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Abstract: One of the essential factors for the selection of the drying process is energy consumption.
This study intended to optimize the drying treatment of capers using convection (CD), refractive
window (RWD), and vacuum drying (VD) combined with ultrasonic pretreatment by a comparative
approach among artificial neural networks (ANN) and response surface methodology (RSM) focusing
on the specific energy consumption (SEC). For this purpose, the effects of drying temperature (50,
60, 70 °C), ultrasonication time (0, 20, 40 min), and drying method (RWD, CD, VD) on the SEC
value (M]/g) were tested using a face-centered central composite design (FCCD). RSM (R%: 0.938)
determined the optimum drying-temperature—ultrasonication-time values that minimize SEC as;
50 °C-35.5 min, 70 °C-40 min and 70 °C-24 min for RWD, CD and VD, respectively. The conduct
of the ANN model is evidenced by the correlation coefficient for training (0.976), testing (0.971)
and validation (0.972), which shows the high suitability of the model for optimising specific energy
consumption (SEC).

Keywords: drying of capers; response surface method; vacuum drying; specific energy consumption;
artificial neural network; refractive window drying

1. Introduction

The caper (Capparis spinosa L.), a perennial shrub with thorns, is a member of the
Capparis genus. A fragrant and healing plant known as the caper is grown all over the
world, but it is most popular in the Mediterranean regions [1]. Caper production numbers
are scarce, although the average annual output was estimated to be between 15,000 and
20,000 tons globally [2], with 35% coming mainly from Turkey. The USA, EU, and UK are
the three biggest customers in the Capparis trade, which has an annual growth rate of
6% [3]. Drying is one of the crucial preservation techniques to improve long-term storage
of food. The storage stability, relatively minimal packing requirements, and lower bulk
required for transit are all benefits of dried foods [4]. According to reports, transportation
costs significantly affect a country’s ability to compete in the global food market [5]. When
capers are dried, their storage density is predicted to be lower than when they are canned,
resulting in lower shipping costs [4].

The selection of the drying technique is majorly affected by energy usage and the
attributes of the dried foods such as fruits, vegetables, and spices in the industry [4,6].
Recently, dryer systems which are supported by renewable energy resources were also
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introduced to the food drying process regarding energy saving characteristics [7,8]. There-
fore, the selection of the most suitable drying technique may also serve to produce dried
food with less structural damage and quality deterioration. Applying pre-treatments before
drying is a recent strategy to reduce energy use. However, some of its drawbacks include
extended drying times, high temperatures, increased shrinkage, decreased final product
quality, and high energy usage [9]. Gilandeh et al. [9] studied the conduct of microwave
and convective dryer techniques with ultrasound pre-treatment on specific energy con-
sumption (SEC). Ghasemi and Chayjan, [10] researched the effects of moisture content,
particle size, dryer intake air temperature, and dryer infrared power on specific energy
consumption parameters of pellets made from food and agricultural wastes. The results
showed that finer grinding of raw materials enhanced the specific energy consumption
in infrared-convection drying of pellets. The drying of white mulberry fruit by infrared
convection was investigated and optimized by RSM and ANN methods regarding to min-
imization of SEC. The optimum values of SEC were 166.6 MJ/kg with a desirability of
0.9670. According to the statistical indices, the feed and cascade-forward back-propagation
neural systems with the Levenberg-Marquardt training method and topologies of 3-10-1
were the best neural models to forecast SEC [11]. Jarahizadeh and Dinani, [12] investigated
the effect of sonication time and sonication power on the execution of drying potato slices
by RSM regarding the energy savings in the drying process. In comparison of ultrasound
pretreatments and pure convective drying, the application of ultrasound pretreatments
decreased the processing time, and SEC values of drying process of potato slices.

