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Abstract: In a physical microgrid system, equipment failures, manual misbehavior of equipment, and
power quality can be affected by intentional cyberattacks, made more dangerous by the widespread
use of established communication networks via sensors. This paper comprehensively reviews smart
grid challenges on cyber-physical and cyber security systems, standard protocols, communication,
and sensor technology. Existing supervised learning-based Machine Learning (ML) methods for
identifying cyberattacks in smart grids mostly rely on instances of both normal and attack events
for training. Additionally, for supervised learning to be effective, the training dataset must contain
representative examples of various attack situations having different patterns, which is challenging.
Therefore, we reviewed a novel Data Mining (DM) approach based on unsupervised rules for identify-
ing False Data Injection Cyber Attacks (FDIA) in smart grids using Phasor Measurement Unit (PMU)
data. The unsupervised algorithm is excellent for discovering unidentified assault events since it only
uses examples of typical events to train the detection models. The datasets used in our study, which
looked at some well-known unsupervised detection methods, helped us assess the performances of
different methods. The performance comparison with popular unsupervised algorithms is better at
finding attack events if compared with supervised and Deep Learning (DL) algorithms.

Keywords: Association Rule Mining; clustering; cyber-attacks; data mining; FDIA; smart grid

1. Introduction

The growing integration of Distribution Energy Resources (DER) into the electric
grid, including photovoltaics (PV), wind, battery storage, fuel cells, and hydro schemes,
has benefits, in that it lowers the cost of enhancing the power system, as well as draw-
backs, particularly environmental uncertainty. For efficient and continuous operation, a
microgrid controller that coordinates and regulates the various DER using communication
technologies based on established communication protocols is essential [1]. Concerns with
feeders, grid failure, communication, cyber security, control, islanding, regulation issues,
and protection are some of the specific difficulties associated with the development of
DER consumption into the grid [2]. However, because communication networks are so
widely used, they are sensitive to harmful cyber-attacks. These attacks can be particularly
dangerous if they result in physical harm to devices, technical failures, or human error.
Physical and cyber security implies frequently threats that target power utilities [3]. Mi-
crogrid systems are more susceptible to cyberattacks because they are more dependent on
distributed, active network control as their number of components grows, which raises
the potential impact of an intrusion. According to a western US department of energy
report from May 2019, the utility’s wind and solar power generation installations were
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disconnected, its supervisory control and data acquisition (SCADA) systems experienced a
brief outage, and the network was temporarily disconnected for five minutes [4,5]. Both
physical harm and financial loss can result from a cyberattack that introduces instability or
incorrect information into the electrical system. Microgrid operators and developers require
a comprehensive and integrated approach to cyber-physical safety to be more adaptable.
Strengthening the microgrid, a systematic review of the interconnection security controls,
designing and formulation of disaster management, and reserves for the security procedure
are the essentials to guarantee the safety of the key energy configuration [6].

Many kinds of cyber-attacks can jeopardize the data and communication security of
the smart grids, including False Data Injection Attacks (FDIAs) [7], Distributed Denial of
Service (DDoS) attacks [8], topological attacks [9], overloading attacks [10], and resonance
attack [11]. FDIAs have excellent accessibility, interference, and concealment capabilities,
making them one of the most dangerous attack tactics in many power cyber-attacks [12].
FDIA may cause either the automated system or the operator to take incorrect action. As
a result, it leads to incorrect decision-making and control procedures, which ultimately
has fatal effects. In this kind of attack, hackers might use physical, cybernetic, and cyber-
physical channels to fraudulently obtain important information. FDIA seeks to alter data
at the measuring units or control center to achieve a certain goal. The nodal voltage
magnitudes and angles, nodal power injections, line power flows, and digital data such as
the state of breakers and switches are among the analog measured data from the power
system that FDIAs aim to capture. To monitor and manage the operation of the power
grid through analysis of meter measurement data, the power system operator (PSO) needs
to execute state estimation (SE). At the transmission system level, the issue of detecting
cyberattacks through flawed data processing in state estimators has recently attracted a lot
of attention [13].

The SE method’s central concept is the estimation of each area’s state using measure-
ments specific to that area and the sharing of boundary bus states between adjacent areas.
In energy management systems, SE algorithms play a crucial role in the processing of
inaccurate measurements. When bad data are present, it is anticipated that large residual
errors will inevitably result from the bad data, hence bad data detection (BDD) filters
measurement inaccuracies brought on by malicious assaults or device flaws. However,
when a successful FDIA is started, the residual error would remain the same as usual. To
safeguard state estimates, certain strategies for faulty measurement detection have been
developed [14].

Analyzing the power system model is not necessary for the contemporary BDD
methodologies based on data-driven models. To anticipate measurement error, they apply
the ML approach to extract the electrical attributes from the massive historical data. The
next step is to utilize clustering analysis to automatically group good and bad data into
distinct clusters [15]. For selecting the most important features to detect FDIA and remove
bad data, we reviewed unsupervised machine learning methods on smart grids.

This paper gives a comprehensive review of the field of cyber-attacks against smart
grids and introduces the background of state estimation. This paper examines cyber-attack
detection through unsupervised data mining algorithms. Clustering and Association Rule
Mining (ARM) are two different categories under unsupervised techniques. With various
advantages over supervised and reinforcement algorithms, ARM and clustering are data
mining techniques used to calculate the correlation between two or more variables in a
dataset by identifying the strongest rules that exist between their values. On another side,
the unsupervised approach of clustering has a low detection rate with tampered data. As a
result, this article offers a thorough assessment of numerous unsupervised methodologies
and approaches tailored to the difficulties posed by cyberattacks on smart grids, as well as
an analysis of their characteristics.

The structure of this article is as follows: In Section 2 the review methodology is
described and in Section 3 we will provide a general review of the cyber security issues
with smart grid technologies. Section 4 explains FDIA approaches and techniques in smart
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grids. Section 5 discusses the unsupervised learning-based detection techniques for cyber-
attacks over FDIA. Sections 6 and 7 outline future studies and conclusions, respectively.

