOCmin)

)a)
(11c)

SOCref = SOCtarget (12a)
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SOCref(D) = SOCi −
[(

SOCi − SOCtarget
)
×
(

D
Dfinal

)]
(12b)

Table 3. Parameters selected for the three ECMS versions.

Version s0 kp SOCtarget SOCmax SOCmin a

ECMS Type A 3.5 −0.5 15 - - -

ECMS Type B 3.5 −0.5 14 - - -

ECMS Type C 3 −1.5 13 18 8 3

The ECMS algorithm flowchart is illustrated in Figure 3. ECMS requires power
demand, vehicle velocity, gear number and current SOC as input data. The first step is
to select the numerical values for the physical limitations according Equations (4)–(6).
After that, the algorithm calculates the equivalent fuel rate

.
mtot for the different candidate

operating points by adjusting the equivalent consumption of the electrical motor according
to the SOC, as described in Equations (9) and (11a)–(12b). Finally, the algorithm selects the
case with the minimum fuel mass, which is then translated into specific torque outputs of
the ICE and the electric motor.
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erating points by adjusting the equivalent consumption of the electrical motor according 

to the SOC, as described in Equations (9) and (11a)–(12b). Finally, the algorithm selects 

the case with the minimum fuel mass, which is then translated into specific torque outputs 

of the ICE and the electric motor. 

 

Figure 3. ECMS Procedure Overview. 

2.3. Corrections for the Assessment of Different Algorithms 

The assessment of different EMS algorithms needs to be carried out on a fair basis. 

Each EMS algorithm leads to different decisions for engine and motor engagement (Equa-

tion (2)) that may slightly affect the speed of the vehicle due to power availability and gear 

change interference. The different speed profiles will, in turn, result in a slightly different 

demanded power profile for each algorithm. These differences could have been avoided 

by backward modeling, because this approach guarantees that the vehicle exactly follows 

Figure 3. ECMS Procedure Overview.

2.3. Corrections for the Assessment of Different Algorithms

The assessment of different EMS algorithms needs to be carried out on a fair ba-
sis. Each EMS algorithm leads to different decisions for engine and motor engagement
(Equation (2)) that may slightly affect the speed of the vehicle due to power availability
and gear change interference. The different speed profiles will, in turn, result in a slightly
different demanded power profile for each algorithm. These differences could have been
avoided by backward modeling, because this approach guarantees that the vehicle exactly
follows the target speed. However, in our approach, the forward modeling is chosen
because forward simulators are based on physical causality. With these simulators, online
control strategies can be developed [8]. Moreover, the SOC difference between trip start
and end may differ between various algorithms. Nevertheless, when assessing the impacts
of different algorithms on FC, one needs to make sure that the distance, demanded energy,
and SOC differences are identical in the various simulations.

A method to adjust for such potential differences is, therefore, introduced. Assuming
a total energy consumption over a theoretical accurate driving profile in each simulation,
variations of this profile will lead to energy differences, not because of EMS performance
but because of distance and SOC variations in each simulation. A corrected fuel-equivalent
energy consumption (CE) can, therefore, be estimated from the simulated one (SE) by
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correcting for deviations in the SOC (∆E SOC), propulsion energy (∆EPROP) and contribution
of regenerative braking (∆EREG) in Equation (13). ∆E SOC correction is needed to make
sure that all simulations result in identical final SOC. The ∆EPROP term corrects for slight
differences in the driving profile (speed, acceleration and distance) of the simulations
of a given driving sequence. Finally, ∆EREG adjusts the energy consumption when the
simulated regenerative braking energy benefits are different from the ones calculated in the
theoretically accurate driving profile. In that way, the energy differences due to driving
profile variations at the braking phases can be corrected. The corrected energy correction of
Equation (13) should be implemented in all relevant works where different optimization
algorithms are being compared.

CE = SE + ∆E SOC + ∆EPROP − ∆EREG (13)

Equation (14) describes ∆ESOC as the fuel energy delivery that covers the difference
between the simulated and reference depleted energies from the battery (Ebat). In the de-
nominator of Equation (14), the average product of the individual components’ efficiencies
has been considered for the time moments that the battery is charged from the ICE, with
ηe being the ICE efficiency. The calculation for the reference value of the depleted battery
energy is presented in Equation (15). The value is calculated as a difference from a final
SOC level, which in our case has been selected to be 14%, with Cbat and Vbat being the
battery capacity and average battery voltage, respectively.

