Nanoarchitectonics of Layered Metal Chalcogenides-Based Ternary Electrocatalyst for Water Splitting
Abstract
:1. Introduction
2. Principles and Electrochemistry of Electrocatalytic Water Splitting
2.1. HER
- (1)
- Electrochemical hydrogen adsorption (Volmer reaction):
- (2)
- Electrochemical hydrogen desorption (Heyrovsky reaction):
- (3)
- Chemical hydrogen desorption (Tafel reaction):
2.2. OER
3. Governance Index for Water Splitting (OER and HER)
3.1. Overpotential
3.2. Tafel Plot
3.3. Turnover Frequency
3.4. Stability
3.5. Faradaic Efficiency
4. Nanoarchitectonics of Layered TMCs
4.1. Single-Layered Ternary TMCs
4.2. Nanodots
4.3. Nanocrystals
4.4. Nanotubes
4.5. Nanowires
4.6. Nanofibers
4.7. Nanospheres and Nanospheroids
4.8. MOF Nanoarchitectures
5. Layered Ternary TMCs as Bifunctional Electrocatalysts in Water Splitting
6. Tactics for Enhancing Electrocatalytic Activity
6.1. Edge Engineered Layered TMCs
6.2. Doping/Vacancy in Layered TMCs
6.3. Strain Regulation in Layered TMCs
6.4. Chemical Modification
6.4.1. Double-Anion Ternary TMCs
6.4.2. Double-Cation Ternary TMCs
7. Challenges and Perspective
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.; Santori, E.A.; Lewis, N.S. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446–6473. [Google Scholar] [CrossRef] [PubMed]
- Balat, M.; Balat, H. Biogas as a Renewable Energy Source—A Review. Energy Sources Part A Recover. Util. Environ. Eff. 2009, 31, 1280–1293. [Google Scholar] [CrossRef]
- Kotrel, S.; Brauninger, S. Industrial Electrocatalysis. In Handbook of Heterogeneous Catalysis; Wiley: Weinheim, Germany, 2008. [Google Scholar]
- Nørskov, J.K.; Bligaard, T.; Logadottir, A.; Kitchin, J.R.; Chen, J.G.; Pandelov, S.; Stimming, U. Trends in the Exchange Current for Hydrogen Evolution. J. Electrochem. Soc. 2005, 152, J23. [Google Scholar] [CrossRef]
- Guan, J.; Bai, X.; Tang, T. Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Res. 2022, 15, 818–837. [Google Scholar] [CrossRef]
- Li, X.; Hu, Q.; Wang, H.; Li, X.; Hu, Q.; Wang, H.; Chen, M.; Hao, X.; Ma, Y.; Liu, J.; et al. Charge induced crystal distortion and morphology remodeling: Formation of Mn-CoP nanowire @ Mn-CoOOH nanosheet electrocatalyst with rich edge dislocation defects. Appl. Catal. B Environ. 2021, 292, 120172. [Google Scholar] [CrossRef]
- Li, X.; Hao, X.; Abudula, A.; Guan, G. Nanostructured catalysts for electrochemical water splitting: Current state and prospects. J. Mater. Chem. A 2016, 4, 11973–12000. [Google Scholar] [CrossRef]
- Chen, J.; Lim, B.; Lee, E.P.; Xia, Y. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 2009, 4, 81–95. [Google Scholar] [CrossRef]
- Greeley, J.; Jaramillo, T.F.; Bonde, J.; Chorkendorff, I.; Nørskov, J.K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913. [Google Scholar] [CrossRef]
- Morales-Guio, C.G.; Stern, L.A.; Hu, X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555. [Google Scholar] [CrossRef]
- Faber, M.S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542. [Google Scholar] [CrossRef]
- Arulraj, A.; Thachnatharen, N.; Rajkumar, C.; Mangalaraja, R.V. Engineering 2D chalcogenides for energy and environmental remediation. In Nanostructured Materials for Sustainable Energy and Environmental Remediation; IOP Publishing: Bristol, UK, 2022. [Google Scholar]
- Shi, L.; Zhao, T. Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries. J. Mater. Chem. A 2017, 5, 3735–3758. [Google Scholar] [CrossRef]
- Das, S.; Pandey, D.; Thomas, J.; Roy, T. The Role of Graphene and Other 2D Materials in Solar Photovoltaics. Adv. Mater. 2019, 31, 1802722. [Google Scholar] [CrossRef] [PubMed]
- Arulraj, A.; Mehana Usmaniya, U.; Senguttuvan, G.; Sivakumar, V.; Khalid, M. Chalcogenides Nanocrystals and Its Applications. In Contemporary Nanomaterials in Material Engineering Applications; Springer: Bern, Switzerland, 2021; pp. 201–227. [Google Scholar]
- Lin, Y.P.; Polyakov, B.; Butanovs, E.; Popov, A.A.; Sokolov, M.; Bocharov, D.; Piskunov, S. Excited States Calculations of MoS2@ZnO and WS2@ZnO Two-Dimensional Nanocomposites for Water-Splitting Applications. Energies 2021, 15, 150. [Google Scholar] [CrossRef]
- Kim, K.; Tiwari, A.P.; Hyun, G.; Novak, T.G.; Jeon, S. Improving electrochemical active area of MoS2 via attached on 3D-ordered structures for hydrogen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 28143–28150. [Google Scholar] [CrossRef]
- Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D.C.B.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V.B.; Eda, G.; et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Jayaramulu, K.; Masa, J.; Tomanec, O.; Peeters, D.; Ranc, V.; Schneemann, A.; Zboril, R.; Schuhmann, W.; Fischer, R.A. Nanoporous Nitrogen-Doped Graphene Oxide/Nickel Sulfide Composite Sheets Derived from a Metal-Organic Framework as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution. Adv. Funct. Mater. 2017, 27, 1700451. [Google Scholar] [CrossRef]
