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Abstract: The increasing demand for robust and high-performance centrifugal compressor stages has
led to the development of several optimization and uncertainty quantification approaches. However,
in the industrial scenario, geometric variations of such pre-engineered stages can occur during
customer orders or non-conformity evaluations. In this regard, a rapid low-effort quantification of
the impact of these changes has become critical for manufacturers. Against this backdrop, the present
study provides an approach based on the joint use of computational fluid dynamics (CFDs) and
artificial neural networks to instantly assess the impact of geometric variations on the aerodynamic
performance and operating range of centrifugal compressor stages. As a theoretical contribution,
the research investigates the capacity of a CFD-based surrogate approach for evaluating variations
of stage efficiency and work coefficient. On a practical level, a business-friendly tool for stage
performance assessment is provided. As an example case study, the approach is applied to a group of
stages for medium–high Mach number applications. Results show how the multi-point surrogate
approach enables a rapid quantification of stage performance changes without requiring additional
CFD analyses. The research lays the foundation for future studies aiming to reduce efforts when
assessing geometric variation impacts on centrifugal compressor stages.

Keywords: centrifugal compressor; artificial intelligence (AI); aerodynamic design; geometry variations;
energy transition; computational fluid dynamic (CFD)

1. Introduction

The pursuit of more efficient and cleaner plants is essential to reduce the carbon
footprint of the energy sector and to reach carbon neutrality by 2050 [1]. As highlighted
by the Energy Trilemma, it is necessary to guarantee a trade-off between environmental
sustainability, energy security, and equity [2]. In this context, centrifugal compressors
represent key components for many industrial and civil applications. Indeed, the shift
induced by the energy transition towards highly intermittent sources (e.g., photovoltaic
and wind power) has led to a renewed interest in compressed-air energy storage (CAES)
systems [3]. Moreover, carbon capture and storage (CCS) technologies, together with super-
critical carbon dioxide (sCO2) systems, seem to be interesting solutions for improving the
efficiency of energy cycles and mitigating the effects of climate change [4]. Furthermore, an
ever-growing use of centrifugal compressors in sCO2 [5], organic Rankine cycle (ORC) [6],
and hydrogen [7] plants emphasizes how these turbomachines are pivotal for the current
energy transition [8]. In this context, the rapid and continuous evolution of markets is
forcing centrifugal compressor designers to maximize the performance of these machines in
ever shorter timescales [9]. The scientific literature has recently shown an increased interest
in optimization techniques for turbomachine designs [10,11]. Considering the preliminary
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design of centrifugal compressors, several optimization techniques were combined with
low order models. To this end, Du et al. [12] used a mono-dimensional (1D) model and a
genetic algorithm (GA) for the optimization of a sCO2 centrifugal compressor, whereas
Bicchi et al. [11] provided a design method based on artificial intelligences (AI) and a 1D
single-zone model for fast development of new centrifugal compressor families. Similarly,
Massoudi et al. [13] defined an approach for designing centrifugal compressors by means of
the combined use of a 1D model and an artificial neural network (ANN). Another example
was provided by Li et al. [14], who optimized a low-pressure centrifugal compressor by
combining a simulated annealing algorithm with a 1D model. Finally, Wang et al. [15]
showed the use of a 1D model and a GA for designing a sCO2 centrifugal compressor.
However, the scientific literature does not only report examples of preliminary design
optimization. Indeed, advanced three-dimensional (3D) optimization techniques are also
provided, while computational fluid dynamics (CFD) often provide a higher level of ac-
curacy in optimizing performance. Omini et al. [16] proposed a hybrid design procedure
of a new centrifugal compressor based on CFDs and GA. Ekradi and Madadi [17] pre-
sented a procedure for the 3D optimization of a transonic centrifugal compressor impeller
with splitter blades by integrating GA, ANN, and a CFD solver. Finally, Ma et al. [18]
developed an AI framework to achieve multi-objective optimization of the centrifugal
compressor impeller.

Against this backdrop, the previous examples from scientific literature show how
aerodynamic optimization is often carried out without considering the possibility of sub-
sequent variations (intentional or unintentional) of the optimized geometry. As proof of
this, Panizza et al. [19] and Javed et al. [20] highlighted that, although centrifugal compres-
sors have reached a high level of performance, and even though optimization techniques
are now relevant in design development, these machines are still potentially subject to
geometric variations capable of altering their performance. Indeed, manufacturers often
face uncertainties and performance variations due to errors during production or assembly
(unintentional variations) [21]. For this reason, to limit the effect of such variations, several
authors in the scientific literature developed approaches for the robust design of centrifu-
gal compressors. In this sense, Javed et al. [20] developed a design approach in which
the impeller performance is relatively insensitive to manufacturing uncertainties. Zhu
et al. [22] carried out an uncertainty analysis of a centrifugal compressor stage considering
both geometric and operational uncertainties. Moreover, Li et al. [23] investigated the effect
of geometric uncertainty on the aerodynamic performance of a centrifugal compressor
by leveraging a Kriging model. Ju et al. [24] explored how to revise the blade design to
compensate the negative effects of inevitable manufacturing uncertainties. Furthermore,
Panizza et al. [19] presented a fully automatic procedure to quantify the effect of impeller
manufacturing variability on the compression stage performance using CFDs and sparse
pseudospectral approximations. Recently, Teng et al. [25] developed a novel approach for
the multi-objective aerodynamic robustness optimization by leveraging an ANN-based
Kriging model.