∆ESOC =
Ebat − Ebat,SOCf(

(ηbatt × ηem × ηe) |P em< 0 ∧ Pe >0
) (14)

Ebat,SOCf
= (SOCi − SOCf)×Cbat ×Vbat (15)

The ∆EPROP—Equation (16)—is the fuel energy that should be supplied to equalize
the simulated energy demand at gearbox (EGB) with the one calculated from the theoretical
speed profile (EGB,th). The ICE efficiency should be the average one during positive power
demand at gearbox inlet (PGB). EGB,th—Equation (17)—is the energy demand for vehicle
motion for positive tractive force at the wheels (Fth), with vth and ηtr being the force,
theoretical vehicle speed and average transmission efficiency from gearbox inlet to vehicle
wheels, respectively. Ftr,th consists of a polynomial function of vehicle speed (which
corresponds to road loads) and the term for vehicle acceleration (Equation (18)—F2, F1, F0
are coast down test coefficients and Mv is the vehicle mass).

∆EPROP =

(
EGB,th − EGB

ηe
|P GB > 0

)
(16)

EGB,th =

(
∑ Ftr,th × vth

ηtr
|F tr,th ≥ 0

)
(17)

Ftr,th = F2 × v2
th + F1 × vth + F0 + Mv ×

dvth
dt

(18)

∆EREG—Equation (19)—expresses the potential fuel energy that can be saved if the
simulated speed profile was identical to the theoretical one (EBat, th) during decelerations.
The simulated battery energy influx is calculated for the time instances that the power
demand at gearbox inlet is negative. To convert the battery energy influx difference to fuel
energy, the same average product of efficiencies as the one in Equation (14) has been used.
The EB−Bat,th—Equation (20)—is the potential energy of braking that can be recuperated.
In this calculation, the negative energy influx from the wheels (EB,th) is calculated based
on Equation (21). In the current study, the share of the total braking energy that can be
recuperated (bREG) is assumed to be 40% of the total braking energy, while the rest is
consumed at the mechanical brakes. The losses from the gearbox inlet up to the battery
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have been taken into account by the average product of the EM and battery efficiencies
during the time events that PGB is negative.

∆EREG = (EB−Bat,th − EBat |P GB < 0)×
(
(ηbatt × ηem × ηe) |P em< 0 ∧ Pe > 0

)
(19)

EB−Bat,th =
(

EB,th × bREG × ηtr × (ηbatt × ηem) |P GB < 0
)

(20)

EB,th =
(
∑(Ftr,th × vth) |F tr,th < 0

)
(21)

2.4. Drive Cycles Used in the Simulations

The performance of the Rule Based (RB) and the different types of ECMS Based (EB)
algorithms are compared in different driving cycles, according to Table 4. Firstly, they are
compared in WLTC driving cycle. After that, various driving cycles have been used in
order to examine different conditions and identify the best algorithm in each case. For
WLTC, ERMES and 10-15 Mode [32] cycles, the individual segments have been examined
as well. Table 4 displays a summary of the characteristics of the different driving cycles
that have been used. All simulations have been conducted with the same initial SOC of
20%, which allows a comparison of the algorithms during the most challenging charge
sustain mode.

Table 4. Simulated Driving Cycles and characteristics.

