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Abstract: The pore structure parameters of coal have an important influence on the exploration and
development of coalbed methane. In this study, a series of pore structure parameters, including
porosity, pore radius, pore throat radius, pore coordination number, pore throat ratio, and specific
surface area, are identified, extracted, and calculated in the scanning electron microscopy (SEM)
images of coal reservoir samples using algorithms and application programs in MATLAB. Constant
rate-controlled mercury injection and low-temperature N2 adsorption experiments were carried out
to determine the accuracy of the SEM image-based processing analysis results. Characterization
results show that the distribution of pore radius in the target coal samples of different organic matters
range from 15 nm to 500 µm with porosity of 1.87–8.31% and radius distribution of 12.7 nm to
~100 µm. A noise-reduction system was constructed to eliminate the optical noise of non-porous
features and repair the space affected by binarization noise. It is suggested that the characterization
processing in this study is suitable for coal or other organic-rich porous materials with porosity > 2%
and pore radius > 15 nm.
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1. Introduction

The pore space of coal is the storage place and migration channel of groundwater and
coalbed methane. The number of the pores, the size of a single pore, the characteristics of
pore distribution, and the connectivity of pore space in coal reservoirs and coal seam-related
reservoirs directly affect the migration and accumulation of coalbed methane [1,2]. It is
of great significance to explore the pore characteristics and distribution of coal reservoirs
for the exploration and development of coalbed methane. The pore characteristics of coal
reservoirs include pore type, structure, size, quantity, and connectivity [3–6]. The study of
coal pore structure mainly covers various aspects such as pore radius distribution, pore
throat characteristics, pore type, porosity, poor connectivity, and specific surface area.

At present, two conventional methods are used to characterize the pore structure
of coal or other porous media: direct observation methods and indirect measurement
methods. Direct observation methods include BIB-SEM, FIB-SEM, and atomic force, while
indirect measurement methods are mercury injection, gas adsorption, small-angle scatter-
ing, and NMR T2 spectrum [7–10]. Direct observation methods such as SEM and micro-CT
use instruments to observe pores in the coal reservoir directly in 2D and 3D and obtain
quantitative pore structure information and parameters by statistical methods or computer
software [11–13]. Transmission electron microscopy and scanning electron microscopy
can directly observe the pores of coal reservoirs, but cannot quantitatively identify pore
structure parameters [14,15]. Three-dimensional X-ray CT imaging technology is a novel
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approach for determining the structural parameters of coal reservoirs [16,17]. It is a non-
destructive testing technology that identifies the internal structure of materials and obtains
the reconstruction of CT scanning images of samples by using the attenuation of inten-
sity after X-rays pass through materials [1,18]. Coal geologists use modelling technology
and image reconstruction technology to quantitatively study these CT images with pore
structure parameters [19–21]. The detailed characteristics of different methods are listed as
follows (Table 1).

Table 1. Quantitative analysis methods for pore throat parameters of coal.

Analysis Methods Parameters Characteristics

Direct observation
methods

SEM (Scanning
electron microscope) Nanoscale pore-throat radius (<1 µm)

Convenient but partial;
Quantitative parameters need to be

combined with computer software or
other methods

Indirect experimental
methods

Mercury injection Porosity, pore-throat radius (<2 µm) Convenient but inaccurate

Nuclear magnetic resonance Porosity, content of mud cement Content of the whole sample;
relatively precise

Radiation X-ray
computed tomography

3D pore-throat distribution and
coordination number

3D pore-throat distribution is
perfectly measured;

expensive
N2 gas adsorption Specific surface area, pore-throat radius Connected pore is well measured

X-ray diffraction Content of calcite and mud cements Content of the whole sample;
relatively precise

Although indirect measurements, with high-pressure mercury injection and gas ad-
sorption experiments as conventional methods, cannot obtain the morphological distribu-
tion of coal reservoir pore structure, they can carry out various pore parameters including
pore radius, pore throat distribution, porosity, and specific surface area [22,23]. In mercury
injection experiments, pore size distribution of the reservoir is obtained by measuring the
mercury injection pressure and volume. When mercury enters pores connected to the pore
throat with only a small throat, the volume of the small pore will be overestimated. At
the same time, when the mercury injection method is used to measure the nanoscale pore,
it may damage the nano-sized pore due to the excessive pressure required. The mercury
injection experiment can only accurately measure the pore throat above 15 nm. The gas
adsorption analysis has a long test time, with a testing range of pore between 0.3 and
200 nm. Moreover, for the same sample, the pore size distribution characteristics obtained
by using different calculation models are quite different [24]. Yao et al. [2] proposed a
method for quantitative analysis of different pore structures and types in coal using the
morphology of the NMR T2 spectrum, but it can only test the pore structure character-
istics of connected pores in coal and is hard to quantitatively analyze the closed pores
in coal [25,26]. The limitations, uncertainties, and applicability of various methods have
brought great difficulties to the quantitative analysis of nanoscale and microscale pores in
coal reservoirs.