The improving food preservation methods for long-term storage has been one of the
main concerns of the industry. The principal aim of the industry was drying vegetables
and fruits to create dehydrated goods with excellent quality and a long-term storage with
lowest energy usage. According to our best knowledge, dehydration of capers addressing
the optimization of caper drying utilizing RSM and ANN approach in the manner of
Energy Efficiency has not been reported yet. Therefore, the scope of this study was to
study the impact of drying temperature (50, 60, 70 °C), ultrasonication duration (0, 20,
40 min), and drying technique (RWD, CD, VD) on the SEC value (M]/g) applying an
experimental design, response surface approach, and artificial neural networks. Using
analysis of variance, a Face-Centered Central Composite Design (FCCD) with 39 runs
was used to build the model (ANOVA). The threshold for significance was set at 0.05.
Response values, which represented the quantity of electrical energy used, were calculated
according to the magnitude of energy used by the ultrasonic drying bath, ventilation fan,
vacuum pump, and electric heater. The optimum points were determined according to
the maximum desirability factor. The effects of factors on SEC values were analyzed by
ANOVA table, response surface plots, normality plot of residuals, and ANN.

2. Materials and Methods
2.1. Drying Methods and Procedure

The capers were purchased in a brine solution in a glass container from the store. For
conventional drying method, a laboratory type oven (JSR, JSON—250) was applied for
dehydration until the defined weight base percentage was reached (89.5%). The weight of
capers was measured with digital analytical balance (Radwag, AS/X, Radom, Poland) in
a range of 0-200 g. The experimental temperatures were 50, 60, and 70 °C. In all drying
operations, the air velocity was at 0.5 m s~ 1.

Vacuum drying was achieved by a vacuum oven (Vacucell-111 standard, Miinchen,
Germany) with a rotary vane vacuum pump (Zhejiang Sujing, Wx-2 model, Shaoxing,
China), having 2 L/s speed of pump and 1400 r/min revolution speed. The vacuum
pump was used for reducing the pressure to 0.1 bar level inside the vacuum oven. The
experimental temperatures were 50, 60, and 70 °C. The caper sample was placed in stainless
steel sieve basket after the adjusted temperature was attained. The vacuum pump was
started, and dehydration began. The velocity of air in the oven was 1.5 m s~!. The
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dehydration in the vacuum oven was continued until the defined weight base percentage
of (89.5%) was obtained [13].

The refractive window drying (RWD) method was employed for the drying process on
capers. Mylar film was laid to cover the 50, 60, and 70 °C water bath and the drying process
was carried out for through the defined weight base percentage (89.5%) as presented in
Figure 1. Finally, electricity consumption was measured by using digital electric meters for
all drying processes.

Drying
Process

T j

VD
= l
o o/ | _
50°C; 60°C; 70°C 50°C; 60°C; 70°C 50°C; 60°C; 70°C

.

Analysis

Figure 1. Capers drying process flowsheet.

2.2. Specific Energy Consumption

The consumed electrical energy was calculated as the total consumption energy (Et),
involving the energy consumption of the electric heater, the ventilator fan, vacuum pump,
and the ultrasonic bath according to drying methods. The SEC can be evaluated by
dividing Et by amount of water evaporated during the drying process as in the following
equation [14].

Er

EC =
SEC Weight loss of Capers (g)

)

The energy consumption values that correspond to the total work of the process carried
out under specific circumstances, including the selection of the environmental parameters
(moisture, temperature, and particle size composition) that are most appropriate, are
characterized by the lowest unit energy consumption as well as a decrease in the emission
of pollutants into air [15].



Energies 2023, 16, 1687

4 of 14

2.3. Optimization Methods

Experimental design and RSM approach were utilized to consider the effects of drying
temperature (X;: 50, 60, 70 °C), ultrasonication time (X»: 0, 20, 40 min) and drying method
(X3: RWD, CD, VD) on the SEC value (MJ/g). A Face-Centered Central Composite Design
(FCCD) with 39 runs was employed to construct the model through analysis of variance
(ANOVA) applying the trial version of Design Expert v.11.0 software (Stat-Ease, Inc.,
Minneapolis, MN, USA) [16]. The statistical significance level was taken as p < 0.05. The
response values obtained according to the experimental design were fitted to a second-
order polynomial model. The model equation given in Equation (2) is applied to estimate
the impacts of linear, quadratic, and/or interaction terms of the independent variables on
second order polynomial:

2 2
Y =Bo+ ) BiXit+ ) . BiXi + BiXiX; 2

where Y was the variable of response, X; and X; were independent factors, By was the
intercept, and f;, B;;, and p;; were constants for linear, quadratic, and factor interaction
terms, respectively.