- Yang, Y.; Yao, H.; Yu, Z.; Islam, S.M.; He, H.; Yuan, M.; Yue, Y.; Xu, K.; Hao, W.; Sun, G.; et al. Hierarchical Nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a Highly Efficient Electrocatalyst for Overall Water Splitting in a Wide pH Range. J. Am. Chem. Soc. 2019, 141, 10417–10430. [Google Scholar] [CrossRef]
- Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 2012, 3, 2515. [Google Scholar] [CrossRef]
- Tsai, C.; Chan, K.; Abild-Pedersen, F.; Nørskov, J.K. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: A density functional study. Phys. Chem. Chem. Phys. 2014, 16, 13156–13164. [Google Scholar] [CrossRef]
- Kong, D.; Wang, H.; Cha, J.J.; Pasta, M.; Koski, K.J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers. Nano Lett. 2013, 13, 1341–1347. [Google Scholar] [CrossRef]
- Wang, H.; Kong, D.; Johanes, P.; Cha, J.J.; Zheng, G.; Yan, K.; Liu, N.; Cui, Y. MoSe2 and WSe2 Nanofilms with Vertically Aligned Molecular Layers on Curved and Rough Surfaces. Nano Lett. 2013, 13, 3426–3433. [Google Scholar] [CrossRef] [PubMed]
- Putungan, D.B.; Lin, S.H.; Kuo, J.L. A first-principles examination of conducting monolayer 1T′-MX2 (M = Mo, W.; X. = S, Se, Te): Promising catalysts for hydrogen evolution reaction and its enhancement by strain. Phys. Chem. Chem. Phys. 2015, 17, 21702–21708. [Google Scholar] [CrossRef] [PubMed]
- Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.J.; Loh, K.P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Voiry, D.; Yang, J.; Chhowalla, M. Recent Strategies for Improving the Catalytic Activity of 2D TMD Nanosheets Toward the Hydrogen Evolution Reaction. Adv. Mater. 2016, 28, 6197–6206. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Li, S.; Zhang, X.; Zhang, J.; Wang, R.; Zhang, H.; Pan, B.; Xie, Y. Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem. Sci. 2014, 5, 4615–4620. [Google Scholar] [CrossRef]
- Chen, W.F.; Sasaki, K.; Ma, C.; Frenkel, A.I.; Marinkovic, N.; Muckerman, J.T.; Zhu, Y.; Adzic, R.R. Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets. Angew. Chem. Int. Ed. 2012, 51, 6131–6135. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.D.; Nguyen, M.; Pramana, S.S.; Bhattacharjee, A.; Chiam, S.Y.; Fize, J.; Field, M.J.; Artero, V.; Wong, L.H.; Loo, J.; et al. Copper molybdenum sulfide: A new efficient electrocatalyst for hydrogen production from water. Energy Environ. Sci. 2012, 5, 8912. [Google Scholar] [CrossRef]
- Cabán-Acevedo, M.; Stone, M.L.; Schmidt, J.R.; Thomas, J.G.; Ding, Q.; Chang, H.C.; Tsai, M.L.; He, J.H.; Jin, S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 2015, 14, 1245–1251. [Google Scholar] [CrossRef]
- Jaramillo, T.F.; Jørgensen, K.P.; Bonde, J.; Nielsen, J.H.; Horch, S.; Chorkendorff, I. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science 2007, 317, 100–102. [Google Scholar] [CrossRef]
- Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S.Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, L.; Zhao, P.; Lee, L.Y.S.; Wong, K.Y. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem. Rev. 2020, 120, 851–918. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Yan, Z.; Liu, F.; Xu, W.; Cheng, F.; Chen, J. Self-Supported Transition-Metal-Based Electrocatalysts for Hydrogen and Oxygen Evolution. Adv. Mater. 2020, 32, 1806326. [Google Scholar] [CrossRef]
- Kim, J.S.; Kim, B.; Kim, H.; Kang, K. Recent Progress on Multimetal Oxide Catalysts for the Oxygen Evolution Reaction. Adv. Energy Mater. 2018, 8, 1702774. [Google Scholar] [CrossRef]
- Rossmeisl, J.; Logadottir, A.; Nørskov, J.K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 2005, 319, 178–184. [Google Scholar] [CrossRef]
- Xu, Z.; Rossmeisl, J.; Kitchin, J.R. A Linear Response DFT+ U Study of Trends in the Oxygen Evolution Activity of Transition Metal Rutile Dioxides. J. Phys. Chem. C 2015, 119, 4827–4833. [Google Scholar] [CrossRef]
- Man, I.C.; Su, H.Y.; Calle-Vallejo, F.; Hansen, H.A.; Martínez, J.I.; Inoglu, N.G.; Kitchin, J.; Jaramillo, T.F.; Nørskov, J.K.; Rossmeisl, J. Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces. ChemCatChem 2011, 3, 1159–1165. [Google Scholar] [CrossRef]
- Guo, Y.; Park, T.; Yi, J.W.; Henzie, J.; Kim, J.; Wang, Z.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J.; et al. Nanoarchitectonics for Transition-Metal-Sulfide-Based Electrocatalysts for Water Splitting. Adv. Mater. 2019, 31, 1807134. [Google Scholar] [CrossRef]
- Gao, Y.; Xiong, T.; Li, Y.; Huang, Y.; Li, Y.; Balogun, M.S.J.T. A Simple and Scalable Approach To Remarkably Boost the Overall Water Splitting Activity of Stainless Steel Electrocatalysts. ACS Omega 2019, 4, 16130–16138. [Google Scholar] [CrossRef]