2. Review Methodology

The main goal of this review is to provide a platform for researchers to summarize
various cyber-attack detection techniques on smart grids and explain the best one of those
attacks. This review offers a thorough explanation of numerous attacks, highlights their
benefits and drawbacks, discusses present trends and suggested directions for the future,
and offers a thorough evaluation of the various publications. Significant academic publica-
tions were searched for electronically in databases such as IEEE Explore, Springer, Wiley,
PubMed, Science Direct, Frontiers, MDPI, Research Gate, and Google Scholar. The publica-
tions were gathered using a variety of criteria, including keywords, journals, conferences,
different attacks, ML or DL approaches, classifier performance, and feature extraction
techniques. All accessible research publications published between 2015 and 2022 that
used Data Mining (DM) applications for diagnosing or forecasting cyberattacks on smart
grids met the screening criteria for this study. The following characteristics were coded
for each article: (a) main research area within dialect studies; (b) geographical location
of the cyber-attack on smart grids (e.g., Israel-2016, France-2018, US-2019, Portugal-2020);
(c) security requirements (e.g., integrity, confidentiality, availability); (d) key points of ML
features (e.g., supervised, unsupervised, semi-supervised, reinforcement); (e) classifica-
tion type; (f) system parameters (e.g., support, lift, confidence); (g) year of publication;
(h) communication networks (e.g., LAN, MAN, BAN, NAN, HAN); (i) I/O sensors (e.g.,
RTU, PDC, PMU); (j) evaluation criteria; (k) communication layers (e.g., application, trans-
port, MAC, network, physical); (l) attack category (e.g., SCADA, smart meter, physical,
data injection, and replay, networks based); and (m) attacking cycle (e.g., reconnaissance,
scanning, maintenance access, exploitation). The number of articles reviewed by year of
publication and cyber-attack-affected smart grids is shown in Figure 1.
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Figure 1. Year-wise publications with the search of cyber-attack reviews in various publications.

Table 1 provides a comparison between the existing survey papers in terms of the
main covered areas and publication year. Few reviews [16–21] are more focused on the
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sensor and communication-related topics during cyber-attacks. Some other reviews [22,23]
covered all topics of cyber-attack such as the nature of attacks, characteristics of the attack,
monitoring in smart grid, existing co-simulation tools, testbed, and awareness. Other
works focused on cyber-attack detection and mitigation techniques [19,24]. We have
concluded that the twenty-two reviews were more focused on the ML approach considered
to be the best method for the detection and mitigation of cyber-attacks in smart grids. In
these review papers, unsupervised learning algorithms have not received much interest.
Therefore, we considered unsupervised type ML for identifying FDIA cyber-attack in smart
grids which differs from the aforementioned surveys. Clustering and association rules are
two unsupervised algorithm analyses that can help locate hidden patterns and potential
relationships between variables that commonly appear together in datasets. This method
can be used to evaluate network traffic, identify patterns of cyberattacks in smart grids,
and analyze and anticipate user behavior.

Table 1. Comparison between existing journal’s review work.

Ref
No./Year

Sensor
Technologies

Communication
Technologies

Computing
Technologies

Type of Cyber
Attack Detection Contributions Limitations

[25]/2020 No No Yes FDIA No

Studied FDIA against SE and
degrade the microgrids
inducing a power imbalance
between supply and demand

Detection and
mitigation
techniques

[16]/2018 yes yes No
Virus, DOS, replay,
Man in middle
attacks

Yes
Limited
approach

Comprehensive overview of
cyber-security in the smart
grid and examined the main
cyber-attacks threatening its
structure, network protocols,
and applications.

Machine
learning
techniques

[26]/2021 No No No Attacks on
CIA model. No

Analyses the threats and
potential solutions of smart
grids based on IoT.

Detection
techniques

[27]/2021 No No No FDIA No

Discussed two modeling
frameworks for CPSs, FDIAs
against state estimation,
vulnerabilities, and dynamical
properties of attacks

Sensor, com-
munication,
and detection
techniques

[17]/2023 yes yes No No No

Overview of SG model, key
elements, ADMS, SCADA,
AMI, cyber security principles,
standards, and protocols.

Detection
techniques

[22]/2022 No No No

Physics aware
control command,
measurement
integrity, FDI,
control logic
modification,
DOS, etc.

yes

A complete review of the
nature of complex
cyber-attacks, detection and
monitoring capabilities,
Cyber-Physical Situational
Awareness, IDS-based host,
network, cloud, IoT, signature,
distributed, anomaly, ML/DL,
hybrid, moving target defense,
specification, etc.

Sensor, com-
munication
technologies.

[24]/2022 No No yes
Described several
types of cyber
attack

yes

A broad analysis of the system
structure and vulnerabilities of
typical inverter-based power
systems with DER integration,
several types of cyberattacks,
modern defense strategies
including several detection
and mitigation techniques, and
comparison of testbed and
simulation tools applicable for
cyber-physical research.

Communication
protocols and
networks,
sensor
measurement

[28]/2022 yes yes No yes yes
Discussed approaches to ML,
AI, 5G, blockchain, and data
aggregation methods.

Limited
approach to
sensor
technologies

[29]/2021 No No No FDIA yes
Cyber-attack enhancement
methods, challenges, and
resilience of the smart grid.

Sensor, com-
munication
technologies.
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Table 1. Cont.

Ref
No./Year

Sensor
Technologies

Communication
Technologies

Computing
Technologies

Type of Cyber
Attack Detection Contributions Limitations

[23]/2022 No No No yes yes

Presented attack strategy,
detection methods, and
solutions for cyberattacks in
terms of blockchain technology
and AI techniques.

Sensor and
communica-
tion
technologies.

[18]/2021 yes yes No FDIA, DOS yes

Various threats and
vulnerabilities can affect the
key elements of cyber security
in the smart grid network and
then present the security
measures.

Limited
approach to
ML and
blockchain
techniques.

[19]/2021 yes yes yes All types of attacks
mentioned yes

Inclusive review of the
cyber-physical attacks,
vulnerabilities, mitigation
approaches on the power
electronics, and the security
challenges for the smart grid
applications.

The limited
approach in
ML detection
techniques

[30]/2020 No No No All types of attacks
mentioned yes

Summarizes impacts of
cyber-attacks on power system
control, power system stability,
and types of cyber-attacks,
from the viewpoints of
topology, mechanism,
probability, and simulation.

Communication
sensors, and
limited
approach to
detection
techniques

[31]/2021 yes yes yes

Aurora, pricing,
AGC, FDI,
topology,
GPI-spoofing, load
redistribution, line
outage masking,
Stuxnet-like
networks

No

Reviewed an abstracted and
combined state-space model,
in which cyber-physical attack
and defense models are
effectively widespread, and
advanced in the field, moving
target defense, watermarking,
and data-driven approaches.