The above examples show how the literature provides possible solutions for opti-
mizing centrifugal compressor geometries and reducing their performance variability.
However, a robust optimized geometry may still be subject to intentional variations that
could alter the performance and operating range of the centrifugal compressor stage. In-
deed, constraints imposed during customer orders could also lead to the adjustment of
pre-engineered geometries. In those cases, intentional geometric rearrangements are delib-
erate to better meet customer needs, and generally, they are greater than those considered
during uncertainty analyses. Centrifugal compressor manufacturers, in fact, often employ
pre-engineered families to quickly derive new centrifugal compressors by adjusting the
geometry based on customer constraints [26,27]. Therefore, being able to quickly quantify
how much geometric variation impacts the behavior of a centrifugal stage seems attractive
to centrifugal compressor manufacturers, especially during (but not limited to) the first
phases of a customer order. However, to the best of the authors’ knowledge, an approach
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to rapidly assess the impact of geometric variations on both the performance and operating
range of a centrifugal compressor stage is overlooked by the scientific literature. Indeed,
as highlighted by Mosdzien et al. [28], CFD analyses are often chosen to accurately study
the impact of possible geometric variations on the aerodynamic performance of a stage,
but they are time-consuming and do not allow for immediate feedback. An alternative
has been proposed by Du et al. [29] with a quasi-one-dimensional numerical tool applied
in a curvilinear coordinate system. However, although this approach allows for rapid
assessment of the impact of geometric variations, it is inherently less accurate than CFD
analyses. In light of this, the present paper aims to provide a novel approach capable
of rapidly and accurately assessing the impact of geometric variations (both intentional
and unintentional) on the performance and operating range of centrifugal compressor
stages. Specifically, a multi-point surrogate-based approach is developed by combining
the benefits of both CFD analyses and ANNs. As an example case study, the proposed
approach was applied here to quantify the impact of geometric rearrangements on the
performance and operating ranges of a family of impellers for medium-high Mach number
applications. The main contribution of this article is twofold: at a theoretical level, it is to
investigate the use of CFD simulations with ANNs to provide surrogate-models capable
of predicting the impacts of geometric rearrangements of a centrifugal compressor stage.
At a practical level, it is to support designers and practitioners in verifying the effects
of customer and manufacturing constraints on the performance and operating ranges of
centrifugal compressor stages.

After providing some introductions enclosing the theoretical background pertinent to
the subjects of interest, the remainder of the paper is structured as follows. In Section 2, the
proposed multi-point surrogate approach is provided, while also describing the procedural
steps followed to derive it. In Section 3, the proposed approach is applied to the case
study of a family of impellers for medium–high Mach number applications, presenting
and discussing the achieved results. Finally, in Section 4, some conclusions on this study
are proposed.

2. Materials and Methods

Aiming to provide a surrogate model for quantifying the impact of geometric varia-
tions on performance and operating range of centrifugal compressors, the present paper
focused on the stage provided in Figure 1. However, it is worth mentioning that this
approach could be extended, without lacking generality, to different stages, including
vaned diffusers or discharge volutes. As shown in Figure 1a, the stages analyzed in the
present paper were composed of an inlet duct (Figure 1a, component A), a closed impeller
(Figure 1a, component B), a vaneless diffuser (Figure 1a, component C), a crossover bend
(Figure 1a, component D), and a return vane channel (Figure 1a, component E).

In the provided approach, three steps were applied for each stage under investigation.
In step 1, a set of geometric parameters—whose impact of variations was of interest—was
selected. Therefore, a realistic range of rearrangements was associated with each parameter.
In step 2, the parametrization of the centrifugal compressor stage was defined, and a dataset
of possible geometries was obtained by imposing the geometric variations of step 1. Then,
a parametric analysis was performed, by means of CFD simulations, on each geometry
belonging to the dataset. Finally, in step 3, the results of the parametric analysis were used
to train and validate an ANN. The subsections below describe the above steps in detail,
while the results will be explained in Section 3.
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Figure 1. Meridional view of a centrifugal compressor stage (a) composed of the inlet duct (A),
impeller (B), vaneless diffuser (C), crossover bend (D), and return vane channel (E), as well as
independent/dependent geometrical parameters of the stage (b).

2.1. Step 1: Selection of Geometric Parameters

When analyzing the impact of geometrical parameter variations on the performance
of centrifugal compressor stages, it is first necessary to select the geometric characteristics
of interest (independent parameters). Theoretically, all geometric quantities could be
potentially chosen. However, studying geometric parameters, whose variations have
negligible effects on performance, could unduly enhance the time and computational cost
of the task [11]. Hence, a good practice would be to reduce the number of parameters to
be analyzed. To this end, the scientific literature provides several strategies to identify the
most impactful parameters. However, the investigation of these strategies and the selection
of the optimal one is beyond the scope of the study. Therefore, we only mention that the
most impactful parameters can be selected by applying strategies such as the analysis of
variance (ANOVA) [30], multi-criteria decision-making techniques, including the analytic
hierarchy process (AHP) [31], or simply by leveraging the know-how of company experts.
In the present study, according to [32], it was decided that, in order to exploit the experience
of those who daily face design and production issues, to consult a group of aerodynamics
and manufacturing experts, and select—as independent parameters—the ones which
are typically adjusted during redesigns for customer orders (i) or which are potentially
subject to manufacturing non-conformities (ii). Table 1 shows the impeller and diffuser
characteristics considered in the approach as independent parameters and, thus, modified
in the parametric analysis of step 3. The ranges of the variation of Table 1 were set according
to the values typically used to adjust pre-engineered geometries during customer orders,
since these ranges are greater than those considered for non-conformities.