The classical machine learning models such as artificial neural network (ANN), ran-
dom forest regression (RFR), support vector machine (SVM), extreme learning machine
(ELM), K-nearest neighbors (KNN), and decision tree (DT) are widely used in modelling
in various branches of science [17,18]. The SVM is a widely used modelling technique
based on the statistical learning theory, well recognized for its strong generalization ability.
The optimal network is obtained by exploring the balance among the complexity of the
model and the training error [19]. The ELM designs a single-layer feedforward network by
randomly generating the input weights and biases of the hidden layers [20].

The vast variety of state-of-the-art machine learning techniques are suitable for se-
quence data such as ensemble learning models, such as XGBoost [21], LightGBM [22], and
CatBoost. The XGBoost model exerts its advantages especially for high prediction accuracy
and interpretability. LightGBM model enables large amounts of data and GPU training.
The LightGBM models are proven to be more accurate and faster than XGBoost. Data fusion
enables stronger forecasting accuracy, according to the integration of gradient boosting
based categorical attributes supported by CatBoost algorithm [23].

A multi-layer perceptron (MLP) architecture, having three layers (input, hidden,
and output) were utilized for modelling the ANN for the prediction of SEC values and
temperature. Multiple researchers have established ANN as a method for drying kinetics
prediction, acquiring accurate and elevated precision results concerning fruit and vegetable
drying [24-26]. The database was standardized before to ANN computation to increase the
ANN model’s accuracy.

2.4. Statistical Analysis

The laboratory data were statistically evaluated using multivariable mathematical
approaches such as Artificial Neural Network modeling, and global sensitivity analysis
using StatSoft StatSoft Statistica, ver. 10.0, Palo Alto, CA, USA. In addition, the diagram
was drawn with R software v.4.0.3 (64-bit version) with the “circle” method, upper type.

2.4.1. ANN Modelling

As previously described by Voca et al. [27], using a multi-layer perceptron model
(MLP), the ANN model with a high possibility for nonlinear function analysis was created.
In order to improve the results of the ANN modeling, before the ANN model calculation, it
was necessary to normalize input and output data [28]. The first step of the ANN modelling
is the ANN building, which requires frequently inserted input data in the network [29,30].
The training process of the network was conducted as previously reported by Rajkovi¢
et al. [31]. The weight coefficients and biases associated with the hidden and output layers
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were presented in the form of matrices W1 and W; and vectors By and B;. The following
formula reveals the neural network model:

Y = fi(Wa-fo(W1-X + By) + By 3)

where Y was the outputs matrix, f1 and f, were the hidden and output layers transfer
functions, accordingly, and X was the matrix of inputs [32].

Throughout the training cycle, the weight coefficients W1 and W, were determined
while continually adding the components, using an optimization strategy to reduce the
variance between the experimental data and the created model [33]. The ANN model
was created to anticipate and optimize the specific energy consumption, according to
temperature, time, and drying treatment (CD, RWD, and VD).

2.4.2. Global Sensitivity Analysis

In order to investigate the relative importance of the input parameters (T, t, CV, VD,
and RWD) on the output variable (SEC), relying on the obtained ANN model weight
coefficients, Yoon's global sensitivity equation was used [34]:

Y=o (wik'wkj)

lm:o‘ﬂf:o (wik'wkj) ’

RIL;j(%) = -100% @)

where: i—input variable, j—output variable, k—hidden neuron, w—weight coefficient in
ANN model, n—number of hidden neurons, m—number of inputs.