Image-based analysis methods are widely applied to determine various structure
parameters of sand, shale, soil particles, and nanomaterials in 2D and 3D by software,
algorithm, and function-based models and numerical simulation [27–29]. Combined with X-
ray computed tomography (CT), the automatic image recognition for SEM, core sample, thin
section images, and CT images play a significant role in the analysis of the microstructure
of various materials [30–33]. This paper identifies, obtains, and calculates the porosity, pore
radius, pore throat radius, pore coordination number, pore throat ratio, and specific surface
area of coal samples based on SEM images and functions, algorithms, and application
programs in MATLAB. Coal samples from the Qinshui Basin of China were selected for
this study.
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2. Sample and Methodology
2.1. Sample

Twelve samples of the No. 3 coal seam and No. 15 coal seam in the south of Qinshui
Basin were selected for petrological observation and pore structure parameter determina-
tion. There are 10 to 16 coal seams in Qinshui Basin, among which No. 1–No. 5 belong to
Shanxi Formation and No. 6–No. 16 belong to Taiyuan Formation. The main minable coal
seams are No. 15, No. 9, and No. 3, of which No. 15 and No. 3 are stable and minable in
the whole area, and No. 9 is partially minable. The No. 3 coal samples are black in bulk
shape, with semi-bright coal as the main coal and mixed with a few semi-dark coals. The
No. 15 coal seam is black, with bright coal as the main component, and dark coal is the
secondary component. To better understand the whole quantitative analysis of various
pore structure parameters based on the SEM image of the coal reservoir, we established the
flow chart as shown in Figure 1.
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Figure 1. The flow chart of quantitative analysis of various pore structure parameters based on the
SEM image of the coal reservoir.

2.2. SEM Image

SEM images with high resolution are often used for pore structure reconstruction and
pore structure analysis [18,19]. The scanning electron microscopy was carried out with
an S-4800 cold field emission scanning electron microscope produced by Japan HITACHI
company and Czech TESCAN-VEGA/LSH thermal field emission scanning electron micro-
scope to observe the pore characteristics and distribution after gold plating of coal samples.
To explore the applicability of the algorithm–image quantitative analysis to various pores
in coal samples, six types of pores in the coal sample were selected as the basic images:
residual pores filled with quartz, pores in filamentous bodies, pores filled with kaolinite,
matrix micropores, pores filled with kaolinite-illite, and plant cell pores filled with pyrite
(Figure 2).

2.3. Image Binarization

To extract and obtain the pore information and distribution in the image, we first
binarized the SEM images of the coal sample and transformed them into a binary image,
which could be recognized by MATLAB. The methods for binarization mainly include
feature-binarization analysis based on programming software and image binarization
analysis. A single threshold setting can satisfy the processing of an image but using a
threshold or a parameter to control a series of binary images will inevitably cause the
results to deviate. The SEM image is a grey image that is not black or white. To improve the
accuracy of image feature binarization, the original SEM is transformed into an adaptive
image with an RGB color gamut. The adaptive threshold is set such that when different
parts of the same image have different brightness, the threshold at this time is calculated
based on each small area or unit on the image corresponding to the threshold. Taking
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SEM images of matrix micropores as an example (Figure 3A), the division of sub-regions is
carried out in MATLAB’s built-in application, “Image Segmenter” (Figure 3B). The function
“multithresh( )” is a function of segmenting image pixels, which is used to evaluate the
gradient of a multi-scale greyscale image. The specific algorithm is as follows:

level = multithresh(P,L);

C = imquantize(B,level);
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Figure 2. SEM images showing types of pores in a coal sample. (A) SX006-15, 1095 m, residual pores
filled with quartz; (B) SX017-3, 993 m, pores in filamentous bodies; (C) BF3-1, 765 m, pores filled with
kaolinite; (D) WZ3-3, 232 m, matrix micropores; (E) SGJ-15, 286 m, pores filled with kaolinite-illite;
(F) WTP-15, 644 m, plant cell pores filled with pyrite.

P is the matrix value transformed by the input image. L is the number of grey levels
divided. The function “imquantize” inversely assigns the obtained multi-scale greyscale
image to the predecessor image of the adaptive binary image that we want. By adjusting
the parameters in the “Image Segmenter”, the SEM image is segmented by suitable units
and then transformed into an adaptive threshold image by imquantize (Figure 3C). The
final binary image is shown in Figure 3D. In the whole process, the binary image only
retains the pore space in the image, which is also the basis for ensuring the accuracy of the
entire process. Different thresholds are used in different areas of the same image so that we
can obtain better results under different brightness conditions.
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Figure 3. The binarization process of a SEM image: (A) WZ3-3, 232 m, matrix micropores;
(B) Sub-region segmentation of (A); (C) Adaptive threshold image of (A); (D) Binary image of (A).