Detection
techniques

[32]/2012 yes No No No No

Significance of cyber
infrastructure security in
conjunction with power
application security to prevent,
mitigate, and tolerate
cyber-attacks.

Cyber-attacks,
communica-
tion, and
detection
techniques.

[33]/2017 No No No FDIA No

A comprehensive review of the
theoretical and mathematical
approach of FDIAs against
modern power systems.

Detection
strategy of
FDIA

[20]/2021 yes yes yes No IDS
Discussed in detail rule
learning-based intrusion
detection systems.

Limited
approach to
detection
techniques.

[34]/2017 No No No yes No

Introduced CPS,
distinguishing between cyber,
cyber-physical, and physical
components security
perspective, a taxonomy of
threats, susceptibilities, attacks,
and controls.

Detection
techniques

[35]/2019 yes yes Yes All types of attacks
mentioned

Limited
approaches
and types
mentioned

The approach of ML in security
concerns.
Overview of big data tools,
system platforms, required
skill levels, CIA models,
encryption algorithms,
software attacks, and their
countermeasures

ML detection
techniques

[21]/2021 yes yes yes No No

This survey is focused on IOT
technologies that facilitate
smart energy grid systems,
architecture, related software
standard applications, security
vulnerabilities, and
opportunities to integrate
advanced techniques.

Cyber-attacks
and detection
systems
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Table 1. Cont.

Ref
No./Year

Sensor
Technologies

Communication
Technologies

Computing
Technologies

Type of Cyber
Attack Detection Contributions Limitations

[36]/2022 No No yes DOS
Attacks of
model and
driven in PV
farms

Blockchain algorithm to
address cyberattacks in
software and cyber networks.
Analyzed multiscale system
modeling, event-trigger
control, AI application, and
hot patching.

Communication,
sensor
networks, and
detection
techniques.

[37]/2020 No yes yes DOS, MITM, FDIA,
Intrusion attack No

Summary of IEC 61850
message structures and related
cybersecurity concerns

Detection
methods and
sensor
measurements

[38]/2022 yes yes yes Attacks on CIA
model.

Limited
approach

Defined protected protocols
and standards, cryptographic
and authentication, intrusion
prevention, education, access
control, and required
cybersecurity policy
approaches.

Detection
techniques of
ML techniques

A comparison between existing review/survey papers on similar topics is described
in Table 1, accordingly, the novel contribution and motivation of this paper are as follows:

• We have provided the overview of a cyber-attack on smart energy systems, a thorough
description of the features, conceptual model, sensor and communication components,
network protocols, and various cyber-attack types.

• The preceding study review models are summarized by using complex network theory,
power network equations, system state equations, and data-driven methodologies
taking into account the factual context of the CPSs link and the mismatch between
research goals and quantitative indicators. They may describe the operational state of
the energy grid, analyze load or line overload conditions, describe the fault mechanism,
and predict/identify abnormal conditions. Moreover, this classification provides
the network architecture and how to enhance the system’s cyber-physical security.
Considering these key points, suggestions from the previous review papers and we
continued the survey in cyber-attack detection and mitigation.

• The primary contribution of this survey to the existing literature is that it attempts to
investigate FDIA in smart grids and detect it by using unsupervised learning tech-
niques. To realize the detection of cyber-attacks in the smart grid, first, we should
understand the overview of the smart grid’s architecture and the key points of grid
attacks. Therefore, we have considered the literature on network architecture, FDIA at-
tacks, types of detection, etc. We looked at a variety of cyberattack detection techniques
such as replay, DOS, stealthy, and FDIA and concluded that unsupervised learning
algorithms are better at spotting FDIA in smart grids for huge unlabeled data. We
reviewed FDIA from a system-theoretic perspective, which more clearly demonstrates
conceptual parallels and common operating principles. For example, we have shown
how concepts gained from analyzing specific attacks that target different parts of the
network, or how attack schemes can be combined to develop more malicious activities.

• For reliable and quick detection of stealthy FDIA in smart grids without the require-
ment for knowledge of network parameters or measurement distributions, we offer an
unsupervised data mining approach. The algorithm is developed online after being
offline-trained. This algorithm identifies a cyber-attack even when there is a significant
amount of class mismatch, a sudden increase in data transfer in the network, and
abnormalities in the system. This method can still operate well without experiencing
any performance reduction because they do not have any set pattern or context. To the
best of our knowledge, and in contrast to the aforementioned surveys, our work is the
first to examine the features of smart grid security using unsupervised ML approaches
and security metrics.
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• Finally, the prospects and challenges of cyber-physical smart grids in the future are
examined, which may help to clarify the cyber-physical security concerns that the
next-generation smart grid must resolve.

3. Network Architecture under Cyber-Attacks in Smart Grids

Dispatcher sources, power electronic converters, communication cables, and loads
make up the physical layer. System hardening can be used to take preventive action against
physical layer threats. The communication channels that are bridged among the sources
to enable data transfer make up the cyber layer. To save money by avoiding the costs
associated with a fully connected communication infrastructure, networked converters
display sparsity in their cyber-connections. A centralized approach necessitates consid-
erable computation and communication over a wide geographic area. This prerequisite
makes the centralized control strategy unworkable. Again, a fully decentralized control
solution is not feasible due to the requirement of a very tight coupling between the unit
operations. The key benefit of decentralized control is that it allows for the incorporation of
various DG units into the microgrid without requiring any adjustments to the controller
settings. However, in this instance, coordination must be sufficiently robust. The system’s
units cannot be coordinated to a sufficient degree using local variables [39]. To solve these
problems, the installation of secondary, primary, and tertiary controllers in a hybrid cyber-
layered microgrid with n parallel bidirectional converters and an equal power rating is
shown in Figure 2. The cyber layer is represented by red arrows, and the physical circuit
is represented by black lines. In a microgrid, the load is typically distributed across the
converters at the primary control level, which is typically drooped control. On the other
hand, the secondary control level lessens the steady-state inaccuracy caused by the droop
control, while the tertiary level is in charge of energy export or import for microgrids.
The distributed control topology has advantages over the centralized control topologies,
including lower communication needs, lower computation burden, better scalability, good
reliability, and better resilience.