On the other hand, the geometric quantities of the inlet duct, the crossover bend, and
the return vane channel were considered in the approach as dependent parameters (Table 2).
These quantities were adjusted to obtain mutually consistent perturbed geometries of the
stage. Namely, the parameters in Table 2 were modified to maintain a geometric similitude
of the inlet duct and the components downstream of the diffuser (Figure 1a, components A,
D, and E).



Energies 2023, 16, 1584 5 of 21

Table 1. Independent geometrical parameters varied in the approach.

Parameter Unit Range of Variation

Impeller inlet blade angle β1 deg [−2.0; 2.0]
Impeller outlet blade angle β2 deg [−2.0; 2.0]

Blade thickness t % [−7.5; 7.5]
Outlet impeller width b2 % [−5.0; 5.0]
Impeller throat area Ath % [−4.0; 7.5]

Diffusion ratio of diffuser
DR = D4/D2

- [−1.6; 1.84]

Table 2. Dependent geometrical parameters adjusted in the approach.

Parameter Reason

Inlet width of inlet duct b0 Fix inlet width of inlet duct
Inlet width of impeller b1 Fix inlet width of impeller

Inlet width of crossover bend b4 Preserve b3/b4 ratio
Inlet width of return vane channel b5 Preserve b4/b5 ratio

Radial position of return channel blade LE rLE
Preserve the ratio between return channel

blade length and diffuser DR
Outlet width of return vane channel TE b6 Preserve TE width

It is worth mentioning that the dependent parameters of Table 2 were chosen to
preserve specific characteristics of the centrifugal compressor stages analyzed in this project.
However, these choices do not affect the generality of the approach, as the determination of
independent and dependent parameters is inevitably linked to the aim of each specific case
where the approach is applied.

2.2. Step 2: Parametrization of Centrifugal Compressor Stage and Parametric Analysis

After defining the independent geometric parameters in step 1, a parametrization of
the stage was carried out by leveraging Bézier curves [33], whose generic formulation is
described in Equation (1).

B(t) =
n

∑
i=0

(
n
i

)
Pi(1− t)n−iti with t ∈ [0, 1], (1)

Considering the meridional view shown in Figure 2, the stage end-walls were de-
scribed with eight Bezier curves as follows:

• The 3rd order Bezier curves are for inlet duct (Figure 2, red dots).
• The 4th order Bezier curves are for impeller and diffuser (Figure 2, blue and yellow dots).
• The 10th order Bezier curves are for crossover bend and return channel (Figure 2,

green dots).

In particular, the impeller end-walls were described based on [34], adding supplemen-
tary poles (Figure 2, blue dots 2 and 4) to ensure smooth continuity with the other parts [35].
The shape of the inlet duct was frozen (Figure 2, red dots) to preserve the components
upstream of the impeller. Instead, the radial position of the poles at the crossover bend
inlet (Figure 2, green dots 1), the leading edge (LE) position of return channel blades, and
the radial position of poles near the trailing edge (TE) of return channel blades (Figure 2,
green dots 8 and 9) were adjusted following Equation (2).

rpole i = c1,i DR + c2,i, (2)

where c1,i and c2,i are coefficients, which varied from pole to pole (the specific values of
c1,i and c2,i cannot be reported due to non-disclosure agreements). Moreover, to preserve
the ratio between b4 and b5, Equation (3) was adopted to adjust the position of poles near
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LE of the return channel blades (Figure 2, green dots 6 and 7) along the axial direction of
the stage.

xpole i = d1,i b4 + d2,i, (3)

where d1,i and d2,i are coefficients, which varied from pole to pole. Again, their specific
values cannot be reported due to non-disclosure agreements. Finally, 6th order Bezier
curves were employed for angle and thickness distributions of impeller blades.
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Once the parametric discretization of the centrifugal compressor stage was achieved
(task 1 of step 2, Figure 3), three CFD analyses of the original unperturbed compressor stage
(the one without variation of geometrical parameters) were performed at stall, design, and
choke conditions (task 2 of step 2, Figure 3). The resulting performances at section 2, 3, and
6 (Figure 1a) were then collected in terms of total-to-total pressure ratio (βtt), polytropic
efficiency (ηp), work coefficient (τ), and polytropic head (ψ) following the definitions of
Equations (4)–(7) (shown in the specific case of section 6).

βtt =
p06

p01
, (4)

ηp =
k− 1

k

ln
(

p06
p01

)
ln
(

T05
T01

) , (5)

τ =
cp(T06 − T01)

U2
2

, (6)

ψ = τ ηp =
cp(T06 − T01)

U2
2

k− 1
k

ln
(

p06
p01

)
ln
(

T06
T01

) , (7)
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During the CFD evaluation of the unperturbed stage, the stall condition was defined
as the point with the horizontal tangent of ψ, the design condition as the point with the
peak of ηp, and the choke condition as the point at which ηp decreased by 10%. For these
conditions, CFD analyses were performed at fixed mass flow rate, defined by means of
the non-dimensional flow coefficient (φ) and peripheral Mach number (Mu) described in
Equations (8) and (9).