Cycle Repetitions Average Speed
[km/h] RPA [m/s2]

Total Trip
Length [km]

10 Mode 6 16.0 0.198 12.0

WLTC Low 6 18.4 0.217 18.4

10-15 Mode 5 22.9 0.172 20.8

JC08 [33] 2 26.9 0.184 20.6

ERMES Urban 6 32.1 0.188 29.7

WLTC Medium 6 40.0 0.209 28.2

WLTCx2 2 46.1 0.160 46.1

WLTC High 6 56.0 0.137 42.6

ERMES 2 66.0 0.106 48.0

ERMES Extra Urban 6 69.9 0.120 44.1

WLTC Extra High 6 90.7 0.131 49.0

ERMES Motor 6 96.0 0.086 75.0

3. Results
3.1. Validation of the Rule Based Algorithm

Figures 4 and 5 present examples for model accuracy in SOC and fuel consumption,
respectively, for four of the seven conducted tests (Table 2). The initial SOC was the actual
one at the beginning of each test. The simulated SOC profile satisfactorily follows the
measured one during the course of each cycle. This can be reflected by the high correlation
coefficient values for SOC (RSOC), which are higher than 69%. There is only one exception,
for WLTC CS HOT1, where our back-engineered RB results in higher battery depletion in
the 1000–1200 s range compared to the measured one. Apart from this, the simulated SOC
follows the measured trend with a rather constant offset.
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Table 5 compares the total simulated and measured FC and final SOC (SOCf) values for
the seven tests conducted. The absolute error in the simulation of total FC is lower than 7%
for five of the seven tests. In the WLTC CD and WLTC CDCS tests, the FC estimation error
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is higher, but over very low FC values that overall lead to satisfactory deviations (WLTC
CD: 0.5 g/km; WLTC CDCS: 4.2 g/km). The correlation coefficient between instantaneous
measured and simulated fuel consumption (Rfuel) is always higher than 70% except in
WLTC CD (57.7%). In WLTC CD, the initial SOC is rather high (71.4%) so the engine
engagement is limited leading to few points where the instantaneous fuel consumption
is non-zero, and this leads to a drop of the regression coefficient. With regard to battery
SOC, the simulated final SOC values are quite close to the measured ones for WLTC.
For the ERMES cases, the simulated SOC varies more than the measured one in WLTC.
Additionally, for the ERMES CS the RSOC value is negative. This means that the simulated
battery charging events do not follow the measured ones for that test. It is worth mentioning
that the parameters tuning for engine start/shut-down events (Figure 1) were based on
the WLTC tests experimental data. As the ERMES cycle has different characteristics, we
expected that the model could not have the same accuracy as in the WLTC tests. For all the
other test cases, the RSOC is higher than 69% which implies satisfactory model performance.

Table 5. Total FC and ∆SOC Comparison.

Magnitude
Cycle

WLTC CS
COLD

WLTC
CDCS

WLTC CS
HOT1

WLTC CS
HOT2 WLTC CD ERMES

CDCS ERMES CS

FCmeas
[ g

km
]

40.9 24.0 36.2 32.0 1.5 22.7 39.2

FCsim
[ g

km
]

39.8 28.2 35.3 30.4 2.0 24.0 41.0

(FCmeas−FCsim)
FCmeas

[%] −2.8 17.4 −2.6 −5.0 27.9 6.1 4.8

RFC [%] 82.8 82.3 78.7 84.3 57.7 89.5 76.3

SOCi [%] 12.9 28.2 13.7 20.4 71.4 35.7 11.8

SOCf,meas [%] 13.7 13.7 12.9 12.9 28.2 11.8 12.2

SOCf,sim [%] 13.5 14.5 12.2 13.2 27.5 16.4 13.2

SOCf,meas −
SOCf,sim [%]

0.2 −0.8 0.7 −0.3 0.7 −4.6 −1.0

RSOC [%] 84.2 99.4 69.1 95.5 99.9 99.7 −66.0

3.2. Comparative Assessment of RB and EB Algorithms in WLTC

Table 6 summarizes the simulation results for the three ECMS types (EBA, EBB, EBC)
and the RB algorithm over WLTC. The FC values show correspondence to the simulation
output (SFC) and the corrected ones (CFC), according to Equations (13)–(21). The table
values clearly show that if no correction was introduced then one would come up with
totally wrong conclusions regarding the relative performance of the different algorithms.
For example, EBC leads to the highest FC difference over the RB (−3.4%), which is actually
lower than the magnitude of the correction (−5.6%). Had the correction not been applied,
the EBC would have actually resulted in +4.9% higher FC than the RB, i.e., this would have
led to an entirely opposite conclusion than what is actually reached using the corrected
values. This can be explained because the ∆ESOC correction turns out negative for the EB
and positive for the RB cases. The negative value for ∆ESOC means that the final SOC is
higher compared to the reference one in EB, and vice versa for RB. Additionally, Table 6
shows that ∆EPRO has a higher impact on EB cases. This indicates that the simulated speed
profile in the RB simulation better follows the theoretical one than in EB simulations.