2.4. Segmentation of Pore Space

Segmentation is a basic but quite important step for image analysis. The segmentation
result is fundamental to all subsequent processes and determines all subsequent calcu-
lations [34–36]. After image binarization, the most urgent task is to recognize the pore
information in the binary image and convert it into the parameters that could be calculated.
The function “bwperim” can be used to detect the position of sudden change or mutation
points of the pixels in the binary image, which is the boundary between the pore and the
macerals. The boundary of pore space is identified by the function “P = bwperim(C)”. This
step is to prepare for the calculation of porosity and pore surface area. For the acquisition
of pore structure radius, pore throat distribution and pore coordination number, every pore
unit in the binary image needs to be divided and restored to what they are in SEM images.
The “bwlabel” function is used to segment the mutation points in a binary image, and the
“regionprops” function is used to measure the attributes of the image region in MATLAB.
Further, the functions of “label”, “regionprops” and “bwlabel” are used to identify and
divide the pore units.

[L,num] = bwlabel(C, N)

P = regionprops(C, bwlabel)

where C is the input image, N can be 4 or 8 to connect four connected or eight connected
regions. “num” is the number of connected regions found; L is the output image matrix.
The background elements in the binary image are marked as 0; the first connected region
is marked as 1; the second connected region is marked as 2, and so on. All the steps in
Section 2.4 are prepared for the following calculation of pore structure parameters.
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2.5. Quantitative Analysis Process
2.5.1. Porosity of Coal Reservoir

The porosity of a coal reservoir is defined as the proportion of pore space in a unit
area. The acquisition of pore area in the binary image is the key to calculating component
content and porosity. There are two ways to obtain the image area in MATLAB using
function “sum” or function “area”. Function “sum” can sum the elements of each column
and row of the matrix, while function “area” can sum the whole matrix of the binary image
based on other algorithms. In this paper, function “sum” is selected for calculation, and the
algorithm is as follows:

Aw = sum(sum(White)); %Pore area;

Aw+b = sum(sum(White) + sum(Black)); %Total area;

Then porosity “Φ” is:
Φ = Aw/(Aw + Ab); (1)

White or pore space is the white part of a binary image. Black or non-pore space is the
black part of a binary image.

2.5.2. Pore Radius

To obtain the distribution of pore radius in SEM images, we need to calculate the
radius of each pore unit that was divided in Section 2.4. The pore radius corresponds to
half of the average of the major and minor axes of a single pore unit. The key of this step is
to calculate the length of the major axis and minor axis of each element in the image, that
is, the pore radius = (major axis radius + minor axis radius)/2. We establish a coordinate
system for the image and try to find the maximum X coordinate (Xmax), minimum X
coordinate (Xmin), maximum Y coordinate (Ymax), and minimum Y coordinate (Ymin) of
each unit. The algorithm “ginput()” is a function that can obtain the coordinate value of a
specified point in the X direction or Y direction. Based on the ginput(), Xmax, Ymax, Xmin,
and Ymin of each unit pore can be obtained. The major axis length of each pore unit is (Max
[‘Xmax-Xmin’, ’Ymax-Ymin’]) and the minor axis is Min [‘Xmax-Xmin’, ’Ymax-Ymin’]. The
pore unit radius “Rp“ is as follows:

Rp = [(Xmax-Xmin) + (Ymax-Ymin)]/2 = [(ginput(Pn,maxx) − ginput(Pn,minx)) +
(ginput(Pn,maxy) − ginput(Pn,miny))]/2

(2)

Pn is each pore unit identified in the binary image.

2.5.3. Pore-Throat Radius

Unlike the pore radius, the throat radius refers to the radius at the junction of two pore
units. The junction of two pore units is the position of a line made up of pixel mutation
points. The function “bwdist” is used to calculate the distance between elements. Function
“regionprops” is defined to obtain the properties of the region, which is a function used
to measure the properties of units of image. Many properties could be calculated by
“regionprops”, such as “area”, “perimeter”, “volume”, “length”, “centroid”, etc. These
two functions were combined to calculate the throat radius in conjunction as well as the
pore-throat. Based on the segmentation results in Section 2.4, the following algorithm is
adopted for each pore unit.

B = double(watershed(bwdist(A),255))
Rt = regionprops(bwlabel(B), length);

(3)

A is the shortest distance between the position of zero pixels and the position of the
non-zero pixel; 255 is the point where the nearest pixel near the element is 255.
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After the pore radius and throat radius are obtained at the same time, the pore throat
ratio in the coal sample can also be calculated.

Pore throat radio = Rp/Rt; (4)

2.5.4. Acquisition of Pore Throat Network and Coordination Number

The pore throat coordination number of a coal reservoir refers to the number of throats
connected to each pore in the coal sample. The coordination number reflects the degree of
connectivity between pore space and pore throat. The higher the coordination number, the
better the reservoir. In the segmentation unit of the binary image, the coordination number
of the pore throat is equivalent to the number of pore units in which a single pore unit
connects with the surrounding pore units. “Network” is the function connecting the panel
points of pixel change in the image. Based on the pore unit of binary images, the algorithm
“network = zeros ()” is used to calculate the pore throat coordination number. The network
function is the function connecting the pixel nodes in the image.