φ =
4Q01

πD2
2U2

, (8)

Mu =
U2

a01
, (9)

After performing the CFD analyses of the unperturbed stage, a Sobol quasi-random
low discrepancy sequence [36] was adopted to assign a feasible value to independent
parameters from step 1. By varying and combining these values, a dataset of 600 different
geometries was obtained (task 3 of step 2, Figure 3), and then, a parametric analysis was
achieved by performing CFD computations on each geometry (task 4 of step 2, Figure 3).
Concerning the Sobol sequence [36], the value of each independent parameter was assigned
following Equation (10).

xpq = xlp + Spq·
(

xup − xlp

)
with p = 1, . . . , P and q = 1, . . . , Q, (10)

where the total number of compressor geometries was defined with Q, while q was the
specific stage, P was the total number of independent parameters from step 1, p was the
variable to which xpq was assessed, and Spq was a value determined by the Sobol sequence.
Moreover, xlp and xup were the upper and lower limits of each parameter. The Sobol
sequence was adopted instead of Monte Carlo sampling or Latin Hypercube since it is more
effective when a large number of independent input variables is affecting a problem [37].

Using the βtt values of the unperturbed compressor stage (baseline) obtained for
stall (βtt,stall), design (βtt,design), and choke (βtt,choke) conditions during task 2 of step 2, the
parametric analysis was performed by running CFDs, with imposed pressure ratio on each
perturbed stage, for a total of 1800 simulations per stage (task 4 of step 2, Figure 3). The
reason behind imposing pressure ratios was to determine what flow rate the modified
centrifugal compressor would achieve to guarantee the same pressure rises. However,
an interesting alternative that will be evaluated in future works would be to impose
a fixed mass flow rate for the design point and a fixed pressure ratio for the stall and
choke conditions. At the end of step 2, by leveraging the analyzed geometries and their
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performance, a dataset was generated (task 5 of step 2, Figure 3) for feeding and training an
ANN in step 3. As a matter of fact, knowing the behavior of the unperturbed geometry, it is
possible to associate a geometric variation with a corresponding variation in aerodynamic
performance. A summary of the process followed in step 2 is shown in Figure 3.

Focusing on CFD simulations, RANS computations were carried out by means of
TRAF code [38]—a 3D viscous solver for the resolution of Reynolds-Averaged Navier–
Stokes equations on structured grids [39]. In the project, convective fluxes were discretized
with a 2nd order TVD-MUSCL strategy based on the Roe’s upwind scheme, while a
central difference scheme was adopted for viscous fluxes. The turbulent closure was
achieved with Wilcox’s k-ωmodel [40], guaranteeing a high level of parallelization with
a hybrid OpenMP/MPI architecture [41]. H-type grids were adopted to discretize the
computational domain shown in Figure 4. Specifically, an H-type grid was used for the
first block composed by the inlet duct, the impeller, and the vaneless diffuser, and another
H-type grid was adopted for the second block consisting of the crossover band and the
return vane channel.
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After a sensitivity analysis, an overall grid of 4.8 million elements was selected. Table 3
describes the outcomes of the sensitivity analysis, which demonstrate that exceeding
the number of elements beyond 4.8 million does not lead to changes in the centrifugal
compressor performance predicted by the CFD simulations. Boundary conditions were
imposed at the inlet and outlet of domain, on solid walls, and between adjacent blade-rows.
Concerning the domain inlet, span-wise distribution of total temperature, total pressure,
and flow angles were adopted. At the domain outlet instead, the span-wise distribution
of static pressure was imposed. For solid walls, no-slip and adiabatic conditions were
exploited, whereas a periodicity condition was used between adjacent blade-rows. At the
interface between adjacent blocks, the mixing plane approach was adopted to guarantee
their coupling. Finally, a full resolution of boundary layer was ensured using near wall
grid refinements. All the assumptions adopted for the numerical setup are summarized in
Table 4.
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Table 3. Sensitivity analysis outcomes about impacts of spatial discretization on performance.

Grid No. of Elements
Polytropic Efficiency Work Coefficient

Value Error with G5 [%] Value Error with G5 [%]

G1 3.4 million 0.991 −0.9 1.009 0.9
G2 3.8 million 0.995 −0.5 1.005 0.5
G3 4.3 million 0.998 −0.2 1.001 0.1
G4 4.8 million 1.000 0.0 1.000 0.0
G5 5.3 million 1.000 - 1.000 -

Table 4. Summary of assumptions followed for the numerical setup of CFD computations.

Numerical Setup for CFD Computations

Analysis type RANS with adiabatic walls
Grid type H-type

No. of Elements 4.8 million
Convective flux discretization 2nd order TVD-MUSCL with Roe’s upwind scheme

Viscous flux discretization Central difference scheme
Turbulence closure Wilcox’s k-ωmodel

Parallelization Hybrid OpenMP/MPI architecture
Wall treatment Full resolution

Near wall grid refinement First element of 1.0 × 10−5 mm (y+ ≤ 1)

2.3. Step 3: Feed, Train, and Validation of Artificial Neural Network

In step 3, the outcomes of the parametric analysis were collected with the Sobol-based
values of independent parameters to feed and train an ANN. The resulting surrogate model
provided a response surface, able to reproduce CFD behavior, in predicting the impact
of geometric variations on centrifugal compressor performance. Leveraging 70% of the
dataset obtained in step 2, a feed-forward ANN with two hidden layers was trained to
minimize the difference between the ANN prediction and the CFD results [42]. Instead,
the remaining 30% of the dataset was used to test (15%) and validate, with a k-fold cross-
validation (15%), the ANN. The development of the feed-forward ANN with two hidden
layers was carried out in Python environment based on Keras [43] and TensorFlow [44]
packages. Such implementation was performed according to [45]. The learning process of
the ANN can be briefly summarized as follows. To a first approximation, the CFD behavior
could be considered as a transfer function f , which provides an output vector o from an
input vector i following Equation (11).

o = f (i), (11)

where i includes the stage performance predicted by CFD (Equations (4)–(7)), and o includes
the changes in the independent parameters of Table 1. Similarly, starting from the same
input vector, the ANN forecast (namely o′) could be described by Equation (12), where g is
the behavior learnt by the ANN in the training phase.

o′ = g(i), (12)

As aforementioned, the ANN response surface (g) represents a surrogate model of
CFDs ( f ). Hence, it is inherently possible that ANN forecasts (o′) might differ from CFD
results (o). In light of this, the training process aims to minimize the prediction error (δ)
between o′ and o (Equation (13)).