- Wang, S.; Lu, A.; Zhong, C.J. Hydrogen production from water electrolysis: Role of catalysts. Nano Converg. 2021, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Li, S.; Du, Y.; Han, X.; Xu, P. How to Reliably Report the Overpotential of an Electrocatalyst. ACS Energy Lett. 2020, 5, 1083–1087. [Google Scholar] [CrossRef]
- Shinagawa, T.; Garcia-Esparza, A.T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801. [Google Scholar] [CrossRef] [PubMed]
- Sanchis-Gual, R.; Seijas-Da Silva, A.; Coronado-Puchau, M.; Otero, T.F.; Abellán, G.; Coronado, E. Improving the onset potential and Tafel slope determination of earth-abundant water oxidation electrocatalysts. Electrochim. Acta 2021, 388, 138613. [Google Scholar] [CrossRef]
- Anantharaj, S.; Karthik, P.E.; Noda, S. The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research. Angew. Chem. Int. Ed. 2021, 60, 23051–23067. [Google Scholar] [CrossRef]
- Anantharaj, S.; Ede, S.R.; Karthick, K.; Sam Sankar, S.; Sangeetha, K.; Karthik, P.E.; Kundu, S. Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment. Energy Environ. Sci. 2018, 11, 744–771. [Google Scholar] [CrossRef]
- Tiwari, A.P.; Kim, D.; Kim, Y.; Prakash, O.; Lee, H. Highly active and stable layered ternary transition metal chalcogenide for hydrogen evolution reaction. Nano Energy 2016, 28, 366–372. [Google Scholar] [CrossRef]
- Miao, J.; Xiao, F.X.; Yang, H.B.; Khoo, S.Y.; Chen, J.; Fan, Z.; Hsu, Y.Y.; Chen, H.M.; Zhang, H.; Liu, B. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte. Sci. Adv. 2015, 1, e1500259. [Google Scholar] [CrossRef]
- Kim, Y.; Tiwari, A.P.; Prakash, O.; Lee, H. Activation of Ternary Transition Metal Chalcogenide Basal Planes through Chemical Strain for the Hydrogen Evolution Reaction. ChemPlusChem 2017, 82, 785–791. [Google Scholar] [CrossRef]
- Gao, Z.; Qi, J.; Chen, M.; Zhang, W.; Cao, R. An Electrodeposited NiSe for Electrocatalytic Hydrogen and Oxygen Evolution Reactions in Alkaline Solution. Electrochim. Acta 2017, 224, 412–418. [Google Scholar] [CrossRef]
- Lin, T.; Tang, Y.; Wang, Y.; Bi, H.; Liu, Z.; Huang, F.; Xie, X.; Jiang, M. Scotch-tape-like exfoliation of graphite assisted with elemental sulfur and graphene–sulfur composites for high-performance lithium-sulfur batteries. Energy Environ. Sci. 2013, 6, 1283. [Google Scholar] [CrossRef]
- Tiwari, A.P.; Kim, D.; Kim, Y.; Lee, H. Bifunctional Oxygen Electrocatalysis through Chemical Bonding of Transition Metal Chalcogenides on Conductive Carbons. Adv. Energy Mater. 2017, 7, 1602217. [Google Scholar] [CrossRef]
- Aldakov, D.; Lefrançois, A.; Reiss, P. Ternary and quaternary metal chalcogenide nanocrystals: Synthesis, properties and applications. J. Mater. Chem. C 2013, 1, 3756. [Google Scholar] [CrossRef]
- Mazing, D.S.; Chernaguzov, I.S.; Shulga, A.I.; Korepanov, O.A.; Aleksandrova, O.A.; Moshnikov, V.A. Synthesis of ternary chalcogenide colloidal nanocrystals in aqueous medium. J. Phys. Conf. Ser. 2018, 1038, 012050. [Google Scholar] [CrossRef]
- Gautam, A.; Sk, S.; Pal, U. Recent advances in solution assisted synthesis of transition metal chalcogenides for photo-electrocatalytic hydrogen evolution. Phys. Chem. Chem. Phys. 2022, 24, 20638–20673. [Google Scholar] [CrossRef]
- Sujith, C.P.; Joseph, S.; Mathew, T.; Mathew, V. Exploring the electronic and optical anisotropy of quasi-one-dimensional ternary chalcogenide CrSbSe3: A DFT study. Solid State Sci. 2022, 130, 106926. [Google Scholar] [CrossRef]
- Rao, B.G.; Mukherjee, D.; Reddy, B.M. Novel approaches for preparation of nanoparticles. In Nanostructures for Novel Therapy; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–36. [Google Scholar]
- Zhang, J.; Wu, M.H.; Shi, Z.T.; Jiang, M.; Jian, W.J.; Xiao, Z.; Li, J.; Lee, C.S.; Xu, J. Composition and Interface Engineering of Alloyed MoS2xSe2(1-x) Nanotubes for Enhanced Hydrogen Evolution Reaction Activity. Small 2016, 12, 4379–4385. [Google Scholar] [CrossRef]
- Gao, M.R.; Chan, M.K.Y.; Sun, Y. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat. Commun. 2015, 6, 7493. [Google Scholar] [CrossRef]
- Jiang, Y.; Xi, J.; Wu, Z.; Dong, H.; Zhao, Z.; Jiao, B.; Hou, X. Highly Transparent, Conductive, Flexible Resin Films Embedded with Silver Nanowires. Langmuir 2015, 31, 4950–4957. [Google Scholar] [CrossRef]
- Yang, C.; Gu, H.; Lin, W.; Yuen, M.M.; Wong, C.P.; Xiong, M.; Gao, B. Silver Nanowires: From Scalable Synthesis to Recyclable Foldable Electronics. Adv. Mater. 2011, 23, 3052–3056. [Google Scholar] [CrossRef]