Network = zeros(max(B(:)));
for I = 1:size(E,1)

Network(E(I,1),E(I,2)) = 1;
Network(E(I,2),E(I,1)) = 1;

(5)

2.5.5. Specific Surface Area

The formula for calculating specific surface area is defined as unit area/unit volume
(m2/m3), while for 2D images, the specific surface area of pores is the ratio of perimeter and
area in one unit, that is, m/m2. Based on the binary image, we calculate the specific area
of the identified pores. The perimeter of pore space in the binary image can be obtained
by use of the function “regionprops” which measures the attributes of the image region in
MATLAB as mentioned before. The pore area is obtained by Aw = sum(sum(White)). Then,
the specific surface area is as follows:

Sp = regionprops(image, perimeter)
Specific surface pores in 2D = Sp/Resolution/Aw;

(6)

2.6. Mercury Injection Experiment

A constant velocity mercury injection experiment was performed with Autopore
IV9500 Mercury Porosimeter to test the pore throat radius of coal samples. The maximum
test pressure of 35 MPa and the radius of the roar channel can be tested in the range of
18–183,132 nm. The range of pore-radius can be tested between 18 nm and 183,132 nm with
the highest test pressure of 35 MPa. The parameters of the pore structure tested by the
mercury injection experiment include discharge pressure, average pore throat diameter,
mercury injection saturation, and mercury removal efficiency. The pore-throat radius is
determined by the pressure at the breakthrough point, and the pore radius is determined
by mercury injection saturation.

2.7. Low-Temperature N2 Adsorption

Due to the shortcomings of nano-sized adsorption pores and specific surface area
of mercury injection experiments, research on pore parameters of coal reservoirs needs
to be carried out in conjunction with the low-temperature N2 adsorption test. The low-
temperature N2 adsorption test was performed with a Tristar23020 Low-temperature liquid
N2 adsorption instrument and Quadrasorb SI specific surface analyzer. The N2 adsorption
experiment was operated at a saturation pressure of 77.35 K, using liquid nitrogen with a
purity of more than 99.999% as the adsorption medium, and at a relative pressure of 0.01
to 0.995. The whole experiment is suitable for measuring pores with a pore diameter of
less than 10 nm. The smallest pore radius measured can only reach about 0.6 nm, and the
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largest measured pore diameter ranges from 100 nm to 150 nm. Both the constant rate
mercury injection experiment and the low-temperature N2 adsorption test were carried out
at North China Petroleum Exploration and Development Research Institute.

3. Results and Discussion
3.1. Parameters of Pore Structure
3.1.1. Porosity of Coal Reservoir

Based on the binarization process in Section 2.3, images obtained in Figure 2 were
transformed into the adaptive threshold images (Figure 4). In Figure 4, red represents pore
space, while blue is the matrix and macerals. Furthermore, the application program “Image
Segmenter” is used to binarize the self-adaptive images of various pore types. The binary
images with pore space characteristics can be obtained. As discussed before, the key step
in the process of obtaining the porosity of coal samples based on SEM images is to obtain
the pixel area of pore space by function “sum”. Through Formula (1), the porosity in SEM
images of all kinds of coal samples is obtained. The porosity of binary images in Figure 4 is
1.2662%, 5.2181%, 6.2559%, 8.3128%, 4.5052% and 7.9579% for panels A–F, respectively.
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3.1.2. Pore Radius of Coal Reservoir

The distance between any pore center point on the central axis of the coal reservoir
and the rock skeleton is defined as the pore radius. The pore radius reflects the reservoir’s
storage capacity [37,38]. Based on the pore unit segmented by binary image, the pore
radius of the coal reservoir can be obtained by Formula (2). Because the pore space in
coal is mainly composed of nanoscale pores, the pore space is divided between the X-axis
and Y-axis by applying the related algorithms of functions “bwperim” and “regionprops”
(Figure 5A–F). Further, the long-axis radius and the short-axis radius of various types of
pore units are calculated using Formula (2). The average radius of the various pores is:
3.1117 µm, 3.8228 µm, 2.1059 µm, 1.2771 µm, 5.7849 µm, 7.5580 µm and the corresponding
distribution of pore radius is displayed in Figure 5G–L.
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In addition to the pore space, various fractures also play an important role in the
permeability and storage of coal reservoirs. Fractures are endogenetic or exogenetic. Endo-
genetic fractures, also known as cleavage, are formed by uniform shrinkage of the volume
of coal-forming materials, which causes tension along the coal seam (Figure 6A). Exogenic
fractures are formed by geological stress, including tensile exogenic fracture and shear
exogenic fracture (Figure 6B,C). The algorithm-image quantitative analysis designed in this
paper is also suitable to calculate the radius of various fractures. Based on the SEM image
and thin section image, the radius of the endogenetic crack, micro-crack, tensile exogenetic
crack, and shear exogenetic crack are extracted and calculated. Based on the analysis of
Section 2.5.2, the whole analysis process is similar to the calculation of the pore radius of
coal reservoir in principle. The adaptive threshold segmentation and binarization of the
image are carried out successively, and the binary image obtained is calculated. Calculation
results of four types of crack radius in Figure 6I–L are 2.2368 µm, 6.8697 µm, 10.5677 µm,
and 6.0612 µm, respectively.