2.4.3. Error Analysis

The created ANN model was validated by the coefficient of determination (R?), re-
duced chi-square (x?), root mean square error (RMSE), mean bias error (MBE), and mean
percentage error (MPE), applying the following equations [35]:

2
2 Z{il (XeXp,i - Xpre,i)

2 = N @)
1 N 2 2
RMSE = N 2 (Xpre,i - Xexp,i) ©)
i=1
1 N
MBE = - Y (Xprei — Xexp,i) @)
i=1
MPE — 100, 3 ( [Xprei — e 8)
N i3 Xexp,i

where Xpre i present value obtained by the model, and xexp i marks the experimental values
n and N were the number of constants and observations, respectively.

3. Results and Discussion
3.1. Optimization of Drying Conditions to Minimize SEC by RSM

In order to choose the most cost-effective drying method, energy consumption must be
taken into account. According to this study, a face-centered central composite design with
13 runs for each drying method was involved to optimize the processing temperature and
ultrasonication time conditions that minimize the specific energy consumption required to
dehydrate capers from an initial MC to final MC (about 10% dry basis). The SEC values
obtained during RWD, CD and VD of capers were given in Table 1. According to Table 1,
SEC for RWD, CD and VD ranged between 3.8-7.8 M] /g, 1.4-3.3 MJ/g and 4.6-13.7 M] /g,
respectively. RSM was utilized to construct the models that reflect the impact of indepen-
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dent variables on the SEC response. According to ANOVA results (Table 2), the factors
with significant (p < 0.05) main effect on SEC were drying temperature, ultrasonication
time, and drying method. However, the interaction between drying temperature and
drying method was also found to have a significant (p < 0.05) effect on SEC. Although
there was no statistically significant (p < 0.05) interaction between drying temperature and
ultrasonication time, pretreatment of capers with ultrasonication led to structural damage
on plant structure [36], increased water removal from capers, and a shorter drying time. A
competitive R? value (0.938) indicates the empirical models can be applied to foresee the
SEC values with 93.82% convenience. Less than 20% difference between predicted R? and
adjusted R? values means that the model was the best fit for selected responses, which was
valid for our model (Table 2).

Table 1. Face-centered central composite design of factors with experimental SEC values.

. Response
Independent Variables Variable
Run No Drying Ultrasonication . h
Temperature (°C) Time (min) Drym(gXN:et od SEC (M]/g)
(X1 (X2) ’
1 60 20 RWD 5.2
2 60 20 VD 5.9
3 60 40 CD 1.7
4 60 20 RWD 54
5 70 20 RWD 6.1
6 60 0 RWD 7.8
7 70 40 CD 14
8 60 20 RWD 3.8
9 60 0 VD 8.4
10 50 0 VD 13.7
11 50 20 VD 8.8
12 50 20 CD 2.0
13 60 20 CD 2.3
14 50 0 CD 3.3
15 60 20 RWD 5.6
16 70 40 RWD 4.5
17 70 0 RWD 6.2
18 50 40 VD 8.6
19 60 20 VD 6.4
20 50 40 CD 1.6
21 60 40 VD 4.6
22 60 20 VD 6.4
23 50 0 RWD 6.7
24 60 20 VD 8.7
25 70 40 VD 6.0
26 70 0 CD 3.3
27 60 20 CD 2.7
28 50 20 RWD 4.3
29 50 40 RWD 5.0
30 60 40 RWD 47
31 60 20 VD 6.9
32 60 0 CD 3.2
33 70 20 CD 1.8
34 60 20 CD 2.5
35 60 20 RWD 6.3
36 70 0 VD 6.2
37 70 20 VD 4.6
38 60 20 CD 2.7
39 60 20 CD 2.7

RWD: Refractive Window Drying, CD: Convective Drying, VD: Vacuum Drying, SEC: Specific Energy Consumption.
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Table 2. Analysis of variance (ANOVA) for the fitted design model for optimization of drying
conditions.