The operating mode for each converter is either voltage or current-controlled. Primary
layer control actions are independent of the communication system since local controllers
are directly connected to converters. To enhance the performance of the sources’ coordina-
tion, cooperative secondary controllers are used. A distributed communication layer, which
only exchanges information with nearby units, enables these controllers. To accomplish
secondary control goals, such as average voltage regulation and proportionate current
sharing, each unit, represented as an agent in the cyber layer, sends and receives DC/AC
voltage and current from the nearby agent(s). Tertiary control operates power management,
energy management, system optimization, and economic dispatch as the highest level in
the hierarchical design. Using a local converter and a digital communication link-based
coordinated control system, such as a cutting-edge cloud-based communication platform,
which has control bandwidths that are at least an order of magnitude apart, simultaneously
allows for the implementation of hierarchical control. As the time scale lengthens and the
level of control shifts from primary to tertiary, the control bandwidth contracts [40].

On a communication graph with an adjacency matrix, each converter broadcasts
Ii(t) and/or Vi(t) to the DG units that are close by. Each analog voltage and current
measurement from each converter is transmitted to its nearby control units utilizing a USB
in conjunction with the Modbus protocol to carry out scattered, undirected communication.
It is a technique for information transfer between electronic devices through serial lines.
Signals from instrumentation and control devices are often transmitted using Modbus
back to the main controller or data collection system. The simplest configuration would
be connecting the serial ports on two machines, a client and a server, using a single serial
cable. Each bit of the data is conveyed as a voltage, and the data are sent as a succession of
ones and zeroes. Zeroes are sent as positive voltages and ones as negative. These voltage
and current measurements will be collected from the Remote Terminal Unit (RTU) from the
sensors. Telemetry Devices consist of RTUs and Master Terminal Units (MTUs). The RTUs
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collect telemetry data from sensor components (distributed across domains), and MTUs,
receive and process that data for management and topology manipulation (connected to
core systems). This promotes efficient power generation and transmission.
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The current electricity grid is becoming more vulnerable, mostly because it develops
and adopts new technologies such as telemetry devices and the Internet of Things (IoT).
Additionally, recent research and publications show an increase in cyber security incidents
and threats related between telemetry systems, SCADA, IoT, and the electric power grid [41].
Smart Grid is monitored and managed by a SCADA system that collects consumption
statistics and behavior using IoT devices and Advanced Metering Infrastructure (AMI).
By enabling two-way communication inside the system’s infrastructure, using wireless
communication networks improves the efficiency of electricity generation and delivery. To
implement an effective generation and distribution plan, the generating centers have access
to real-time data on power demand due to the association of smart meters and sensors
across the power grid network [42]. As a result, the infrastructure of the power system
has benefited considerably from the integration of these technologies, increasing energy
efficiency and lowering electricity costs.

Real-time data from the electrical power grid are monitored, measured, and analyzed
via SCADA, a type of process control system [43]. While it can ensure both short-range and
long-range communications, SCADA is most effective in large-scale environments. The
RTU, MTU, and Human–Machine Interface (HMI) are the three primary components of
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this system. RTU is a device made up of three units. Data acquisition is performed by the
first unit, logic programs from the MTU are run by the second unit, and communication
infrastructure development is mostly handled by the third unit [44]. The MTU, which is a
device for controlling and monitoring the RTU, is another component of SCADA. HMI is
regarded as the final component of SCADA and serves as the operator’s Graphical User
Interface (GUI).

Over time, a few protocols were created to offer smart grid systems secure and depend-
able communication. Several industrial communication protocols used inside SCADA are
Modicon Communication Bus (Modbus), Distributed Network Protocol version 3 (DNP3),
Process Field Bus (Profibus), and International Standard Defining Communication Protocol
61850 (IEC61850). Smart meters, home appliances, and AMIs all communicate with one
another via different communication protocols. Their vulnerabilities and intrinsic security
requirements differ greatly [45,46].

While using two separate communication mediums, namely wired and wireless,
new communication and information technologies with current intelligent monitoring
systems play a crucial role in securing data transmission between smart meters and utilities.
The advantages of wireless communications over wired communications include lower
infrastructure costs and more robust connections in remote areas. Wireless technologies
include Zigbee, Z-wave, WiMAX, Wi-Fi, DASH7 (D7A), cellular, and satellite. PLC is a
wired communication that supports high-speed data from one device to another. It is
suitable for some applications, such as smart metering, home automation, and lighting.

To guarantee end-to-end data transmission, the Transmission Control Protocol/Internet
Protocol (TCP/IP) was initially applied in the smart grid. Due to its complex memory
management issues and the fact that it is only appropriate for broad-area networks, this
protocol is not thought to be a good choice for smart networks.

The Wide Area Network (WAN), Neighborhood Area Network (NAN), Home Area
Network (HAN), Building Area Network (BAN), and Industrial Area Network (IAN),
are all parts of the smart grid’s communication architecture. Each NAN has a Control
Center (CC) that is designed to handle its own. Building gateways track electricity use and
client needs, which they subsequently send to the CC. Customers can alter their electricity
usage and further energy conservation measures at any time to the CC, which saves both
cost and energy. In the context of the smart grid, the security and privacy of information
exchanges between customers and the CC have emerged as crucial and difficult issues. The
man-in-the-middle, DDOS, impersonation, FDIA, brute-force, and replay attacks are just a
few of the malicious assaults that the smart grid is susceptible to. These attacks have the
potential to have a substantial negative impact on society. As a result, a security protocol
should be provided in the smart grid.