δ = ‖o− o′‖2, (13)

This task involves the recursive execution of the training phase and the frequent
adjustment of the weights ωj,k,v used to handle the passage of information through neu-
rons. Finally, having trained the ANN, a k-fold cross-validation process is necessary to
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understand the reliability of the ANN and to avoid the occurrence of under-fitting and
over-fitting problems. In Figure 5, a schematic representation of the trained feed-forward
ANN with two hidden layers is shown.
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3. Results and Discussion

As an example case study, the approach defined in Section 2 was employed on a family
of five impellers for medium–high Mach number applications. However, for the sake of
brevity, only three of the five stages composing the compressor family are reported in the
following. Specifically, two centrifugal compressor stages were selected as the extremes of
the family (characterized by the lowest and the highest mass flows), while the third one was
chosen as the intermediate stage of the family (the one designed for medium mass flows).
These centrifugal compressor stages (hereafter referred to as low, medium, and high mass
flow stage) are representative of the entire family, and therefore, the considerations obtained
can be easily extended to the other two stages. In the following, the experimental validation
of the CFD numerical setup is provided in Section 3.1, while findings and discussions of
the proposed approach are presented in Section 3. For non-disclosure agreements, all the
results shown in the figures below are dimensionless.

3.1. Experimental Validation

Before starting with the application of the proposed approach, the numerical setup
was verified by exploiting experimental data from Baker Hughes. This task was necessary
to assess CFD prediction errors. Indeed, simulations were carried out without considering
the impeller hub, shroud cavities, and the effects due to parasitic losses. This simplification
was required to limit the computational effort during the creation of ANN databases. In
this regard, the impact of such a choice on prediction accuracy was evaluated by means
of experimental measurements carried out with air, at ambient conditions, on a test rig
available in Baker Hughes. Pressure and temperature probes were positioned at each
section of Figure 1a. In this way, the aerodynamic performance of the impeller, diffuser,
and return channel system were evaluated with an average error of less than 0.04%, 0.10%,
and 0.53% for temperature, pressure, and mass flow rate, respectively. Furthermore,
starting from the relative uncertainty of each sensor and using an in-house software, a
maximum uncertainty of 0.20%, 1.53%, 1.49%, and 0.25% was obtained for βtt, ηp, τ, and
ψ, respectively. Systematic errors were then assumed to be neglected since the adopted
thermocouples were provided with a calibration certificate, and the pressure transducers
are calibrated annually.
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Focusing, for the sake of brevity, on the stage designed for low mass flows (measure-
ments achieved for the other stages have been omitted), the CFD predictions appear to
slightly overestimate the performance of the stage. However, these results can be con-
sidered acceptable since they are within (or close to) the error limits of the experimental
measurements. In Figure 6, the prediction of the low mass flow stage, in terms of polytropic
efficiency (Figure 6a) and work coefficient (Figure 6b), are presented.
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In Figure 6, a correct CFD prediction of the choke limit is observed with respect to
the experimental data. Instead, the stall limit is not properly estimated by CFD analyses.
However, this is inherently unavoidable when using RANS simulation due to the non-
stationarity of the stall. Overall, the CFD analyses seem to correctly predict the polytropic
efficiency and work coefficient of the stages. Indeed, a maximum overestimation of 1.3%
was obtained for the polytropic efficiency of the low mass flow stage (Figure 6a), whereas a
maximum overestimation of 0.2% is observed for the work coefficient (Figure 6b). Based
on the experience of the Baker Hughes aerodynamics team, it is reasonable to state that
these values are within the allowable range. Therefore, experimental validation shows that
the numerical setup underlying the proposed approach is correct.

3.2. Results of the Proposed Approach

As aforementioned, in step 1 (Sections 2 and 2.1) the selection of independent geomet-
ric parameters was carried out by consulting a team of aerodynamic and manufacturing
experts. Although this classification could be performed with strategies such as ANOVA or
AHP, in this case study, the selection was based on which geometric parameters aerody-
namic designers have frequently adjusted in recent commissions (i) and which production
team has been highlighted as critical to manufacturing non-conformities (ii). After defin-
ing the independent parameters of Table 1, a range of realistic values was associated
with each parameter based on experts’ know-how. Then, the dependent parameters of
Table 2 were defined to guarantee mutually consistent perturbed geometries in the next
parametric analysis.