The net energy flows between the different powertrain components during WLTC are
presented in Figure 6. The shown energy flows stand for the positive propulsion instances.
The electrical energy from the battery (2.89 MJ) and the energy demand at the gearbox
inlet (13.2 MJ) have been adjusted to the exact same values in order to ensure that the
comparison of the different algorithms is on a fair basis. Furthermore, the shown fuel
energy consumption is the corrected one, which has been calculated from Equation (13).
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Table 6. Consumption and mean efficiency values of the main powertrain components for WLTC.

Magnitude
Algorithm

RB EBA EBB EBC

SFC [g] 698.5 750.0 736.1 732.6

∆ESOC/QLHV [g] 17.0 −78.0 −62.1 −66.8

∆EPROP/QLHV [g] 0.7 19.8 25.5 25.7

∆EREG/QLHV [g] 0.6 0.2 0.1 0.1

CFC [g] 715.6 691.6 699.4 691.4

(CFC-SFC)/SFC [%] 2.4 −7.8 −5.0 −5.6

(CFCEBX-CFCRB)/CFCRB [%] - −3.3 −2.3 −3.4

Propulsion Efficiency [%] 39.5 40.7 40.3 40.8

ICE Mean Efficiency [%] 37.9 37.6 37.1 37.8

EM Mean Efficiency [%] 82.7 80.8 80.3 80.7
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Figure 6. Net energy flows (kJ) for positive propulsion instances in WLTC for ECMS-Based Type A
(EBA) algorithm, ECMS-Based Type B (EBB) algorithm, ECMS-Based Type C (EBC) algorithm and
Rule-Based (RB) algorithm. ICE: Internal Combustion Engine, EM: Electric Motor, B: Battery and GB:
Gearbox, FT: Fuel tank. Negative numbers correspond to energy loss.

The electric motor may function either as a propulsion device or as a generator for
battery charging, depending on power flux direction. Assuming positive power flux from
the battery to the gearbox, the energy flow through the EM ranges from 2121 kJ with the
EBB to 1622 kJ with the RB algorithm. The difference in net energy flows is explained by
the decisions of the different algorithms.

The lowest net EM energy flow is balanced by the maximum total energy outflux
from the FT (30.6 MJ) with RB compared to EB. The simulation results in Table 6 show
that the average ICE efficiency is quite close for all cases. Additionally, the demanded
mechanical output energy from the ICE is higher in the RB case (11.59 MJ) compared to the
EB (11.1–11.2 MJ). In RB, the electric motor contributes more for propulsion compared to
the EB cases and results in higher battery discharge. This requires higher power demand
from the ICE during hybrid mode to recharge the battery. That higher power demand
for battery charging could have been saved had the EMS controller decided to directly
command ICE propulsion with the assistance of the electric motor.

The above analysis showed that the description of the energy flows is very useful in
order to understand the FC differences between RB and ECMS algorithms. For analysis
convenience, in this paper a quantifiable metric for energy flow comparisons has been used,
namely the average propulsion efficiency (ηPROP). The ηPROP is defined as the ratio of the
demanded energy at the gearbox (EGB) over the sum of the two net energy flows from
the energy sources during the positive propulsion phase (Equation (22)). The provided
fuel energy is the corrected one, but only during the propulsion phases. Therefore, the
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correction terms of ∆E SOC and ∆EPROP have been added to the simulated fuel energy.
Additionally, the reference battery depleted energy has been considered in the denominator.
Table 6 shows that the RB algorithm results in the lowest propulsion efficiency and that
leads to the highest fuel consumption.