3.1.3. Pore-Throat Radius

The pore throat radius is the length of the contact point between two connected pores
in the reservoir. The radius of the pore throat in different types of reservoir space is a crucial
factor in determining reservoir permeability. The principle of calculating the pore radius
and pore throat radius of coal reservoirs based on SEM images is also completely different.
According to the discussions in Sections 2.5.2 and 2.5.3, the key point of calculating the
pore throat diameter is how to capture the position of the pore throat. The combination
of functions “bwdist” and “regionprops” and Formula (3) solves this problem perfectly.
Using the function “regionprops” to identify the color change of different pore units in
Figure 7, and relying on the function “bwdist” and Formula (3) to calculate the identified
mutation lengths consisting of mutation points, the length of the pore throat radius can
be calculated.

To visually discern the calculated length of the pore throat radius, Figure 8A–F shows
the identification points of various pore throat diameters. The pore-throat radius in
Figure 8G–L are calculated by Formula (3) and the average pore throat radius corresponds
to 1.8831 µm, 1.32411 µm, 1.2693 µm, 0.9789 µm, 0.5662 µm, and 1.1760 µm. After obtaining
the average pore radius and an average pore throat diameter of the coal radius, Formula (4)
can be used to calculate the pore throat ratio of the coal reservoir, namely, the pore throat
ratio = average pore radius/average pore-throat radius.
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Figure 6. SEM images showing fracture types: (A) SX015-5, fracture filled by calcite; (B) WZ03, micro-
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of (A–D); (I–L) pore unit segmentation images of (A–D); (M–P) pore radius identification of (I–L);
(Q–T) pore radius distribution of (A–D).
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Figure 8. Coordination distribution of different types of pores in Figure 2 (A–F); Coordination results
of pore units between pore IDs of Figure 6 (G–L); Pore-throat coordination number distribution of
Figure 9G–L (M–R).

3.1.4. Coordination Number

The topological structure of pore space in a coal reservoir refers to the connection
relationship or connectivity between each pore throat in the rock. The number of the single
pore-throat unit connected with other pore-throat units in the coal sample is called pore
throat coordination number, which is generally between 1 and 5. The distribution of pore
throat coordination numbers reflects the connectivity of the pore network model. The
connectivity between pores and throats has a great influence on the displacement process of
coalbed methane. The higher the coordination number, the better the connectivity, the more
fluid migration channels, and the better the reservoir properties. The average pore throat
coordination number is used to reflect the connectivity of coal reservoirs. On the basis of
the distribution of the pore segmentation unit, the pore network and nodes in Figure 6 are
identified by the function “network” and the related algorithm in Section 2.5.4. The results
of identification are shown in Figure 8G–L. Each pore ID in the image represents each pore
segmentation unit, so the recognition of pore throat coordination is transformed into the
match of the pore ID. Formula (5) is applied to calculate the coordinate number with the
output image of the segmented pore cell (Figure 8).
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3.1.5. Specific Surface Area

Specific surface area is defined as the total area of a unit mass of material with the unit
of m2/g. There are two types: external specific surface area and internal specific surface
area. Specific surface area is one of the important reference indexes for evaluating the
industrial utilization of catalysts, adsorbents, and other porous materials such as asbestos,
mineral wool, and clay minerals. Coalbed methane is mainly adsorbed on the inner surface
of the coal matrix, and micropores are the main part of gas adsorption. The specific surface
area has an important effect on the adsorption capacity of reservoir rocks. According
to the physical adsorption theory of solid surfaces, the adsorption capacity is directly
proportional to the specific surface area. The size of a coal reservoir’ specific surface area
has a significant impact on the thermal properties, adsorption capacity, chemical stability,
heterogeneity of the reservoir, and CBM’s development and utilization. Currently, for the
measurement of the specific surface area of the pores we use the functions “sum” and
“regionprops” to obtain the surface area and perimeter of the pore space in the binary
image and calculate the specific surface area of the pore space on the plane or in the two-
dimensional space by Formula (6). The average specific surface area of pores in Figure 9
corresponding to the original images of Figure 5 is 1.8705 m2/g, 0.9747 m2/g, 0.9502 m2/g,
1.1635 m2/g, 1.2852 m2/g, and 1.3065 m2/g. Table 2 shows the data calculated based on
quantitative analysis.