The hierarchical architecture of the smart grid according to Figure 2, which has a
limited number of sub-networks, is seen to be crucial in the infrastructure since it connects
a wide range of systems; nevertheless, each sub-network is only in charge of a single
geographic area. According to Figure 3, the smart grid network is divided into three primary
sub-networks: WAN, NAN, and HAN. The additional sub-networks of WAN and NAN
are Local Area Networks (LAN) and Field Area Networks (FAN). Industrial Area Network
(IAN) and Building Area Network (BAN) are the two sub-networks that comprise FAN.
PAN is a subnetwork of either IAN or BAN or HAN. Most of the research in FDIA primarily
concentrates on four vulnerable protocols, including Modbus, DNP3, Profibus, and IEC61850,
which are employed in the infrastructure of smart grids [47–49]. The expected communication
network which includes RTU, MTU, smart meters, communication protocols such as Zigbee,
Z-wave, WiMAX, etc., IoT, WAN, LAN, NAN, FAN BAN, IAN, HAN, and PAN established
in the microgrid is shown in Figure 3.
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4. FDIA Attack on Smart Grids

An Industrial Control System (ICS) is a special type of CPS that incorporates physical
industrial process systems and facilities as well as SCADA systems, smart sensors, the
industrial internet of things (IIOT), networked systems, and data analytics. The extensive
use of sensors, networked devices, and SCADA to reduce voltage deviations, assess the
network voltage profile, and provide appropriate voltage/current references is a result of
the rapid organization of digitalization and growth of CPS. Situational awareness of cyber
invasions and resistance to cyber-attacks are both present and developing security needs
are expanding to incorporate both resilience to cyber-attacks and situational alertness of
cyber intrusions. ICS systems are organized safety and high-value critical systems [50].
Security concerns are acknowledged as a major issue for CPSs, where both physical and
cyber-attacks and defects could significantly affect how stable and secure a PV power
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system operates. Regarding the security of CPS, confidentiality, integrity, and availability
are three essential characteristics that must be safeguarded [51]. The disclosure, disruption,
and deception attacks are three types of DDD attacks that can be used to categorize the
attack models of CPSs. Attacks on disclosures might result in the release of confidential
information. There are different types of cyber-attacks. For instance, denial of service (DoS),
replay, jamming, random, topological, overloading, resonance, FDIA, Man in the middle,
stealthy, etc., can be considered cyber-attacks. The commonly used cyber-attacks in DC/AC
microgrids are DoS, FDIA, and replay attacks. DoS tries to make the communication
network completely unavailable in the microgrid. Attacks that prevent users from using
information are referred to as disruption assaults are DoS attacks. Replay attacks are
another type of cyber-attack to record the reading of sensors for a certain amount of time
and after that, repeat these readings in the system to deceive the operator. FDIAs, for
example, include deception attacks to corrupt real data [52]. The various systems and
layers of the smart grid can use FDIA. Four categories—physical, network, communication,
and cyber—could be used to group them. Attacks on monitoring, control, and protection
systems are included in physical-based FDIA. The communication-based FDIA gives a
thorough analysis of the various communication methods used in smart grids and the risks
that go along with them. If the attacker gains access to any network node, network FDIA
is possible from anywhere. Cyber-based attacks are extremely harmful since they affect
the system much more severely. These assaults occur when the adversary gains access
to the control system or any applications connected to it, such as forecasting, estimating,
economic dispatching, and trading in energy.

FDIA is regarded as a remote access intrusion since it alters the payloads of packets,
compromising their data integrity [53]. Attackers use FDIA to obtain access to crucial ICS
processes or process parameters and force them to carry out a freshly injected command or
code. In cyber-physical systems, the term “FDIA” refers to a class of cyber-attacks where
the goal is to alter the integrity of the network by manipulating some sensor devices and
transmitting false data readings to the controller. The physical equipment affected by this
attack includes switches for VSI, filters, active/reactive power controllers, and MPPTs.
It also damages the electrical grid. System monitoring is necessary to ensure the power
network operates dependably, and state estimation is a result of such monitoring to give
attackers the most accurate assessment of the power grid.

False Setting Injection (FSI) and false command injection (FCI) are the two main
forms of cyber-physical attacks that are highlighted in the literature that is currently
available [54,55]. These attacks all impact system behavior, loss of inverter process control,
current controller set points, device connection, and configuration. The FSI takes into
account the hardware and software management of overcurrent, differential, and distance
relays. The aforementioned ideas offer FSI protection utilizing local end data, but they
are unreliable in a hybrid data and physical attack scenario. In the event of FCI attacks,
proposals such as [56,57] offer the creation of attack models and system vulnerability
analysis. A vulnerability known as a “command injection” allows an attacker to take
control of one or more commands that are being executed on a system. Without the need to
inject malicious code, command injection expands an application’s normal capabilities by
allowing it to deliver commands to the physical system shell.

FDIA can be modeled mathematically as in Equation (1),

FalseData = Di,j + Fi,j (1)

where Di,j is the original dataset, and Fi,j is the injected data. The amalgamation of injected
data with original data generates false data. Here, Fi,j can be any of the following:

• Deletion of data from the original dataset, Di,j

• Change of the data in the original dataset, Di,j

• Addition of fake data to the original dataset, Di,j
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Although the representation in Equation (1) considers the data to be structured, the
false data injection attacks can also be considered for unstructured data.

State estimate is essential for linking measurements obtained through the communica-
tion network and managing the operational activities in a smart grid. The SE automatically
removes the faulty information brought on by random interferences, estimates or predicts
the system operating state, and uses the redundancy of a real-time measurement system to
increase data accuracy [58]. Using real-time information gathered from measuring devices
such as PMU as depicted in Figure 4, SE aims to estimate the smart grid’s operational
conditions. Bus voltage, active and reactive power injections at each bus, and complex
power flow on branches are examples of typical measurements.
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The state vector for a system with n buses is represented as follows:

v = [v1, v2, v3 . . . . . . vn]
T (vi ∈ R) (2)

where vi indicates the state variable at the ith bus, usually includes the voltage angle or
voltage amplitude. Consider the measurement vector z. The measurement vector for a
system with n buses is written as

z = [z1, z2, z3 . . . . . . zn]
T (zi ∈ R) (3)

There are some differences between measurement function values and actual mea-
surement values for non-ideal sensors. State estimate in the actual electric power system,
accounting for measurement errors, can be defined as:

z =


z1
z2
...

zm

 =


H1(v1, v2, v3 . . . . . . vn)
H2(v1, v2, v3 . . . . . . vn)

...
Hm(v1, v2, v3 . . . . . . vn)

+


e1
e2
...

em

 (4)

The relationship between system states v and measurements z can be created as a
linear model using the DC power flow model, as shown below:

z = Hv + e (5)
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where e is the measurement error (additive noise) vector that is typically represented by
the Gaussian distribution, v contains the voltage amplitude and voltage phase angle at the
buses, z is the vector of measurements, and H is a Jacobian topological matrix that maps
the system states to the measurements.