In step 2 (Sections 2 and 2.2), once the geometric parametrization of the centrifugal
compressor stage was defined, a parametric analysis was performed leveraging the CFD
analyses and the variations of parameter in Tables 1 and 2. The results, with the values
assumed by independent parameters of Table 1, were then collected in datasets used to feed
and train an ANN for each centrifugal compressor stage. Figures 7–9 show the performance
at section 6 (see Figure 1a) obtained for the low, medium, and high mass flow stages in terms
of ηp and τ (Equations (5) and (6)) at stall, design, and choke conditions. Specifically, the
yellow dots represent the performance of each unperturbed stage (baseline), while the cyan,
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magenta, and grey dots are the performance of the perturbed geometries assessed during
the parametric analyses. Moving from the low mass flow stage (Figure 7) to the high mass
flow stage (Figure 9), a lower dispersion of these performance is observed. A comparable
trend can also be seen in the mass flow variations at each operating point. Furthermore, by
calculating the standard deviation of each distribution, the variations imposed with the
Sobol sequence result in a greater dispersion of performance at the stall condition. Similar
plots were also derived for βtt and ψ (Equations (4) and (7)). However, for the sake of
brevity, these results have been omitted, as well as those for sections 2 and 4 (Figure 1a).
Focusing on the design condition of Figure 7a, the stage polytropic efficiency (ηp/ηp*)
reached a maximum value of 1.01 (a relative +1% percentage increase from baseline), with
a flow coefficient (φ/φ*) shifted to 1.09 (+9% from baseline). For the same perturbed
geometry, the stall condition gains a ηp/ηp* value of 0.99 (+2.1%) with = φ/φ* of 0.93
(+10.7%), whereas, for the choke condition, a value of 0.91 (+1.1%) is obtained for ηp/ηp*
with a φ/φ* of 1.58 (+5.3%). From these results, since the CFD analyses were performed
with an imposed pressure ratio, it can be stated that this perturbed geometry is suitable
for working with higher mass flow rates. Indeed, the same pressure ratios are reached
in this stage with higher mass flow rates compared to the baseline. Therefore, in case
this perturbed geometry will work with the same mass flow rates as the baseline stage, a
reduction in polytropic efficiency will be obtained. Moreover, the same perturbed stage
geometry, in terms of work coefficient (τ/τ*), exhibits a−1.9%, −1.0%, and−0.1% decrease
at stall, design, and choke conditions, respectively.

Energies 2023, 16, x FOR PEER REVIEW 58 of 87 
 

 

 
Figure 7. Polytropic efficiency (a) and work coefficient (b) at section 6 derived from parametric anal-
ysis on the low mass flow stage. 

Figure 8a shows a minimum of ηp/ηp* of about 0.99 (−1.0% from baseline) with a ϕ/ϕ* 
of 0.96 (−4.0% from baseline) and a τ/τ* of 1.00 (+0.0%). The same perturbed stage exhibits, 
at stall condition, a −2.0% reduction in ηp/ηp*, a gain of +1.9% for τ/τ*, and a shift to lower 
mass flow rates of −10.6% (ϕ/ϕ* of 0.76 instead 0.85). At choke condition, instead, the per-
turbed geometry compared to the baseline shows a reduction in ηp/ηp* of about −2.2%, the 
same value of τ/τ*, and a shift in ϕ/ϕ* of −2.9%. Therefore, this perturbed stage achieved 
the same pressure ratios of the baseline stage with lower mass flow rates. 

 
Figure 8. Polytropic efficiency (a) and work coefficient (b) at section 6 derived from parametric anal-
ysis on the medium mass flow stage. 

In Figure 9, as aforementioned, a lower dispersion of performance is observed. In-
deed, the polytropic efficiency (ηp/ηp*) varies from 0.99 to 1.01 at stall (from −1.0% to +1.0% 
in terms of relative percentage variation respect to baseline), from 0.99 to 1.01 at design 
(from −1.0% to +1.0%), and from 0.88 to 0.92 at choke condition (from −2.2% to +2.2%). 
Moreover, the work coefficient (τ/τ*) varies from 1.04 to 1.06 at stall (from −1.0% to +1.0%), 
from 0.99 to 1.01 at design (from −1.0% to +1.0%), and from a value of 0.81 to 0.86 at choke 
(from −3.6% to +2.4%). Finally, the flow coefficient (ϕ/ϕ*) varies from 0.82 to 0.97 at stall 
(from −5.7% to +11.5%), from 0.96 to 1.08 at design (from −4.0% to +8.0%), and from 1.23 
to 1.37 at choke condition (from −3.9% to +7.0%). 

Figure 7. Polytropic efficiency (a) and work coefficient (b) at section 6 derived from parametric
analysis on the low mass flow stage.

Figure 8a shows a minimum of ηp/ηp* of about 0.99 (−1.0% from baseline) with a
φ/φ* of 0.96 (−4.0% from baseline) and a τ/τ* of 1.00 (+0.0%). The same perturbed stage
exhibits, at stall condition, a −2.0% reduction in ηp/ηp*, a gain of +1.9% for τ/τ*, and a
shift to lower mass flow rates of −10.6% (φ/φ* of 0.76 instead 0.85). At choke condition,
instead, the perturbed geometry compared to the baseline shows a reduction in ηp/ηp*
of about −2.2%, the same value of τ/τ*, and a shift in φ/φ* of −2.9%. Therefore, this
perturbed stage achieved the same pressure ratios of the baseline stage with lower mass
flow rates.
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Figure 9. Polytropic efficiency (a) and work coefficient (b) at section 6 derived from parametric
analysis on the high mass flow stage.

In Figure 9, as aforementioned, a lower dispersion of performance is observed. Indeed,
the polytropic efficiency (ηp/ηp*) varies from 0.99 to 1.01 at stall (from −1.0% to +1.0%
in terms of relative percentage variation respect to baseline), from 0.99 to 1.01 at design
(from −1.0% to +1.0%), and from 0.88 to 0.92 at choke condition (from −2.2% to +2.2%).
Moreover, the work coefficient (τ/τ*) varies from 1.04 to 1.06 at stall (from −1.0% to +1.0%),
from 0.99 to 1.01 at design (from −1.0% to +1.0%), and from a value of 0.81 to 0.86 at choke
(from −3.6% to +2.4%). Finally, the flow coefficient (φ/φ*) varies from 0.82 to 0.97 at stall
(from −5.7% to +11.5%), from 0.96 to 1.08 at design (from −4.0% to +8.0%), and from 1.23
to 1.37 at choke condition (from −3.9% to +7.0%).