- Liu, J.W.; Xu, J.; Liang, H.W.; Wang, K.; Yu, S.H. Macroscale Ordered Ultrathin Telluride Nanowire Films, and Tellurium/Telluride Hetero-Nanowire Films. Angew. Chem. Int. Ed. 2012, 51, 7420–7425. [Google Scholar] [CrossRef] [PubMed]
- Jeong, B.J.; Choi, K.H.; Jeon, J.; Yoon, S.O.; Chung, Y.K.; Sung, D.; Chae, S.; Kim, B.J.; Oh, S.; Lee, S.H.; et al. Ternary Transition Metal Chalcogenide Nb 2 Pd 3 Se 8: A New Candidate of 1D Van der Waals Materials for Field-Effect Transistors. Adv. Funct. Mater. 2022, 32, 2108104. [Google Scholar] [CrossRef]
- Tiwari, A.; Novak, T.; Bu, X.; Ho, J.; Jeon, S. Layered Ternary and Quaternary Transition Metal Chalcogenide Based Catalysts for Water Splitting. Catalysts 2018, 8, 551. [Google Scholar] [CrossRef]
- Zhou, C.; Dun, C.; Wang, K.; Zhang, X.; Shi, Z.; Liu, G.; Hewitt, C.A.; Qiao, G.; Carroll, D.L. General method of synthesis ultrathin ternary metal chalcogenide nanowires for potential thermoelectric applications. Nano Energy 2016, 30, 709–716. [Google Scholar] [CrossRef]
- Zhou, J.; Zhu, C.; Zhou, Y.; Dong, J.; Li, P.; Zhang, Z.; Wang, Z.; Lin, Y.C.; Shi, J.; Zhang, R.; et al. Composition and phase engineering of metal chalcogenides and phosphorous chalcogenides. Nat. Mater. 2022, 2022, 915. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, K.; Dun, C.; Wang, Q.; Shi, Z.; Liu, G.; Qiao, G. Environmentally benign synthesis of high-quality, band gap-tunable, homogeneous Te/Se alloyed nanowires. RSC Adv. 2015, 5, 69268–69272. [Google Scholar] [CrossRef]
- Zong, W.; Lian, R.; He, G.; Guo, H.; Ouyang, Y.; Wang, J.; Lai, F.; Miao, Y.E.; Rao, D.; Brett, D. Vacancy engineering of group VI anions in NiCo2A4 (A = O, S, Se) for efficient hydrogen production by weakening the shackles of hydronium ion. Electrochim. Acta 2020, 333, 135515. [Google Scholar] [CrossRef]
- Yang, M.Q.; Wang, J.; Wu, H.; Ho, G.W. Noble Metal-Free Nanocatalysts with Vacancies for Electrochemical Water Splitting. Small 2018, 14, 1703323. [Google Scholar] [CrossRef]
- Zeng, L.; Sun, K.; Chen, Y.; Liu, Z.; Chen, Y.; Pan, Y.; Zhao, R.; Liu, Y.; Liu, C. Neutral-pH overall water splitting catalyzed efficiently by a hollow and porous structured ternary nickel sulfoselenide electrocatalyst. J. Mater. Chem. A 2019, 7, 16793–16802. [Google Scholar] [CrossRef]
- Bose, R.; Jothi, V.R.; Koh, B.; Jung, C.; Yi, S.C. Molybdenum Sulphoselenophosphide Spheroids as an Effective Catalyst for Hydrogen Evolution Reaction. Small 2018, 14, 1703862. [Google Scholar] [CrossRef]
- Zhang, B.; Zheng, Y.; Ma, T.; Yang, C.; Peng, Y.; Zhou, Z.; Zhou, M.; Li, S.; Wang, Y.; Cheng, C. Designing MOF Nanoarchitectures for Electrochemical Water Splitting. Adv. Mater. 2021, 33, 2006042. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.W.; Fu, M.X.; Huang, D.D.; Wang, X.K.; Wu, Y.P.; Lu, J.Y.; Li, D.S. A new 2D Co 5 -cluster based MOF: Crystal structure, magnetic properties and electrocatalytic hydrogen evolution reaction. Inorg. Chem. Commun. 2018, 95, 73–77. [Google Scholar] [CrossRef]
- Rui, K.; Zhao, G.; Lao, M.; Cui, P.; Zheng, X.; Zhu, J.; Huang, W.; Dou, S.X.; Sun, W. Direct Hybridization of Noble Metal Nanostructures on 2D Metal–Organic Framework Nanosheets To Catalyze Hydrogen Evolution. Nano Lett. 2019, 19, 8447–8453. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Liu, J.; Zhao, Y.; Zheng, Y.; Qiao, S. Engineering 2D Metal–Organic Framework/MoS2 Interface for Enhanced Alkaline Hydrogen Evolution. Small 2019, 15, 1805511. [Google Scholar] [CrossRef]
- Gopi, S.; Selvamani, V.; Yun, K. MoS2 Decoration Followed by P Inclusion over Ni-Co Bimetallic Metal–Organic Framework-Derived Heterostructures for Water Splitting. Inorg. Chem. 2021, 60, 10772–10780. [Google Scholar] [CrossRef]
- Pokrovski, G.S.; Roux, J.; Hazemann, J.L.; Borisova, A.Y.; Gonchar, A.A.; Lemeshko, M.P. In-situ X-ray absorption spectroscopy measurement of vapour-brine fractionation of antimony at hydrothermal conditions. Miner. Mag. 2008, 72, 667–681. [Google Scholar] [CrossRef]
- Panigrahi, P.K.; Pathak, A. Microwave-assisted synthesis of WS2 nanowires through tetrathiotungstate precursors. Sci. Technol. Adv. Mater. 2008, 9, 045008. [Google Scholar] [CrossRef]
- Anantharaj, S.; Kennedy, J.; Kundu, S. Microwave-Initiated Facile Formation of Ni3Se4 Nanoassemblies for Enhanced and Stable Water Splitting in Neutral and Alkaline Media. ACS Appl. Mater. Interfaces 2017, 9, 8714–8728. [Google Scholar] [CrossRef]
- Sobha Jayakrishnan, D. Electrodeposition: The versatile technique for nanomaterials. In Corrosion Protection and Control Using Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2012; pp. 86–125. [Google Scholar]