Where H = ∂H(v)
∂v is an invariable Jacobi matrix that depends on the impedance of the

network topology. These issues are frequently resolved using the Weighted Least Squares
algorithm. A quadratic optimization problem is created from the state estimation form,
and the estimated linearized state vector v′ is given by

v′ =
(

HT H
)−1

HTz (6)

Bad data are produced as a result of measurement errors that happen at random,
whereas false data are created knowingly by malicious attackers. SE, is a common method
for detecting faulty data, is inefficient for detecting FDIA but excellent for detecting bad
data. FDIA allows for the malicious injection of the generated data b into the power flow
measurement vector as

Zbad = Hv + b + e (7)

and the injected false data vector is

b = [b1, b2, b3 . . . . . . bm]
T (8)

Zbad = z + b (9)

When there exist false data injected by some attackers, b will be a nonzero vector.
The estimation state variable v′ will be changed into v′F due to the injected false data

and there is v′F = v′+ c, where c is an n dimensional and nonzero vector. Assuming that the
injected data vector Zbad equals Hv, b will be ignored by the traditional detection method
as mentioned above. This is because

‖Zbad − Hv′F‖ = ‖z + b− H(v′ + c)‖ = ‖z− Hv′)‖ (10)

Measurement data will be reviewed to ensure maximum accuracy and faulty data will
be removed. Traditionally, the 2-norm residual test is used to identify faulty data:

‖z− Hv‖2 <∈ (11)

where ∈ is the threshold for BDD. Bad data exist and should be eliminated before the
next iteration if the measurement residual rises above the threshold. However, these
conventional BDD techniques are unable to identify stealthy and intelligent attacks such
as FDI.

Where ˆvbad, x̂, and b denote the estimated state vector under attack, perfect FDI attack,
and injected attack vector, respectively. In this case, the derived measurement residual
in both with and without malicious data b is equal. Therefore, b = H(v̂ + c)− Hv which
results in

‖z− Hv‖2 = ‖Zbad − Hvbad‖2 + Γ (12)

where Γ is an error term attributed to the state estimation that must remain within a
certain threshold depending on the power system. A method of attack that meets the
aforementioned requirement is said to be stealthy. Even if the attacker just has a limited
understanding of the network topology, such a covert attack vector is always there [59]. As
a result, the traditional residual-based BDD process in DC state estimation may be unable
to identify FDIA that are skillfully created by adversaries who are already familiar with the
grid, such as its network architecture H and estimated states v̂.
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Big data classification becomes a challenge when examining several combinations of
natural and artificial disturbances using typical sequential mining techniques. Addition-
ally, important characteristics of an efficient classification technique include the capacity
to identify large-area attack situations and handle data inconsistency difficulties, and
dimensionality issues.

5. Detection Techniques of Cyber Attacks in Smart Grid

IoT technologies are widely used in smart grids to track changes in the environment
or physical situations. In particular, SE is a crucial IoT-based smart grid application. It is
used in system monitoring to obtain the most accurate assessment of the condition of the
power grid through a study of the meter readings and power system topologies. FDIA, on
the other hand, poses a serious threat to SE because it is usually difficult to detect.

Artificial Intelligence (AI) category consists of various ML and DL, DM, evolutionary,
and fuzzy logic methods to detect FDIA. Techniques to detect cyber-attacks that target smart
grids can be mainly classified into four categories ML: supervised, unsupervised, semi-
supervised, and reinforcement algorithms. The various cyber-attack detecting algorithms
in the smart grid as shown in Figure 5.
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To minimize and identify FDIAs on SE in smart grids, some techniques have been
proposed in the literature [60–63]. While the major objective of ML is to give the learning
agent the ability to learn without guidance or human involvement, it might be seen as a
potential example of ML in the future. The first kind of ML technique, supervised learning,
assumes that the training data have been labeled and that the algorithm’s output has already
been input into the machine. The learning agent constructs a model to go from the input to
the output, led by the training data, once it is aware of the output. The supervised learning
techniques can be divided into Support Vector Machine (SVM), Artificial Neural Networks
(ANN), Decision Trees (DTs), K-Nearest Neighbor (KNN), and Naive Bayesian Classifier
(NB). Unsupervised learning, which belongs to the second group of ML approaches is
computationally more expensive than supervised learning techniques but requires no
labeling of datasets [64]. Unsupervised learning methods often focus on the following three
objectives: (i) clustering, (ii) dimensionality reduction, and (iii) density evaluation. Principal
component analysis (PCA), Dirichlet processes, K-means, and spectral clustering are a few
examples of unsupervised ML. Between the supervised and unsupervised learning families,
semi-supervised models use both labeled and unlabeled data for training. Algorithms
used in reinforcement learning models use the estimated errors as rewards or deterrents.
The most important features of reinforcement learning are trial-error search and delayed
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reward. To maximize the desired performance, this family of models enables the automatic
determination of the optimum behavior within a particular environment. Q-learning,
Monte Carlo, and the Hidden Markov are illustrations of a model that fits inside this family.

Because the dataset’s observations are all unlabeled and the algorithms learn the
inherent structure from the input data, researchers are now advised to utilize unsupervised
algorithms in smart grids to identify cyber-attacks [65,66]. The supervised technique has a
high computing cost and necessitates measurements with labels from continuous samplings
that may not be available in real-world operations. The majority of ML algorithms now
in use for identifying FDIAs, including [67,68], are supervised and assess anomalous data
that deviates in some way from the labeled data made available during training. Due
to high labeling costs, the datasets gathered from real-world cyber-physical systems are
only partially labeled [69]. Additionally, in practice, the scale of unlabeled data is typically
much larger than that of labeled data, and these enormous amounts of unlabeled data
infrequently participate in the supervised learning process. This absence causes the loss
of important data and, ultimately, the collapse of the process. Some newly discovered
cyberattack data are inherently unlabeled, making it challenging for supervised or semi-
supervised learning to identify FDIA. To detect unobservable attacks or outliers that avoid
the traditional BDD method, this research describes a new learning-based FDIA detection
algorithm. This unsupervised learning technique can be used online and can identify these
threats in milliseconds. The following sections describe ARM and clustering, which are
two main categories for unsupervised algorithms. ARM is about finding relationships
between the attributes of those data points and is the process of measuring the degree of
association between any two items. On the other hand, clustering is about the data points
and the process of segregating a huge number of data points into small groups sharing
similar characteristics.