To better understand the spread of the performance and operating ranges of each per-
turbed geometry (q), the relative frequencies of ∆ηp and ∆τ variations at design condition
at section 6 are shown in Figures 10–12. In addition, Figures 10–12 provide the relative
frequencies of choke-to-stall operating range variations ∆φ. All of the above quantities are
described by Equations (14)–(16).

∆ηp = ηp,q − ηp,baseline, (14)

τ = τq − τbaseline, (15)

∆φ = ∆φq − ∆φp,baseline, (16)
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Figure 10. Low flow stage graphs describing the relative frequencies of ∆ηp (a) and ∆τ (b) variations
in design condition at section 6, as well as the relative frequency of choke-to-stall operating range
variations ∆φ (c) with their comparable Gaussian distributions.
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Figure 12. High flow stage graphs describing the relative frequencies of ∆ηp (a) and ∆τ (b) variations
at design condition at section 6, as well as the relative frequency of choke-to-stall operating range
variations ∆φ (c) with their comparable Gaussian distributions.

The relative frequency distributions are also comparable with the Gaussian distribu-
tions (dashed lines of Figures 10–12) obtained in terms of probability density function f by
determining the mean and standard deviation of ∆ηp, ∆τ, and ∆φ. The distributions shown
in Figures 10–12 exhibit trends in agreement, with the results provided in the recent scien-
tific literature. In fact, polytropic efficiency and work coefficient trends follow a Gaussian
distribution, as previously observed by Panizza et al. [19] and Javed et al. [20]. Recently
the outcomes from Li et al. [23] and Tang et al. [25] still confirm these results. Moreover,
the relative frequencies reported in Figures 10–12 are in line with those obtained by Zhu
et al. [22]. However, unlike the above works, in the present research, special attention
was also paid to the impact on the operating range of the centrifugal compressor stage.
This novel aspect is interesting, especially for applications, such as expander-compressors,
where a wide operating range is required. In this prospective, focusing of Figures 10–12, the
perturbed stages exhibit the same operating range of the baseline with a relative frequency
of 6.0%, 5.8%, and 7.5% for low, medium, and high flow stages, respectively.

In step 3, the outcomes of each parametric analysis were used for feeding and training
an ANN. Therefore, five ANNs were generated, with one for each centrifugal compressor
stage. The ANN hyperparameter tunings were based on a grid search method, minimizing
the absolute prediction errors δ. This method was chosen due to its quick and easy
implementation. However, in future developments of the project, different approaches,
such as those based on evolutionary algorithms, will be explored. In Table 5, the predictive
capacity of the meta-model is demonstrated by showing the mean absolute prediction
errors (δηp , δτ , and δ∆φ) committed by the ANN with respect to CFD values at section 6.
From the data in Table 5, it is noticeable that the prediction of the polytropic efficiency is
subject to greater errors in the choke condition than in the stall one. Conversely, for the
work coefficient, the prediction yields larger average errors near the stall condition than at
the choke. At design, predictions are less error-prone than in the previous conditions.
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Table 5. ANN mean absolute error in predicting polytropic efficiency δηp , work coefficient δτ , and
operative range δ∆φ.

Stall Design Choke Operative Range

δηp δτ δηp δτ δηp δτ δ∆φ

Low flow stage 0.15% 0.30% 0.07% 0.08% 0.20% 0.14% 0.03%
Medium flow stage 0.09% 0.17% 0.04% 0.05% 0.19% 0.11% 0.04%

High flow stage 0.10% 0.08% 0.06% 0.06% 0.12% 0.12% 0.07%

Moreover, the results of the ANN training are provided in Figures 13–15. In particular,
the ANN forecasts (cyan dots) and the CFD evaluations (magenta dots) of each tested
geometry are compared in terms of ηp and τ at section 6. Similar results were obtained
for βtt and ψ, but they are not provided for the sake of brevity. Concerning Figure 13d,
the ANN forecasts exhibit a lower predictability when ∆φ/φ* are lower than −0.10. The
same trend is achieved in Figure 14d. However, in this case, the ANN forecasts of the
work coefficient are overestimated, while in Figure 13d, an underestimation of the ANN
predictions can be observed.
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In the case of Figure 15, the lower dispersion of stage performance leads to a better
training of the ANN. In fact, the predictions of the ANN seem to better replicate similar
CFD results. However, the mean absolute errors of Table 5 demonstrate that the three
ANNs have similar prediction capacities.

Once the ANNs were trained and validated, these meta-models were able to quantify
the impact of geometric rearrangements on performance and operating range of each
centrifugal compressor stage composing the family in less than 1 s. The same assessment,
if performed with CFD calculations, would have taken more than 6 h. This difference is
not negligible in the industrial scenario. Indeed, meta-models allow for an immediate
evaluation of a modified geometry, avoiding the need to perform CFDs. As a matter
of fact, if well-trained, ANN-based meta-models can replicate CFD behavior with high
accuracy. Furthermore, these meta-models relieve practitioners in obtaining results without
necessarily being experts in computational fluid dynamics. Industrial users can focus on
performance without worrying about the correct numerical setup. Moreover, a time-to-
market reduction is achievable since several geometries can be evaluated in a rapid and
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cost-effective way. Finally, manufacturers can provide greater control over the performance
of their delivered stages, thus enhancing customer satisfaction. Indeed, meta-models offer
immediate feedback on the produced stage once the geometry variation has been measured.
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4. Conclusions

