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The global energy system is undergoing an undeniable change. In the wake of the
Ukrainian invasion, it is clear that mass acceptance and utilization of renewable energy is
the answer to increased energy independence and halting climate change [1]. Renewable-
based electrification will be essential in order to achieve climate neutrality in Europe by
2050, and wind energy will be of the utmost importance in achieving this objective; it must
come to represent 50% of the energy mix [2]. However, the levelized cost of electricity
(LCOE) is the primary obstacle to the growth of the wind industry. The LCOE of a wind
park is calculated by integrating many elements, with operation and maintenance (O&M)
costs accounting for a considerable share (20–30%) [3]. Therefore, improving maintenance
practices is essential.

Any industrial-sized wind park might experience annual financial losses of millions
of euros due to downtime and component replacement costs. As a result, it is critical that
the wind sector transitions from corrective maintenance (repairing components after they
fail) and preventive maintenance (scheduled at regular intervals without considering the
asset’s current condition) to predictive maintenance (scheduled as needed based on the
state of the asset). Digitalization and artificial intelligence (AI) are crucial technologies
in this approach for improved exploitation of information in enormous amounts of data
from various sensors obtained from assets. The overall goal is to identify alterations in the
situation that deviate from normal operation and bespeak the development of a defect.

Within this framework, in this editorial, “Artificial Intelligence for Wind Turbine Con-
dition Monitoring”, a review of ten highly cited articles that have recently been published
in this journal is provided, addressing a wide variety of technical and scientific concerns on
the topic of wind turbine (WT) condition monitoring (CM).

CM is a broad field of study that has been effectively applied to a broad range of
problems. Nevertheless, its postulation to complex systems such as WTs, which are megas-
tructures that operate in a variety of operational and climatic circumstances, as well as in
hazardous settings (such as offshore), remains a difficulty. The excellent review paper [4]
provides an in-depth examination of existing CM and fault diagnosis methodologies in
three areas: energy flow, information flow, and an integrated (O&M) system. The angle
of energy conversion of the WTs is used to assess the properties of each component in the
energy flow. WT fault and control information is carried through the information flow. This
review paper also proposes an integrated WT (O&M) system based on electrical signals. It
is clear that, on the one hand, vibration signals are important information carriers of fault
parameters. On the other hand, the use of only SCADA data for CM has recently derived a
lot of attention. In the following paragraphs, these two areas of research are reviewed.

On the one hand, CM strategies based on vibration signals have been studied with
outstanding results. For example, in [5], a new approach is proposed to diagnose drivetrain
bearing degradation: vibrations are recorded in the tower rather than in the gearbox.
The test case covered is a wind park that has six wind turbines with a rated output of
2 MW each. In winter 2019, a measurement campaign was carried out and vibration
measurements were taken in five WTs in the park. Three WTs were healthy when tests
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were performed, one WT had recently recovered from a planetary bearing defect, and
one WT was experiencing a high-speed shaft-bearing fault. Healthy WTs are chosen
as references and damaged and recovered WTs as targets: vibration measurements are
processed in the feature space using a multivariate novelty detection algorithm. The use
of this approach is supported by univariate statistical tests on the selected time-domain
characteristics, as well as a visual evaluation of the dataset using principal component
analysis (PCA). Finally, the abnormal state of the damaged wind turbine is detected using
a novelty index based on the Mahalanobis distance. Notably, the authors of [6] suggested a
unique system for detecting multiple levels of rolling bearing faults in varied operating
situations. First, the variational mode decomposition was used. Second, in the time domain,
statistical characteristics were computed and extracted. Meanwhile, the complexity of the
vibrational signal in the time series was estimated using a permutation entropy analysis.
Subsequently, feature selection approaches were used to increase identification accuracy
while reducing computing overhead. Finally, the rated feature vectors were used as inputs
to machine learning (ML) algorithms to determine the state of the bearing flaw. The
suggested technique was tested in the various regions of operation of WTs.