- Kim, S.; Kwak, J.; Ciobanu, C.V.; Kwon, S. Recent Developments in Controlled Vapor-Phase Growth of 2D Group 6 Transition Metal Dichalcogenides. Adv. Mater. 2019, 31, 1804939. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Peng, S. Tunable Photodeposition of MoS2 onto a Composite of Reduced Graphene Oxide and CdS for Synergic Photocatalytic Hydrogen Generation. J. Phys. Chem. C 2014, 118, 19842–19848. [Google Scholar] [CrossRef]
- Liu, J.H.; Huang, G.F.; Huang, W.Q.; Miao, H.; Zhou, B.X. Morphology-controlled SnS2 nanostructures synthesized by refluxing method with high photocatalytic activity. Mater. Lett. 2015, 161, 480–483. [Google Scholar] [CrossRef]
- Muratore, C.; Voevodin, A.A.; Glavin, N.R. Physical vapor deposition of 2D Van der Waals materials: A review. Thin Solid Films 2019, 688, 137500. [Google Scholar] [CrossRef]
- Shanmugaratnam, S.; Yogenthiran, E.; Koodali, R.; Ravirajan, P.; Velauthapillai, D.; Shivatharsiny, Y. Recent Progress and Approaches on Transition Metal Chalcogenides for Hydrogen Production. Energies 2021, 14, 8265. [Google Scholar] [CrossRef]
- Lei, L.; Huang, D.; Zhang, C.; Deng, R.; Chen, S.; Li, Z. F dopants triggered active sites in bifunctional cobalt sulfide@nickel foam toward electrocatalytic overall water splitting in neutral and alkaline media: Experiments and theoretical calculations. J Catal. 2020, 385, 129–139. [Google Scholar] [CrossRef]
- Wang, L.; Duan, X.; Liu, X.; Gu, J.; Si, R.; Qiu, Y.; Qiu, Y.; Shi, D.; Chen, F.; Sun, X.; et al. Atomically Dispersed Mo Supported on Metallic Co9S8 Nanoflakes as an Advanced Noble-Metal-Free Bifunctional Water Splitting Catalyst Working in Universal pH Conditions. Adv. Energy Mater. 2020, 10, 1903137. [Google Scholar] [CrossRef]
- Xiong, B.; Chen, L.; Shi, J. Anion-Containing Noble-Metal-Free Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catal. 2018, 8, 3688–3707. [Google Scholar] [CrossRef]
- Tao, L.; Huang, M.; Guo, S.; Wang, Q.; Li, M.; Xiao, X.; Cao, G.; Shao, Y.; Shen, Y.; Fu, Y.; et al. Surface modification of NiCo2Te4 nanoclusters: A highly efficient electrocatalyst for overall water-splitting in neutral solution. Appl. Catal. B Environ. 2019, 254, 424–431. [Google Scholar] [CrossRef]
- Yoo, E.; Okata, T.; Akita, T.; Kohyama, M.; Nakamura, J.; Honma, I. Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface. Nano Lett. 2009, 9, 2255–2259. [Google Scholar] [CrossRef]
- Xiong, Q.; Zhang, X.; Wang, H.; Liu, G.; Wang, G.; Zhang, H.; Zhao, H. One-step synthesis of cobalt-doped MoS2 nanosheets as bifunctional electrocatalysts for overall water splitting under both acidic and alkaline conditions. Chem. Commun. 2018, 54, 3859–3862. [Google Scholar] [CrossRef]
- Dai, X.; Du, K.; Li, Z.; Liu, M.; Ma, Y.; Sun, H.; Zhang, X.; Yang, Y. Co-Doped MoS2 Nanosheets with the Dominant CoMoS Phase Coated on Carbon as an Excellent Electrocatalyst for Hydrogen Evolution. ACS Appl. Mater. Interfaces 2015, 7, 27242–27253. [Google Scholar] [CrossRef]
- Deng, J.; Li, H.; Wang, S.; Ding, D.; Chen, M.; Liu, C.; Tian, Z.; Novoselov, K.S.; Ma, C.; Deng, D.; et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat. Commun. 2017, 8, 14430. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R.; Liu, S.; Zhuang, X.; Feng, X. Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall-Water-Splitting Activity. Angew. Chem. Int. Ed. 2016, 55, 6702–6707. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Luo, M.; Liu, P.; Cheng, C.; Han, J.; Watanabe, K.; Chen, M. Three-Dimensional Nanoporous Co9S4P4 Pentlandite as a Bifunctional Electrocatalyst for Overall Neutral Water Splitting. ACS Appl. Mater. Interfaces 2019, 11, 3880–3888. [Google Scholar] [CrossRef] [PubMed]
- Jayabal, S.; Saranya, G.; Wu, J.; Liu, Y.; Geng, D.; Meng, X. Understanding the high-electrocatalytic performance of two-dimensional MoS2 nanosheets and their composite materials. J. Mater. Chem. A 2017, 5, 24540–24563. [Google Scholar] [CrossRef]
- Wu, Z.; Fang, B.; Wang, Z.; Wang, C.; Liu, Z.; Liu, F.; Wang, W.; Alfantanzi, A.; Wang, D.; Wilkinson, D.P. MoS2 Nanosheets: A Designed Structure with High Active Site Density for the Hydrogen Evolution Reaction. ACS Catal. 2013, 3, 2101–2107. [Google Scholar] [CrossRef]
- Chung, D.Y.; Park, S.K.; Chung, Y.H.; Yu, S.H.; Lim, D.H.; Jung, N.; Ham, H.C.; Park, H.Y.; Piao, Y.; Yoo, S.J.; et al. Edge-exposed MoS2 nano-assembled structures as efficient electrocatalysts for hydrogen evolution reaction. Nanoscale 2014, 6, 2131–2136. [Google Scholar] [CrossRef]
- Chen, Z.; Cummins, D.; Reinecke, B.N.; Clark, E.; Sunkara, M.K.; Jaramillo, T.F. Core–shell MoO3–MoS2 Nanowires for Hydrogen Evolution: A Functional Design for Electrocatalytic Materials. Nano Lett. 2011, 11, 4168–4175. [Google Scholar] [CrossRef]
- Kibsgaard, J.; Chen, Z.; Reinecke, B.N.; Jaramillo, T.F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969. [Google Scholar] [CrossRef]