The present energy transition is changing the turbomachinery market, driving the
development of new technologies and the modification of the existing ones. Against
this backdrop, centrifugal compressor designers are required to develop ever more high-
performance machines in shorter timeframes. To this end, optimization approaches are
currently consolidating in the industrial field, along with robust design techniques for
avoiding performance degradations, due to non-conformities. However, a robust optimized
geometry may still be subject to intentional variations that could alter the performance
and operating range of the centrifugal compressor stage. Therefore, a pivotal topic for
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compressor manufacturers is the rapid assessment of the impact of geometric variations of
centrifugal compressor stages. For these reasons, manufacturers are clamoring for a valid
way to quickly evaluate the impact of changes imposed on their pre-engineered geometries
according to customer requirements and manufacturing non-conformities. In this context,
the joint use of CFD simulations and ANNs represents a valuable way to generate response
surfaces, which can be used to highlight impacts of geometry modifications on centrifu-
gal compressor stage performance and operating range. However, the current scientific
literature overlooks studies on a multi-point surrogate-based approach involving CFDs
and ANNs for achieving this task. To fill this gap, this paper provides and tests, on the
case study of a family of impellers for medium–high Mach number applications, a new
approach involving three main steps: (i) first, the geometric parameters of each centrifugal
compressor stage, whose impact of variations was of interest, were selected, and then, a
realistic range of variations was assigned to these parameters; (ii) once the parametrization
of the centrifugal compressor stage and a dataset of possible geometries (obtained by
imposing the previous geometric variations) was defined, an extensive parametric analysis
was performed using CFD simulations for stall, design, and choke conditions; (iii) finally,
the results of the parametric analyses were used to train and validate an ANN for each
compressor stage, thus achieving response surfaces capable of rapidly assessing the impacts
of geometric variations on the centrifugal compressor stage in terms of performance and
operating range

The results, demonstrated as the developed multi-point surrogate-based approach,
allow instant assessment of the impacts of geometric variations (intentional and uninten-
tional) on a centrifugal compressor stage. Furthermore, research outcomes show how the
ANN training with CFD results leads to the definition of surrogate models capable of
predicting the stage performance with low absolute errors (below 0.5%) compared to CFD
analyses. The study shows that using a trained surrogate model has led to a significant
reduction in time when assessing the impact of geometric variations. Indeed, the abrupt
execution of CFD analyses, to predict changes in the performance and operating range
of a centrifugal compressor stage, is expensive in terms of both time and computational
effort (6 h on 32 CPUs of a high-performance computing cluster equipped with CPUs
Xeon Gold 6242, 16 cores at 2.80 GHz, and 16 GB Dual Rank DIMMS at 2.93 GHz). In
contrast, once training and validation of the ANN are completed, the resulting response
surface can immediately predict the impact of geometric variations in less than 1 s on a
personal computer.

Overall, the main contribution of the present study is the definition of a multi-point
surrogate-based approach combining CFDs and ANNs to rapidly assess the impact of
geometric variations in a centrifugal compressor stage. This approach introduces several
advantages for centrifugal compressor manufacturers. On the one hand, the ability to
quickly assess the impact of intentional geometric variations makes it possible to meet cus-
tomer needs without resorting to time-consuming and computationally intensive analyses.
On the other hand, the developed multi-point surrogate-based approach makes it possible
to assess the effects of unintentional geometric variations due to manufacturing or assembly
processes. Furthermore, the present approach has the advantage of being able to evaluate
different stage geometries to reduce machining waste. Indeed, given a stage with specific
performance, the developed tool could be used by machining experts to find a geometry
that guarantees the same performance with lower usage of production resources. Moreover,
in a mutable scenario as the energy transition, the proposed approach has the potential to
evaluate numerous stage solutions without the wasteful use of computational resources.
It is worth mentioning that the developed approach can be applied to any centrifugal
compressor stage, although the present study focused on the case of a family of impellers
for medium–high Mach number applications. Since the main advantages have already been
mentioned, it is important to point out the limitations and disadvantages of the proposed
approach. As the main disadvantage, several CFD computations are necessary to feed
and train ANNs. This results in a tough task in terms of computational effort and expert
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staff required. Moreover, the achieved results are leveraged by the following simplifying
assumptions: the relevant geometric quantities were selected when focusing on a specific
type of stage (in other cases, it is not guaranteed that the same geometric characteristics
need to be defined as independent parameters), the exact stall condition was not sought
but, rather, was defined as the condition where the operational stability of the baseline
stage can no longer be guaranteed, and finally, parasitic losses were not considered. Specifi-
cally, not including parasitic losses limits the prediction capability of the numerical setup.
However, CFD simulation of impeller cavities would entail high computational costs and
time. Therefore, the use of simplified external loss correlations during CFD post-processing
would overcome this limitation.

Future developments of this research could mean two things: first, to introduce the
detailed evaluation of internal and external losses to understand not only the impact of
geometric variations on the performance and operational range but also on each individual
aerodynamic loss; second, to integrate the ANN train with data from mechanical and
manufacturability analyses to provide a more useful tool for customer orders and quality
controls. Indeed, mechanical insights could help designers evaluate geometry variations
early in customer orders or assess structural integrity after the occurrence of manufacturing
non-conformity. Moreover, manufacturability evaluations could prevent designers from
defining geometric adjustments during the first phases of customer orders that cannot be
guaranteed by a specific machining technique.
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