ηPROP =
EGB

Ebat,SOCf=14% + SE + ∆E SOC + ∆EPROP
(22)

As a benchmark, the results of Table 6 that have been obtained with localized opti-
mization are compared to the global optimum for the known profile of WLTC. To do so,
we have properly parameterized the hybrid electric vehicle model of Sundstrom et al. [34],
which uses a DP a solution as an EMS algorithm. The parameterization has been achieved
using exactly the same values for the individual components (ICE, EM, battery, Gearbox,
axles, vehicle resistances and weight) with the ones used in the AVL Cruise simulated
model. The DP model delivered 640.9 g as global optimum CFC, which is 7.3% lower than
the one from the best-performing EBC (640.9 g vs. 691.4 g).

3.3. Comparison of RB and EB Algorithms for Other Cycles

Figure 7 illustrates the relative CFC difference between EB and RB algorithms for the
different cycles. In most cases, EB achieves lower fuel consumption compared to RB. The
highest FC reduction is observed for WLTC Low, which is 22.1–24.2% depending on the
EB type, while the highest EB increase over RB is 2.7% over the ERMES Extra Urban. EB
outperforms RB in all cycles of low speed. Evidently, the restrictions of RB on engine switch
on criteria (Figure 1) and power output (Figure 2) have a cost on FC reached, while the
adaptability of ECMS (Figure 3) allows for a much better result to be obtained.
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Figure 7. Fuel consumption change in ECMS algorithm types vs. Rule Based algorithm case for
different cycles. EBA: ECMS Based Type A, EBB: ECMS Based Type B, EBC: ECMS Based Type C.

Table 7 better explains how EBC and RB perform for a low speed (WLTC Low) and a
high speed (ERMES Extra Urban) cycle. In WLTC Low, EBC results in a higher propulsion
efficiency by eight percentage units compared to the RB, and this leads to 22% FC reduction
(RB: 582 g and EBC: 453 g). The improvement in propulsion is mainly linked to the mean
ICE efficiency in this case. As Figure 2 shows, RB selects to operate the engine at lower load
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for vehicle speeds 0–30 km/h, which results in low engine efficiency. In reality, this selection
may have to do with the need to retain low noise, vibration and harshness (NVH) levels in
the vehicle cabin during low-speed driving. On the other hand, ECMS algorithm decisions
for the engine load are dependent on the optimization of a cost function—Equation (7). As
a result of its optimization-based functionality, ECMS leads to higher ICE Mean efficiency
by 3.7 percentage units compared to RB in WLTC Low.

Table 7. Consumption and mean efficiency values of the main powertrain components for WLTC
Low and ERMES Extra Urban in the case of Rule Based (RB) and ECMS Based—C (EBC) algorithms.

Cycle Magnitude
Algorithm Type

Rule Based (RB) ECMS Based—C (EBC)

WLTC Low

Fuel Consumption [g] 582 453

Propulsion Efficiency [%] 32.5 40.5

ICE Mean Efficiency [%] 33.3 37.0

EM Mean Efficiency [%] 78.8 76.9

ERMES
Extra Urban

Fuel Consumption [g] 1341 1363

Propulsion Efficiency [%] 38.0 37.4

ICE Mean Efficiency [%] 37.2 34.8

EM Mean Efficiency [%] 86.7 84.3

The FC with ECMS appears higher than RB only in the ERMES cycle, and in particular
in ERMES Extra Urban. In order to explain this, we can look the propulsion efficiency
values at Table 7. The RB algorithm has a higher propulsion efficiency by 0.6 percentage
units compared to EBC. The ERMES has a much higher power requirement and stronger
accelerations than WLTC, which was used to tune the parameters of the ECMS algorithm
(Equations (11a)–(12b) and Table 3). A better tuning for high power cycles could lead to
lower FC compared to RB.

4. Discussion and Conclusions

This study makes an assessment and performance analysis for two types of en-
ergy management algorithms, including a back-engineered stock RB algorithm and an
ECMS one.

A novel methodology to assess the different algorithms on a fair basis has been devel-
oped, introducing corrections for distance travelled, final SOC level and energy propulsion
differences between alternative simulations. Our analysis showed that the impact of such
corrections on fuel consumption can exceed 5%. Hou et al. [35] also considered SOC correc-
tions when comparing different EMS algorithms, and found the impact of these corrections
to be no more than 1% in fuel consumption. However, they did not correct for propulsion
energy demand and regenerative braking. Our analysis shows that all three corrections can
have a measurable result on fuel consumption values when different EMS algorithms are
compared, and these should not be neglected in relevant studies.