- Hu, J.; Huang, B.; Zhang, C.; Wang, Z.; An, Y.; Zhou, D.; Lin, H.; Leung, M.K.H.; Yang, S. Engineering stepped edge surface structures of MoS2 sheet stacks to accelerate the hydrogen evolution reaction. Energy Environ. Sci. 2017, 10, 593–603. [Google Scholar] [CrossRef]
- Yang, L.; Hong, H.; Fu, Q.; Huang, Y.; Zhang, J.; Cui, X.; Fan, Z.; Liu, K.; Xiang, B. Single-Crystal Atomic-Layered Molybdenum Disulfide Nanobelts with High Surface Activity. ACS Nano 2015, 9, 6478–6483. [Google Scholar] [CrossRef]
- Saadi, F.H.; Carim, A.I.; Velazquez, J.M.; Baricuatro, J.H.; McCrory, C.C.L.; Soriaga, M.P.; Lewis, N.S. Operando Synthesis of Macroporous Molybdenum Diselenide Films for Electrocatalysis of the Hydrogen-Evolution Reaction. ACS Catal. 2014, 4, 2866–2873. [Google Scholar] [CrossRef]
- Yang, Y.; Fei, H.; Ruan, G.; Xiang, C.; Tour, J.M. Edge-Oriented MoS2 Nanoporous Films as Flexible Electrodes for Hydrogen Evolution Reactions and Supercapacitor Devices. Adv. Mater. 2014, 26, 8163–8168. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.P.; Lee, K.; Kim, K.; Kim, J.; Novak, T.G.; Jeon, S. Conformally Coated Nickel Phosphide on 3D, Ordered Nanoporous Nickel for Highly Active and Durable Hydrogen Evolution. ACS Sustain. Chem. Eng. 2020, 8, 17116–17123. [Google Scholar] [CrossRef]
- Kim, K.; Tiwari, A.P.; Hyun, G.; Yoon, Y.; Kim, H.; Young Park, J.; An, K.S.; Jeon, S. Continuous 3D-nanopatterned Ni–Mo solid solution as a free-standing electrocatalyst for the hydrogen evolution reaction in alkaline medium. J. Mater. Chem. A 2021, 9, 7767–7773. [Google Scholar] [CrossRef]
- Hyun, G.; Cho, S.H.; Park, J. 3D ordered carbon/SnO2 hybrid nanostructures for energy storage applications. Electrochim. Acta 2018, 288, 108–114. [Google Scholar] [CrossRef]
- Shim, G.W.; Hong, W.; Yang, S.Y.; Choi, S.Y. Tuning the catalytic functionality of transition metal dichalcogenides grown by chemical vapour deposition. J. Mater. Chem. A 2017, 5, 14950–14968. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Liang, H.; Dong, R.; Feng, X. Hierarchical Transition-Metal Dichalcogenide Nanosheets for Enhanced Electrocatalytic Hydrogen Evolution. Adv. Mater. 2015, 27, 7426–7431. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Zhang, B.; Li, Z.; Cao, S.; Sun, Y.; Wu, Y.; Gao, Z.; Sun, L. Vertically Aligned Oxygenated-CoS2–MoS2 Heteronanosheet Architecture from Polyoxometalate for Efficient and Stable Overall Water Splitting. ACS Catal. 2018, 8, 4612–4621. [Google Scholar] [CrossRef]
- Zhang, G.; Feng, Y.S.; Lu, W.T.; He, D.; Wang, C.Y.; Li, Y.K.; Wang, X.Y.; Cao, F.F. Enhanced Catalysis of Electrochemical Overall Water Splitting in Alkaline Media by Fe Doping in Ni3S2 Nanosheet Arrays. ACS Catal. 2018, 8, 5431–5441. [Google Scholar] [CrossRef]
- Xiong, Q.; Wang, Y.; Liu, P.F.; Zheng, L.R.; Wang, G.; Yang, H.G.; Wong, P.K.; Zhang, H.; Zhao, H. Cobalt Covalent Doping in MoS2 to Induce Bifunctionality of Overall Water Splitting. Adv. Mater. 2018, 30, 1801450. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Q.; Si, R.; Li, D.G.; Li, W.; Liu, D.P.; Wang, D.; Sun, L.; Zhang, Y.; Zou, X. Coupling Sub-Nanometric Copper Clusters with Quasi-Amorphous Cobalt Sulfide Yields Efficient and Robust Electrocatalysts for Water Splitting Reaction. Adv. Mater. 2017, 29, 1606200. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Gao, G.; Du, M.; Zhou, J.; Wang, K.; Wu, W.; Chen, X.; Li, Y.; Ma, P.; Dong, W.; et al. Atomic-Scale Core/Shell Structure Engineering Induces Precise Tensile Strain to Boost Hydrogen Evolution Catalysis. Adv. Mater. 2018, 30, 1707301. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.P.; Yoon, Y.; Novak, T.G.; Azam, A.; Lee, M.; Lee, S.S.; Lee, G.H.; Srolovitz, D.J.; An, K.S.; Jeon, S. Lattice Strain Formation through Spin-Coupled Shells of MoS2 on Mo2C for Bifunctional Oxygen Reduction and Oxygen Evolution Reaction Electrocatalysts. Adv. Mater. Interfaces 2019, 6, 1900948. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, P.; Chen, L.; Cong, W.; Ito, Y.; Han, J.; Guo, X.; Tang, Z.; Fujita, T.; Hirata, A.; et al. Monolayer MoS2 Films Supported by 3D Nanoporous Metals for High-Efficiency Electrocatalytic Hydrogen Production. Adv. Mater. 2014, 26, 8023–8028. [Google Scholar] [CrossRef]
- Jiang, K.; Luo, M.; Liu, Z.; Peng, M.; Chen, D.; Lu, Y.R.; Chan, T.S.; Groot, F.M.F.; Tan, Y. Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nat. Commun. 2021, 12, 1687. [Google Scholar] [CrossRef]
- Liang, K.; Yan, Y.; Guo, L.; Marcus, K.; Li, Z.; Zhou, L.; Li, Y.; Ye, R.; Orlovskaya, N.; Sohn, Y.H.; et al. Strained W(SexS1–x)2 Nanoporous Films for Highly Efficient Hydrogen Evolution. ACS Energy Lett. 2017, 2, 1315–1320. [Google Scholar] [CrossRef]