On the other hand, the most recent innovations tend to require expensive, specially
fitted sensors, which are not economically practical for wind parks that are currently in
service, much less if they are approaching the end of their lives. Data-driven predictive
maintenance approaches grounded in current supervisory control and data acquisition
(SCADA) data (found in all industrial-sized WTs) are a viable cost-effective option in this
area. Because SCADA data were originally designed for sole operation and control, using
them for predictive maintenance is a significant challenge. In [7], a systematic review of
the literature is given with the objective of evaluating the application of SCADA data and
how AI approaches can transform SCADA data into information that can be utilized to
detect WT faults early. This review emphasizes the problem of inaccessible WT SCADA
data for research and the need for standardization. Furthermore, [8] identifies the frequent
problems encountered by researchers working in the fields of CM and reliability analysis.
Standards and policy efforts aimed at alleviating some of these issues are described, along
with a review of their suggestions. The key outcome of this research is that unified stan-
dards for turbine taxonomy, alarm codes, SCADA operating data, and maintenance and
fault reporting will greatly benefit the industry. Regardless of these challenges, recently,
the subject of utilizing SCADA data for predictive maintenance aims has led to notable
contributions, such as those reviewed in the following paragraphs.

One of the most important aspects of wind turbine failure prediction using SCADA
data is selecting the optimal or nearly optimal set of inputs that may be used by the failure
prediction algorithm. The ideal set of inputs acquired by exhaustive-search rules is not
realistic in most scenarios due to a large number of available predictors. To demonstrate the
practicality of the prediction and select the best set of variables from more than 200 variables
recorded by the SCADA of the wind park, the work in [9] presents a detailed study of
automatic input selection rules for the prediction of wind turbine failures, as well as
a reference-exhaustive search-based quasi-optimal algorithm. The article uses a k -NN
classification method to assess performance. The conditional mutual information feature
selection approach was found to be the best automatic feature selection method, whereas the
mutual information feature selection method was found to be the worst. The experiments
were derived from measurements conducted over a year corresponding to the gearbox and
transmission systems of the wind turbines in production.

Real SCADA data from an operational wind parks lead to a highly imbalanced dataset,
with a majority class of healthy data and a minority class with few samples of faulty data.
In [10], when using a highly imbalanced dataset, three data preprocessing algorithms
were proved. PCA for data modeling and reduction; a random oversampling technique
used to tackle the imbalanced data problem; and the data reshaping technique for data
augmentation are among these strategies. When training the ML algorithms, a time split
was used to avoid corrupting the dataset’s time structure and to prevent data leakage.
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The assemblage of these preprocessing techniques shows excellent performance, as results
showed F1 scores of at least 95%.

Normal behavior models have also been used successfully. For example, in [11], a
general health monitoring system is provided for wind turbines. The suggested framework
first separates the turbine operation into several sub-operation conditions using the cluster-
ing technique, and then constructs a normal behavior model for each sub-operation state.
An efficient deep belief network is presented to model normal behavior. This improved
modeling technique can capture complicated nonlinear relationships between multiple
monitoring variables, which helps to improve prediction performance. To verify the sug-
gested technique, a case study of main bearing defect detection utilizing real SCADA data
is performed. Further notable findings are presented in [12], in which a novel CM method
for WTs is based on long-short-term memory (LSTM) networks. Long-term dependencies
hidden within a sequence of measurements can be captured by LSTM networks and used
to improve prediction accuracy. Finally, CM is achieved by comparing the predicted values
with the actual measurements from the SCADA data.

Another active area of research is anomaly detection. In [13], three anomaly detection
models were compared for operational wind turbine SCADA, namely: one-class support
vector machine (OCSVM), isolation forest (IF), and elliptical envelope (EE). The paper
describes a novel CM method that requires only two months of data per turbine. A year
separated these months, the first of which was healthy and the second of which was
unhealthy. The number of anomalies is compared, with a higher number in the unhealthy
month being considered correct. In general, for all configurations considered, IF and
OCSVM had an average accuracy of 82%, compared to 77% for EE.

Finally, in the near future, attention will be focused on WT digital twins (DT). A
DT is a current representation, or model, of a real WT in use. It might be a component-
level model that shows the actual WT state and incorporates pertinent historical data.
DTs can be physics based (based on fundamental principles), data driven (using AI or
statistical techniques, for example), or a combination of the two. The models represent the
current environment, age, and configuration of the operational asset, which often requires
streaming of WT data into tuning algorithms that can employ AI approaches. Once the DT
is online and up to date, it can be used to predict future behavior.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial intelligence.
CM Condition monitoring.
DT Digital twins.
EE Elliptical envelope.
IF Isolation forest.
LCOE Levelized cost of energy.
LSTM Long-short-term memory.
ML Machine learning.
OCSVM One-class support vector machine.
O&M Operation and maintenance.
PCA Principal component analysis.
SCADA Supervisory control and data acquisition.
WT Wind turbine.
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