3.2. Mercury Injection Data

The results of the mercury injection test (Table 3) show that the average pore con-
tent of coal samples in Qinshui Basin is 84.70% with a pore radius smaller than 100 nm
(micropores), 9.52% with pore radius of 100 to ~1000 nm (middle pores), and 4.23% with
pore diameter larger than 1000 nm (large pores). In the No. 3 coal seam, the proportions
of micropores, middle pores, and large pores are 85.38%, 9.08%, and 3.96%, respectively.
In the No. 15 coal seam, the proportions of micropores, middle pores, and large pores
are 83.36%, 10.39%, and 4.78%. The average mercury saturation of No. 3 coal samples
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is 36.30%, and that of No. 15 coal samples is 44.98%, which indicates that the effective
pore of the coal reservoir is less. The displacement pressure reflects the capillary pressure
when mercury enters the maximum throat of the coal sample. The smaller the value is, the
larger the pore-throat radius is. The average displacement pressure of coal seam No. 3 is
3.36 MPa, and that of coal seam No. 15 is 2.77 MPa. The mercury removal efficiency of coal
samples in the south of Qinshui Basin ranges between 47.41% and 72.06%, mostly higher
than 50%. The high mercury removal efficiency indicates that the pore connectivity is good.
The average mercury removal efficiency of the No. 3 coal samples and No. 15 coal samples
are 67.11% and 65.47%, showing that the pore connectivity of the No. 3 coal seam is better
than that of the No. 15 coal seam. The pore structure parameters of the coal reservoir in the
south of Qinshui Basin were measured by the constant velocity mercury injection method.

Table 2. Pore structure parameters calculated by image–algorithm quantitative analysis.

Sample Type Porosity (%) Pore Radius
(µm)

Pore-Throat
Radius (µm)

Coordination
Number

Pore Throat
Ratio

Pore Specific
Surface Area (m2/g)

1 SX006-15

Pore space

1.266 0.311 0.188 0.888 1.65 1.871
2 SX017-3 5.218 0.382 0.132 0.817 2.887 0.975
3 BF3-1 6.256 0.211 0.127 1.237 1.659 0.950
4 WZ3-3 8.313 0.128 0.098 0.467 1.304 1.164
5 SGJ15-1 4.505 0.579 0.056 0.786 10.22 1.285
6 WTP15-1 7.958 0.756 0.118 0.976 6.426 1.307
7 LDS-15

Fracture

2.059 2.237
8 WZ3-2 3.199 6.870
9 SX306-23 4.201 10.568

10 SX008-2 7.059 6.061

Table 3. Mercury injection data of coal reservoir samples in the south of Qinshui Basin.

Sample Porosity (%) Maximum Mercury
Saturation (%)

Displacement
Pressure (MPa)

Average Pore-Throat
Radius (µm)

Mercury Porosimetry Percentage

0–100 nm 100–1000 nm >1000 nm

WZ3-3 3.0 44.85 1.97 0.15 81.21 12.14 5.21
WY3-2 1.6 47.78 4.87 0.06 86.67 9 2.84
BF3-1 3.4 36.81 2.78 0.11 84.51 9.4 4.59

SX005-2 1.4 26.9 1.17 0.25 86.12 8.35 4.06
SX013-3 6.2 26.55 1.8 0.17 86.8 8.44 2.44
SX008-2 2.3 39.16 3.92 0.11 85.97 9.07 3.49
SX011-3 3.9 35.85 5.08 0.05 84.42 8.74 5.4
SX025-3 0.8 32.46 5.31 0.06 87.3 7.53 3.68
SGJ15-1 7.5 32.61 0.2 1.29 79.55 9.71 9.25

WTP15-1 1.6 60.28 2.34 0.11 81.04 14.03 3.48
FHS15-1 1.4 49.45 5.08 0.06 86.4 9.04 3.09
SX005-5 3.1 37.58 3.45 0.11 86.46 8.79 3.28
SX008-8 0.3 76.23 0.94 0.24 68.8 23.03 6.7

3.3. Low-Temperature N2 Adsorption Data

The low-temperature N2 adsorption can quantitatively analyze the nanocomposites
in shale or coal reservoirs which are composed of porous mineral structures with a small
radius [39,40]. Table 4 shows the data of low-temperature N2 adsorption. The BET-specific
surface area of the No. 3 coal sample ranges from 0.345 m2/g to 1.379 m2/g, with an
average value of 0.72 m2/g. The average BJH cumulative specific surface area is distributed
between 0.707 m2/g and 2.723 m2/g, with an average value of 1.764 m2/g. The total
BJH pore volume is 3.034 × 10−3 mL/g, with an average pore diameter of 15.05 nm. The
average BET-specific surface area of the No. 15 coal sample ranges from 0.087 to 1.6832,
with an average value of 0.543 m2/g, and the average surface area of BJH is 1.543 m2/g.
The average BJH pore volume is 2.836 × 10−3 mL/g, with an average BJH pore diameter
of 20.35 nm. The specific surface area and total pore volume of the two coal seams show
a good distribution of pores, which can provide a larger adsorption area and volume. In
addition, the specific surface area and total pore volume of No. 15 coal are slightly lower
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than those of No. 3 coal, and the average pore diameter is slightly larger than that of the
No. 3 coal sample. N2 adsorption experiments rely on fluid pressure for pore simulation
to obtain specific surface area parameters. During the process of fluid injection into the
rock, the sudden increase in pressure may lead to the fracture of original rock pores or the
formation of new pores affected by pressure, resulting in the change of specific surface area.