The energy flow analysis also showed that the EMS affects both the efficiency of each
powertrain component and the net energy flow between components. Therefore, it is the
combination of these two magnitudes that affects overall total fuel consumption. As a
result, the efficiencies of the individual components can be quite close for the two different
EMS algorithms, but the FC can differ for the same energy demand.

Another important finding is that different driving conditions affect the magnitude of
FC reduction that can be achieved with an alternative algorithm. Regarding the WLTC cycle,
it has been found that the potential FC reduction with the use of ECMS algorithm is 3.4%
over RB. For benchmarking purposes, a DP global optimization algorithm has been used
for comparison. This requires a priori knowledge of the driving profile to find the optimum
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solution. The DP led to a 7.3% lower FC compared to the one from ECMS. Sun et al. [13]
demonstrated that, on average, the FC achieved with DP can be 6.7% lower compared to an
ECMS algorithm. ECMS algorithms, therefore, seem to offer good adaptability to driving
conditions and sufficiently good final fuel consumption, which is not very distant from the
global optimum.

With the use of ECMS, we found that fuel consumption in driving cycles with low
average speeds (lower than 20 km/h) can be improved by up to 24.2% compared to a stock
RB algorithm. The magnitude of improvement achieved was actually similar to the ones
reported by Geng et al. [36], who proposed a combination of DP and ECMS to reduce FC
by up to 19.9% in NEDC compared to RB. In another study, Hao et al. [37] used an adaptive
ECMS to decrease the FC by 8–15% compared to an RB algorithm on a mild parallel hybrid
vehicle. In our case, this large difference was partly because the RB forced the engine to
operate at low loads when switched on in low average speeds. Although this may have
been mandated in order to retain low NVH in the cabin at low speeds or due to pollutants
emission control restriction, one needs to admit that an improvement margin of more than
20% is a significant incentive to invest more in powertrain efficiency control, especially in
urban conditions.

This paper examines the energy optimization of the hybrid powertrain for propulsion.
However, an EMS algorithm may consider additional parameters, such as consumption of
auxiliaries for cabin comfort and the thermal management of the emission control devices.
These parameters are not addressed in the current work, as they add complexity and
extra investigation is required to achieve balance between real-time implementation and
optimality. However, they can be addressed in a future work by extending the cost function
expression to cover these terms and by extending the list of conditions that have been
considered to the implemented the algorithms. Such conditions can also take into account
NVH requirements that can be added as cost penalizing terms in relevant optimization.

In general, ECMS algorithms are simple to enforce in an ECU as they do not require
a full set of guidance for all foreseeable conditions and could always be used as back-up,
fail-safe algorithms. For example, in driving situations that have not been thoroughly
considered when setting up an RB algorithm and which cause higher FC than what would
be technically possible, an ECMS could step in instead. Moreover, an ECMS could be
identical for different vehicle model variants, without needing to set exact limits for each
version of the vehicle when, e.g., engine or motor sizes change while powertrain architecture
stays the same. An ECMS algorithm can, therefore, have a more universal usage due to its
adaptability features.
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Abbreviations

B Battery
CO2 Carbon dioxide
CFC Corrected fuel consumption
DP Dynamic programming
EBA ECMS based type A
EBB ECMS based type B
EBC ECMS based type C
ECMS Equivalent consumption minimization strategy
EM Electric motor
EMS Energy management system
EU European union
FC Fuel consumption
GB Gearbox
GHG Greenhouse gases
HEVs Hybrid electric vehicles
ICE Internal combustion engine
LB Learning based
NVH Noise, vibration and harshness
OB Optimization based
PHEVs Plug in hybrid electric vehicles
PMP Pontryagin’s minimum principle
R Correlation coefficient
RB Rule based
RPA Relative positive acceleration
SFC Simulated fuel consumption
SOC State of charge
WLTC Worldwide harmonized Light vehicles Test Cycle
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