5.1. Association Rule Mining (ARM)

To be more advantageous, association rule learning, a form of unsupervised learning
technique, looks for the dependence of one data item on another data item and maps ac-
cordingly [70]. It looks for any relevant relationships or correlations between the dataset’s
variables. It is built on various rules to find the significant relationships between database
variables. Although data-mining techniques have some advantages, they can occasionally
be used to detect FDIA in a smart grid since they only occasionally require high compu-
tational complexity depending on the data quantity. To improve outage diagnosing, this
paper presents an ARM method to extract rules that help to find faulty pieces of equipment
and identify FDI attacks [71,72]. To do this, three different datasets are processed and com-
bined to gain useful features. This dataset includes the outage dataset, sub-transmission
substation hourly load recorded by smart meters, and weather historical data. After the
preprocessing section, the outage classes are labeled according to the malfunctioning piece
of equipment. For every equipment-related outage cause, we form a dataset in which
the record is labeled as either the main class or others depending on the main outage
cause. After balancing the particular ARM algorithm is run and the obtained rules are
evaluated using confidence, support, and lift to filter important rules. Support represents
the percentage of things in a database that satisfy both the physical and its cyber-attack,
whereas confidence represents the proportion of items that satisfy both the physical and its
cyber-attack. Figure 6 depicts the process for finding a cyberattack that has affected the
smart grid.
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Smart meters, MTUs, RTUs, PDCs, and other devices will be sensing the high volume
of current and voltage produced by DG units. This dataset must include both invasion
and attacked signals. The sequential selection, preprocessing, transformation, data mining,
interpreting, and evaluating database procedure used in this study makes use of the
knowledge discovery database. Data cleaning is the process of eliminating noisy and useless
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data from a collection. The term data integration refers to the combining of heterogeneous
data from various sources into a single source, such as the fact that the same attacks
occurred repeatedly in the same DG. The extract-load-transformation method is used for
data integration. Data selection is the process by which data from the data collection,
such as FDIA, plug or play, communication latency, load change, and link failure, that are
determined to be pertinent to the analysis are chosen and retrieved. Data transformation
is the process of converting data into the format needed for mining operations, such as
values or legends. A method used to extract potentially relevant patterns is known as
data mining. Identification of strictly increasing patterns that indicate knowledge based
on predetermined metrics is the definition of pattern evaluation. The term knowledge
representation refers to a method for visualizing data mining outcomes such as support, lift,
and confidence. The data mining outcomes were calculated by using the following method.

Training historical datasets are a primary goal of DM methods in this study [73].
Finding interesting rules from transactional databases was the original purpose of ARM. A
relationship between various attributes is described by an association rule: I f (A AND B)
then (C). Following this criterion, C must also be present wherever A and B are. A given
the relationship’s frequency in the data can be determined via metrics for association rules.
The conditional probability of C given A and B is the confidence, while the support is
the prior probability of A, B, and C. It finds frequent sets of items (i.e., combinations of
items that are purchased together in at least N transactions in the database), and from
the frequent items sets such as {X, Y}, generates association rules of the form: X → Y
and/or Y → X .

Multiple algorithms, including Apriori [74], FP-Growth association rule [75], Eclat [76],
Prefixspan [77], and Spade [78], are included in the ARM approach. For instance, Agarwal
and Srikant [79] proposed the Apriori method in 1994. To extract common item sets
(candidate generation) from a dataset, a level-wise bottom-up strategy is used. According
to the required minimum support count, it locates the item sets. Apriori does have some
restrictions, though. For instance, several scans are necessary. Each data set requires an
explicit scan, which could result in I/O expenses. The existence of all necessary patterns
is not guaranteed. Due to the requirement for extensive storage and processing time, the
computational cost is likewise considerable.

The other method used frequently to mine the entire set of frequent patterns is pattern
fragment growth (FP-Growth ARM). This methodology employs a divide-and-conquer
strategy to establish a connection between various elements. The processing speed is
relatively quick, and it makes greater use of the available space. When the patterns are
paired and the dataset contains a lot of objects, this strategy is ineffective. The full set of
patterns in sequential pattern mining is mined using Prefixspan (also known as Prefix-
projected Sequential pattern mining). Candidate sequel generation efforts are far fewer
than those for FP-Growth. It employs the divide and conquers strategy to unearth hidden
patterns in the database. Prefixspan’s drawbacks include the processing need for additional
child patterns and gaps. However, since we would need to identify malicious patterns in
real-time IoT traffic, these algorithms do not work well in network security applications.
The SPADE algorithm makes use of the vertical ID-list format, which enables the creation
of patterns and the computation of support for each sequence without engaging in an
excessive amount of database reading that could burden the system. However, the SPADE
algorithm has a problem that results from the generate-candidate-and-test methodology.
This method might produce many sequence patterns that do not appear in the database
very frequently. SPADE is a SNORT plugin and it minimizes computational and I/O costs
by reducing database scans.

5.2. Clustering

The clustering approach is a typical matrix-theory-based unsupervised data-driven
method. To put it another way, clustering is a technique used to divide up dissimilar
data into many clusters while grouping like data into a single cluster. AMI offers network
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interoperability and communications in an open environment, but it is susceptible to data
integrity attacks, a common kind of cyberattack in the smart grid. Existing research has
revealed that the adversary could attack the AMI with data integrity assaults by inserting
altered and false data, leading to energy loss, power outages, welfare losses, infrastructure
damage, and other problems [80–84]. Designing and creating efficient detection systems
to lessen data integrity assaults in the AMI is therefore a primary issue. Data analysis
methods such as association and supervised algorithms are the foundation of the majority
of the detection schemes used to stop data integrity assaults [85]. Regression, prediction,
and classification algorithms rely on the historical data that smart meters transmit, and
they are sensitive to huge data set fluctuations that produce a broad range of normal data
and low detection accuracy. As a result, there is a strong likelihood that the malicious
data introduced by adversaries will go undetected. Therefore, it is essential to create a
detection method that can overcome the aforementioned restrictions and is appropriate
for real-world use. When data volatility is high, clustering is one of the methods that
can achieve a high detection accuracy without relying on either predefined thresholds or
external information.