Table 4. Nitrogen adsorption data of coal reservoir samples in the south of Qinshui Basin.

Sample BET Specific Surface
Area (m2/g)

BJH Cumulative Specific
Surface Area (m2/g)

BJH Total Pore
Volume (mL/mg)

Average Pore-Throat
Radius (nm)

WZ3-3 0.50 1.62 1.91 11.17
WY3-2 0.47 1.51 1.32 7.93
BF3-1 0.12 0.71 0. 90 23.18

SX005-2 1.25 2.21 4.47 12.88
SX013-1-3 1.38 2.72 6.35 16.08
SX008-2 1.31 2.55 5.83 16.04
SX011-3 0.35 1.54 2.24 21.06
SX025-3 0.40 1.26 1.36 10.58
SGJ15-1 0.31 1.63 1.71 16.77

WTP15-1 0.31 1.37 1.54 13.80
FHS15-1 0.32 1.11 1.37 13.04
SX0015-5 0.09 0.94 1.12 38.84
SX0015-8 1.68 2.66 8.53 19.29

3.4. The Generation and Reduction of Noise
3.4.1. Noise Reduction

A scanning electron microscope can observe nanoscale pores because of its super
magnification. During the shooting process, the dark angle and optical noise caused by
the high pressure, the SEM image will generate a certain amount of optical noise during
the shooting process, which cannot be ignored for the impact of nanoscale and microscale
pores. Due to the small radius of these optical noises, the specific surface area of each
unit is very large, which greatly affects the distribution of pore and throat radius and the
specific surface area. Therefore, it is necessary to perform noise reduction on the binary
image obtained in Section 2.4. Noise reduction includes the elimination of noise without
pore features and the compensation or repair of the space where the pores are removed due
to the influence of noise. Function “imerode” and function “bridge” are used to eliminate
and repair the noise effect. Function “imerode” is designed to remove isolated pixel areas,
such as 255 pixel points surrounded by a zero pixel area. The function “bridge” is used
to establish a bridge between disconnected pixels. For example, if there are two non-zero
unconnected pixels, “bridge” will set the zero value pixel to 255. When applying these two
functions, we must combine the function “bwmorph” which can identify the morphology
of the image (the ability to perform digital morphology operations on binary images). The
specific algorithm is as follows:

P = bwmorph(P,’imerode’,n);
P = bwmorph(P,’bridge’,n);

(7)

n represents the specified morphological processing on the binary image n times. n needs
to be divided according to the actual pixels, generally set to one in this paper. It is worth
noting that the order of function “imerode” and function “bridge” is fixed and cannot be
reversed. If the noise is repaired first, more noise will be generated in the binary image,
increasing the noise further.

3.4.2. Difference of Pore Structure Parameters before and after Noise Reduction

The strong heterogeneity of the pore structure of coal reservoirs in size, shape, dis-
tribution, and connectivity makes the noise reduction process more important for the
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calculation of pore structure parameters. Taking the binary image of Figure 2D as an
example, “imerode” and “bridge” are applied to reduce the noise. To distinguish the
effect of noise reduction on pore parameters, we compare the performance of the pore
structure in porosity, radius distribution, and connectivity before and after noise reduction.
Figure 10A,B corresponds to the original binary image and the denoised image after image
segmentation. It can be observed that the binary image after noise reduction is clearer in
morphological performance, and the optical noise in the image is also eliminated. Affected
by the accumulation and transitivity of the noise, the recognition results based on the pore
unit segmentation image and the pore connectivity also show very large differences after
noise reduction. Similarly, a large amount of optical noise in SEM will be mistaken for pore
space by MATLAB, which will lead to the change of the pore distribution in Figure 10C,D.
The most direct performance of the binary image after noise reduction is the decrease of
porosity, which is reduced from 14.319% to 13.374%. The elimination of noise effects will
also affect the parameters of pore radius and connectivity.
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Figure 10. (A) The original pore unit segmentation; (B) Pore unit segmentation of the denoised
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coordination number.

In the aspect of pore radius distribution, the pore radius in the noise-reduced binary
image is significantly higher than that in the original binary image (Figure 10E,F). The
average pore radius is 11.2144 µm and 18.0697 µm, respectively. Before noise reduction,
the optical noise that exists inside the pore space makes a single pore space divided into
multiple pore units. The pores with a large radius in SEM images are replaced by several
pores with smaller radius pore units in the binary image. In terms of pore-throat radius
distribution, similar to the pore radius, the pore-throat radius in the denoised binary image
is slightly larger than that in the original binary image, respectively. The average pore
throat radius of these two images is 6.2981 µm and 7.4620 µm. The reason for the increase
of the pore-throat radius after noise reduction is the same as that of the pore radius. On
the one hand, the initial pore space is divided into several pore individuals with smaller
pore radius by optical noise, which is restored to individuals with a larger radius. On the
other hand, noise with a smaller radius is also removed. Noise results in a large number of
pore spaces being segmented, which also influences the calculation of pore coordination
numbers. The average pore coordination numbers of the original binary image and the
denoised binary image are 1.3893 and 1.1009, respectively. Therefore, when calculating the
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pore structure parameters of coal reservoirs based on SEM images, the elimination of noise
is an indispensable step and an important process.