- Tiwari, A.P.; Azam, A.; Novak, T.G.; Prakash, O.; Jeon, S. Chemical strain formation through anion substitution in Cu2WS4 for efficient electrocatalysis of water dissociation. J. Mater. Chem. A 2018, 6, 7786–7793. [Google Scholar] [CrossRef]
- Wang, B.; Liu, B.; Xu, T. Metal oxy compounds heterogeneous interfaces joining for water splitting. In Metal Oxides and Related Solids for Electrocatalytic Water Splitting; Elsevier: Amsterdam, The Netherlands, 2022; pp. 273–292. [Google Scholar]
- Xie, J.; Zhang, J.; Li, S.; Grote, F.; Zhang, X.; Zhang, H.; Wang, R.; Lei, Y.; Pan, B.; Xie, Y. Controllable Disorder Engineering in Oxygen-Incorporated MoS2 Ultrathin Nanosheets for Efficient Hydrogen Evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888. [Google Scholar] [CrossRef]
- Xu, C.; Peng, S.; Tan, C.; Ang, H.; Tan, H.; Zhang, H.; Yan, Q. Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution. J. Mater. Chem. A 2014, 2, 5597–5601. [Google Scholar] [CrossRef]
- Gong, Q.; Cheng, L.; Liu, C.; Zhang, M.; Feng, Q.; Ye, H.; Zeng, M.; Xie, L.; Liu, Z.; Li, Y. Ultrathin MoS2(1–x)Se2x Alloy Nanoflakes For Electrocatalytic Hydrogen Evolution Reaction. ACS Catal. 2015, 5, 2213–2219. [Google Scholar] [CrossRef]
- Hinnemann, B.; Moses, P.G.; Bonde, J.; Jorgensen, K.P.; Nielsen, J.H.; Horch, S.; Chorkendroff, I.; Norskov, J.K. Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Dou, K.; Kaun, C.C.; Kuang, Q.; Yang, S. MoSe2 nanosheets and their graphene hybrids: Synthesis, characterization and hydrogen evolution reaction studies. J. Mater. Chem. A 2014, 2, 360–364. [Google Scholar] [CrossRef]
- Kosmala, T.; Coy Diaz, H.; Komsa, H.P.; Ma, Y.; Krasheninnikov, A.V.; Batzill., M.; Agnoli, S. Metallic Twin Boundaries Boost the Hydrogen Evolution Reaction on the Basal Plane of Molybdenum Selenotellurides. Adv. Energy Mater. 2018, 8, 1800031. [Google Scholar] [CrossRef]
- Gholamvand, Z.; McAteer, D.; Backes, C.; McEvoy, N.; Harvey, A.; Berner, M.C.; Hanlon, D.; Bradley, C.; Godwin, I. Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe2 to be the most effective hydrogen evolution catalyst. Nanoscale 2016, 8, 5737–5749. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Wei, Z.; Liu, X.; Liu, J.; Fang, X.; Fang, D.; Wang, X.; Wang, D.; Tang, J.; Fan, X. Ordered and Disordered Phases in Mo1−xWxS2 Monolayer. Sci. Rep. 2017, 7, 15124. [Google Scholar] [CrossRef]
- Er, D.; Ye, H.; Frey, N.C.; Kumar, H.; Lou, J.; Shenoy, V.B. Prediction of Enhanced Catalytic Activity for Hydrogen Evolution Reaction in Janus Transition Metal Dichalcogenides. Nano Lett. 2018, 18, 3943–3949. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Wang, F.; Wang, Z.; Zhan, X.; Wang, Q.; Cheng, Z.; Safdar, M.; He, J. Component-Controllable WS2(1−x)Se2x Nanotubes for Efficient Hydrogen Evolution Reaction. ACS Nano. 2014, 8, 8468–8476. [Google Scholar] [CrossRef]
- Wu, M.; Huang, Y.; Cheng, X.; Geng, X.; Tang, Q.; You, Y.; Yu, Y.; Zhou, R.; Xu, J. Arrays of ZnSe/MoSe2 Nanotubes with Electronic Modulation as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Adv. Mater. Interfaces 2017, 4, 1700948. [Google Scholar] [CrossRef]
- Li, H.; Yu, K.; Tang, Z.; Zhu, Z. Experimental and First-Principles Investigation of MoWS2 with High Hydrogen Evolution Performance. ACS Appl. Mater. Interfaces 2016, 8, 29442–29451. [Google Scholar] [CrossRef]
- Tan, S.M.; Pumera, M. Composition-Graded MoWS x Hybrids with Tailored Catalytic Activity by Bipolar Electrochemistry. ACS Appl. Mater. Interfaces 2017, 9, 41955–41964. [Google Scholar] [CrossRef]
- Chua, X.J.; Luxa, J.; Eng, A.Y.S.; Tan, S.M.; Sofer, Z.; Pumera, M. Negative Electrocatalytic Effects of p-Doping Niobium and Tantalum on MoS2 and WS2 for the Hydrogen Evolution Reaction and Oxygen Reduction Reaction. ACS Catal. 2016, 6, 5724–5734. [Google Scholar] [CrossRef]
- Ambrosi, A.; Sofer, Z.; Pumera, M. 2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem. Commun. 2015, 51, 8450–8453. [Google Scholar] [CrossRef] [PubMed]
- Lukowski, M.A.; Daniel, A.S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.; Chan, K.; Nørskov, J.K.; Abild-Pedersen, F. Rational design of MoS2 catalysts: Tuning the structure and activity via transition metal doping. Catal. Sci. Technol. 2015, 5, 246–253. [Google Scholar] [CrossRef]
- Askari, M.B.; Beheshti-Marnani, A.; Banizi, Z.T.; Seifi, M.; Ramezan zadeh, M.H. Synthesis and evaluation of MoWCoS/G and MoWCuS/G as new transition metal dichalcogenide nanocatalysts for electrochemical hydrogen evolution reaction. Chem. Phys. Lett. 2018, 691, 243–249. [Google Scholar] [CrossRef]
- Fang, Z.; Peng, L.; Qian, Y.; Zhang, X.; Xie, Y.; Cha, J.J.; Yu, G. Dual Tuning of Ni–Co–A (A = P, Se, O) Nanosheets by Anion Substitution and Holey Engineering for Efficient Hydrogen Evolution. J. Am. Chem. Soc. 2018, 140, 5241–5247. [Google Scholar] [CrossRef]