Using cluster analysis, it is possible to show odd patterns of activity and identify
assaults that would not be picked up by studying a single point by grouping together
similar or related data points that are present throughout the network. Attacks that might
otherwise go unnoticed can far more easily be found by analyzing groups of related actions.
Without depending on signatures, explicit descriptions of attack classes, or labeled data
for training. The goal of clustering algorithms is to divide the provided unlabeled data
into clusters that achieve high inner similarity and outer dissimilarity. The input data
can be clustered using a variety of techniques, including the well-known K-means [86], K-
Medoids [87], Gaussian mixture model (GMM) [88], and Density-based Spatial Clustering
of Applications with Noise (DBSCAN) methods [89].

K-means clustering is straightforward, effective, and widely used in the data mining
industry. It is a signal processing-based vector quantization technique. Its flaw is that it
randomly chooses K points at the beginning to serve as the cluster centroids, making it
simple to get stuck in the local optimum. K-means clustering is a fast and robust algorithm
and provides good results when the data are well separated. It calculates the square
distance between the k numbers of centroids and an object; the object is assigned to the
cluster of the nearest centroid. As a result, it is critical to identify objects that behave
similarly near neighborhoods when under an FDI attack [90]. A K-means variation is
more resistant to noise and outliers than K-Medoids clustering. K-Medoids employ a real
point in the cluster to represent the cluster center rather than the mean point. It looks at
cluster heads whose overall dissimilarity to all other cluster objects is the smallest [91].
Due to its efficiency in clustering data, DBSCAN has attracted attention for use in power
systems to categorize measurement data. It is utilized for data measurement classification
and gathering relevant input data sets before training, and it has not been fully taken into
account in the online detection of FDI attacks on Microgrids. This problem is resolved
by using a state observer to estimate converter voltage and current measurements, which
are then provided to a well-trained ML model as inputs for the calculation of FDI attack
vectors to update the state-space representation model [92]. Figure 7 depicts the flowchart
for clustering-based cyber threat detection. The method utilized in ARM-based detection
techniques for data selection, preprocessing, transformation, interpretation, and evaluation
is the same. Attacked or normal data will have distinct distributions, which will lead to
different cluster formations. In a feature space with adequate dimensions, these clusters
would be recognizable. Additionally, a classifier can be trained to distinguish between the
two groups such as attacked and normal, provided the data are supplied with class labels.
When the size of measurement features grows along with an increase in the size of the
power system, which results in more computing complexity, the curse of dimensionality
becomes difficult to overcome. An ML classifier that can identify attacks on the dataset is
then trained using the chosen best characteristics.
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6. Challenges and Future Generation

Some technical challenges must be overcome if cyber-resilient power systems are to
become a reality. The problems and directions for the future are considered in the following
few points.
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The traditional grid and the smart grid are susceptible to human error. These mistakes
may be the result of overworked personnel, which limits their ability to make decisions, or
they may be the result of social engineering or insider attacks if workers are not prepared
to deal with these types of assaults. Therefore, the smart grid would maintain service
availability while providing several layers of security, utilizing the virtual private network
(VPN) to increase secure communication during attacks.

Future CPS research should take into account the unpredictability of system pa-
rameters, modeling, observations, and the dynamic properties of smart grids, which are
restricted by their varied states and operating conditions. The next generation of electri-
cal systems will be completely dependent on the smart grid. Investigating and creating
a standardized architecture, framework, and technology standard for the smart grid is
crucial since it will serve as the basis for more suitable security regulations and remedies
against cyberattacks.

The protocols that are currently being used would not offer very high security. With
such outdated protocols, confidentiality, privacy, integrity, and responsibility can all be
readily compromised. New security protocols are therefore required for smart grid net-
works. Depending on the needs of the smart grid application, a new protocol must be
created or the existing protocol must be improved.

The absence of research interest in hybrid AC/DC smart grids or microgrids presents
another difficulty for power system security. Future smart grids will likely combine AC/DC
smart grids with DG power interfaces with load, energy storage, and power electronics
converter grids. In a hybrid microgrid, the number of points of vulnerability to cyber
exploitation has the potential to increase significantly because the CPS now includes various
AC-based appliances in addition to the necessary protections against cyberattacks, which
makes modeling, creating control strategies, and designing detection algorithms more
challenging. Moreover, the control strategy for the hybrid grid, in addition to protecting
their respective voltage regions, needs to consider AC/DC interlinking problem.

Before any cyberattack occurs, the models for AI-based detection systems must un-
dergo significant training. As a result, strategies that identify not only incoming signals but
also serve to both prevent new attacks and help in system recovery are required. In the field
of power system control, a cutting-edge unsupervised ML application for CPS is emerging.
To track the stability of CPS, it combines hybrid data from cyber and physical systems.
Future research in cybersecurity is suggested to concentrate more on the model-free ap-
proach, either using an unsupervised or reinforcement detection method or enhanced SE
that can assess the state of the system regardless of system dynamics. High-level security
data structures and algorithms are required because the current state estimator methods
cannot identify improper/defective data using the existing detection techniques present in
the FDIAs.

Because intelligent grids connect many devices over extensive networks of geographic
locations, this presents a problem. Protecting this equipment from the bigger infrastructure
consequently becomes the main concern. A large amount of data from a power system
requires fast and efficient computing, which has been a concern for several researchers. Task
parallelism with multi-core, cluster and grid computing can reduce the computational time
in an efficient data mining algorithm. Blockchain technology may help with future security
issues brought on by bad nodes or hackers by enabling data sharing and encryption.

7. Conclusions

Smart grids integrate cutting-edge information and communication technologies into
conventional power grids to provide and manage power efficiently. On the other hand,
newly discovered security flaws in cyberspace could be used by potential adversaries to
launch cyberattacks that cause enormous harm. An exhaustive analysis of the network
architecture under cyber-attacks, state estimation in FDIA, and detection of FDIA by using
unsupervised learning algorithms are presented in this research. Additionally, we reviewed
occurrences of cyberattacks against smart grids that occurred globally between 2017 and
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2023, taking into account a variety of factors such as attack type, detection, merits, and
demerits. As a result, this article takes into account the limitations of the previous studies
and offers a detailed analysis of potential attacks on smart grids as well as a comparison of
various security measures. We analyzed and suggested a method based on unsupervised
learning algorithms to detect cyber threats in smart grids using PMU and AMI metrics that
connect the physical and cyber realms. Future research paths are thus presented from the
standpoint of emerging technologies for the robust cybersecurity of smart grids against
complex cyberattacks, as novel attack strategies are boundlessly exposed.
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