3.5. Fitness

To explore the applicability of the image–algorithm quantitative analysis, we compared
the porosity, pore throat radius, and BET specific surface area obtained in the mercury
injection experiment and N2 adsorption experiment. For the coal reservoir porosity, the
porosity measured by image–algorithm quantitative analysis and the mercury injection
experiment results shows a quadratic function distribution, with a symmetric axis of about
5% (Figure 11A). When the coal reservoir is less than 5%, there is a positive correlation
between the two measurement results. When the coal reservoir is more than 5%, the image
analysis results are larger than the mercury injection experiment results, showing a negative
correlation. We speculate that two factors are affecting this distribution. First, the mercury
injection experiment mainly obtains the connected pore space of the coal sample, while the
image–algorithm analysis calculates the sum of all the pores in the SEM image, including
the connected pores and the closed pores. However, this explanation is bound to lead to
the data measured by image analysis being higher than the results of the mercury injection
experiment. Second, the noise reduction of the binary image results in some unconnected
pores or individual pores mistaken as noise by the algorithm, which makes the measured
porosity lower than the real value. Therefore, when the porosity of the coal reservoir is
lower than 5%, the porosity extracted from image–algorithm analysis should be higher
than that of the mercury injection experiment, but the effect of noise reduction makes the
porosity positively correlated with the mercury injection experiment parameter. When the
porosity of the coal reservoir is high (>5%), the porosity affected by the noise reduction
effect is far lower than that of a sample, so that the porosity shows a trend that is originally
higher than that of the mercury injection experiment.
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For the pore throat radius, the results based on image analysis are different from those
carried out by the mercury injection experiment. Figure 11B shows that when the average
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pore radius is less than 200 nm, the pore throat radius measured by the mercury injection
experiment is higher than the value calculated based on image–algorithm analysis with
a very good linear relationship. However, when the average pore radius is greater than
200 nm, there is no obvious rule. We speculate that the reason for this distribution is mainly
due to the difference between the two experimental principles. The measurement target of
the mercury injection experiment is the connected pore throat radius of the coal sample,
which cannot be measured for some closed and disconnected pores. The image–algorithm
analysis method calculates all the pores in the image, including the connected pore space
and the closed pores with a smaller radius. The principle of the two methods leads to the
larger radius of the pore-throat measured by the mercury injection experiment than that
obtained by the image–algorithm analysis.

The specific surface area parameters obtained by the low-temperature N2 adsorption
experiment include BET specific surface area and BJH specific surface area. We establish
scatter plots of the specific surface area measured by image–algorithm analysis with BET
specific surface area and BJH specific surface area (Figure 10C,D). Figure 10C shows a good
positive correlation between the BET specific surface and the specific surface area with
R2 = 0.2823 and a linear coefficient of 1.0274. Similarly, there is a positive correlation
between BJH specific surface area and specific surface area with R2 = 0.2074 and a = 1.0574.
As we have discussed, the noise reduction process of image analysis will lead to the
disappearance of some small holes, while the BET specific surface and BJH specific surface
area measured by the gas adsorption theory model cannot obtain some closed pores. These
two experimental conditions just form a complementary condition, which makes the results
more similar.

4. Conclusions

Image–algorithm quantitative analysis combines the visualization of SEM imaging
and digital image technology to achieve quantitative analysis of pore structure parameters
of coal reservoirs. The SEM-based characterization analysis can obtain some pore structure
parameters including 2D porosity, pore coordination number, and pore throat ratio, whereas
the conventional methods such as N2 adsorption and mercury injection have obvious
advantages in calculating pore radius and porosity in whole rock scale of coal.

Image-algorithm analysis relies on the calculation system for recognition in a conve-
nient and accurate way for 2D images such as SEM and microscopy images. The preliminary
sample preparation is the most important for organic-rich samples, especially the sample
polishing process. It is suggested that the characterization processing is suitable for coal or
other organic-rich porous materials with porosity > 2% and pore radius > 15 nm.

An alternative way to characterize the full-scale pore structure of coal in 2D and 3D
requires comprehensive use of multiple methods. Taking our sample as an example, the
whole process of quantitative analysis has good identification for analysis when the pore
throat radius is higher than 15 nm in most pore types of coal in 2D. Three-dimensional
nano-CT and indirect methods such as NMR and high-pressure mercury injection are
expected for determination when pore throat radius is lower than 15 nm.
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