- Liu, Y.; Hua, X.; Xiao, C.; Zhou, T.; Huang, P.; Guo, Z.; Pan, B.; Xie, Y. Heterogeneous Spin States in Ultrathin Nanosheets Induce Subtle Lattice Distortion To Trigger Efficient Hydrogen Evolution. J. Am. Chem. Soc. 2016, 138, 5087–5092. [Google Scholar] [CrossRef]
- Chen, Y.; Ren, Z.; Fu, H.; Zhang, X.; Tian, G.; Fu, H. NiSe-Ni 0.85 Se Heterostructure Nanoflake Arrays on Carbon Paper as Efficient Electrocatalysts for Overall Water Splitting. Small 2018, 14, 1800763. [Google Scholar] [CrossRef]
Synthesis Approaches | Advantages/Disadvantages | Ref |
---|---|---|
Hydrothermal/Solvothermal Method | Produces nanomaterials with various morphologies and thicknesses at high pressure and low temperature; can synthesize high-quality large crystals; cost of equipment is high | [61,80] |
Microwave-assisted Synthesis | Requires less time/rapid process; size can be controlled | [81,82] |
Electrodeposition Method | Rapid and single-step process; used to produce homogeneous and high-purity crystalline materials at the cathode of the electrochemical system during the coating process | [83] |
Sulfidation and Selenization | Solution-phase conversion; facile and selectable synthesis method | [73] |
Chemical Vapor Deposition (CVD) Method | Gas-phase aerosol process for producing high-purity nanoparticles; mainly used for large-scale thin-film production | [84] |
Photoreduction | Requires higher photon energy; can synthesize materials with large surface area and many active sites | [85] |
Refluxing Method | Large-scale synthesis method; facile and cost-effective | [86] |
Sputtering | 0D, 1D, and 2D materials can be prepared; used for depositing materials with high melting point; as electrons can be focalized, it is possible to obtain very localized heating on the material to evaporate with a high density of evaporation power | [87,88] |
TMCs | Morphology | Electrolytes | Overpotential (mV) | Tafel (mV/dec) | Current Density (mA/cm2) | TOF(s−1) | Cdl (mF/cm2) | Ref |
---|---|---|---|---|---|---|---|---|
Cu2MoS4 | Single-layered nanosheets | H2SO4 | 96 | 54 | 10 | -- | -- | [50] |
MoSe2/Cu2MoS4 | Nanodots | H2SO4 | 166 | 74.7 | 10 | -- | -- | [52] |
MoS2xSe2(1-x) | Nanotubes | H2SO4 | 219 | 55 | 10 | -- | -- | [61] |
NiCo2Se4 | Nanowires | H2SO4 | 168 | 49.8 | 10 | 0.453 | 14.9 | [71] |
Ni(S0.5Se0.5)2 | Hollow nanospheres | Phosphate-buffered saline (PBS) solution | 124 | 81 | 10 | -- | 12.9 | [73] |
Mo37.3S46.9Se15.8 | Nanospheroids | N2-saturated H2SO4 | 93 | 50.1 | 10 | 0.40 | 9 | [74] |
Co-BDC/MoS2 | 2D Nanosheets | KOH | 248 | 86 | 10 | -- | 7.35 | [78] |
Ni-Co-MoS2 | Nanoclusters | KOH and H2SO4 | 84 | 96 | 10 | -- | 14.6 | [79] |
NiCo2Te4 | Nanoclusters | PBS | 80 | 38 | 10 | 0.65 | -- | [92] |
Co-MoS2 | Nanosheets | KOH | 190 | 50.28 | 10 | -- | -- | [94] |
Cu@CoSx | Hollow nanoclusters | KOH | 270 | 61 | 10 | -- | 26.9 | [116] |
Co9S8/MoS2 | Core/shell nanocrystals | H2SO4 | 97 | 71 | 10 | -- | 23.4 | [117] |
NiCo2S4 | Holey nanosheets | KOH | 58 | 122 | 10 | 0.0034 | 1.53 | [142] |
MoSe0.12Te1.79 | Nanofilms | Ar-saturated H2SO4 | 410 | 62 | 10 | -- | -- | [129] |
WS2(1-x)Se2x | Nanotubes | H2SO4 | 298 | 105 | 10 | -- | 1.186 | [133] |
ZnSe/MoSe2 | Nanotubes | N2-saturated H2SO4 | 68 | 73 | 10 | -- | 0.34 | [134] |
Mo0.85W0.15S2 | Nanopetals | H2SO4 | 250 | 139 | 10 | 0.168 | 0.70 | [135] |
MoxW(1-x)Sx | Nanoparticles | Sulfuric acid | 278 | 50.5 | 10 | -- | -- | [136] |
Mn0.05Co0.95Se2 | Ultrathin nanosheets | H2SO4 | 174 | 36 | 10 | -- | 16.25 | [143] |
NiSe-Ni0.85Se | Nanoflakes arrays | O2-saturated KOH | 131 | 98 | 10 | -- | 35.9 | [144] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arulraj, A.; Murugesan, P.K.; C., R.; Zamorano, A.T.; Mangalaraja, R.V. Nanoarchitectonics of Layered Metal Chalcogenides-Based Ternary Electrocatalyst for Water Splitting. Energies 2023, 16, 1669. https://doi.org/10.3390/en16041669
Arulraj A, Murugesan PK, C. R, Zamorano AT, Mangalaraja RV. Nanoarchitectonics of Layered Metal Chalcogenides-Based Ternary Electrocatalyst for Water Splitting. Energies. 2023; 16(4):1669. https://doi.org/10.3390/en16041669
Chicago/Turabian StyleArulraj, Arunachalam, Praveen Kumar Murugesan, Rajkumar C., Alejandra Tello Zamorano, and Ramalinga Viswanathan Mangalaraja. 2023. "Nanoarchitectonics of Layered Metal Chalcogenides-Based Ternary Electrocatalyst for Water Splitting" Energies 16, no. 4: 1669. https://doi.org/10.3390/en16041669
APA StyleArulraj, A., Murugesan, P. K., C., R., Zamorano, A. T., & Mangalaraja, R. V. (2023). Nanoarchitectonics of Layered Metal Chalcogenides-Based Ternary Electrocatalyst for Water Splitting. Energies, 16(4), 1669. https://doi.org/10.3390/en16041669