Source SS DF MS F p
Model 234.7 17 13.8 18.8 <0.001
Xy—drying 10.7 1 10.7 14.6 0.001
temperature
Xz—ultrasonication 238 1 238 323 <0.001
time
X3—drying method 161.2 2 80.6 109.5 <0.001
Xq X Xy 1.8 1 1.8 25 0.129
X; X X3 23.5 2 11.7 16.0 <0.001
X, % X3 14 2 0.7 0.9 0.409
X2 0.0 1 0.0 0.1 0.806
Xp2 24 1 2.4 33 0.084
X1 X Xp X X3 42 2 2.1 2.8 0.081
X12 % X3 3.1 2 1.6 2.1 0.144
Xp? x X3 0.6 2 0.3 0.4 0.689
Residual 15.5 21 0.7
Lack of Fit 7.3 9 0.8 1.2 0.388
Pure Error 8.2 12 0.7
Cor Total 250.2 38

R? =0.938, Adjusted R? = 0.888, Predicted R? = 0.713

DF: degrees of freedom, SS: sum of squares, MS: mean squares.

The second-order polynomial regression equations obtained for SEC relating to actual
levels of drying conditions for RWD, CD, and VD were given in Equations (9)—(11). In
Equation (9), the drying temperature has an increasing effect, whereas ultrasonication time
has a decreasing effect on the SEC of RWD. A similar trend was valid for the CD of capers
(Equation (10)). On the contrary, drying temperature has a decreasing effect on the SEC of
the VD method (Equation (11)), which means a higher level of drying temperature causes
lower SEC values, especially with higher ultrasonication time.

SECrwp = —6.08 +0.43 x X1 —0.12 x X5 +3.2 x 10717 x X. x Xp —0.003 x X3 +0.002 x X3 9)
SECcp = —9.91 +0.45 x X1 —0.04 x Xp —3.2 x 10717 x X;. x Xp —0.004 x X7 +0.001 x X3 (10)
SECyp = 64.41 —1.49 x X; — 0.52 x X5 +0.01 x 1077 x X;. x X5 4+ 0.001 x X7 4 0.002 x X3 (11)

The response surface plots of the three constructed models on SEC are given in
Figure 2a—c. Even though the ultrasonication process and drying at relatively higher
temperatures has a role in the consumption of energy, the SEC value decreased as the
ultrasonication time increased from 0 to 40 min and the drying temperature increased from
50 to 70 °C for all three drying methods (Figure 2a—c).

The decrease in SEC was a consequence of the ultrasonication pretreatment that
successfully reduced the time required to dry the capers [37]. Similar findings for SEC
values were made by Motevali et al. [38], who showed that the increment in drying
temperature exhibits a declining trend for SEC values. Similarly, the SEC values have
decreased as a result of the shorter drying time brought on by rising temperatures [39]. The
comparison of SEC values among the three investigated drying methods demonstrated
that, at the center point of ultrasonication time, the most cost-effective drying method was
CD, as can be observed in Figure 2d.
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Figure 2. Response surface plots for X;—X; interaction of (a) RWD, (b) CD, (c) VD and (d) line plot
for X;—X3 interaction on SEC.

The optimum drying-temperature-ultrasonication-time values for RWD, CD, and VD
were 50 °C-35.5 min, 70 °C-40 min, and 70 °C-24 min, respectively. The optimum points
were determined according to the maximum desirability factor. The desirability values for
RWD, CD, and VD drying methods were 0.752, 1.0, and 0.701, respectively. The optimum
conditions from each drying method were examined once more to confirm the predictive
capability of the built models. Experimental results and SEC values predicted by Equations
(9)-(11) were given in Table 3. Error percentages must be as low as possible. As can be seen
in Table 3, all error percentages were less than 8% and the most accurate model belonged
to RWD with the least error percentage. The normal plot of residuals (Figure 3) shows
normally distributed residuals that were in a symmetrical pattern with a constant spread
centered on zero [40]. The limit of error for each response was within a tolerable range as
shown in Table 3, which supports the correctness of the established response models. The
model’s viability and consistency were demonstrated by the relative errors of modeled and
experimental values being less than 10% (Table 3) [41-43].
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Table 3. ANN model summary (performance and errors).

Network Performance Error Training Error Hidden Output
Name Train. Test. Valid. Train. Test. Valid. Algorithm Function Activation Activation
MLP 5-10-1 0.976 0.971 0.972 0.116 0.709 0.359 BFGS 42 SOS Exponential Identity

Performance term describes the coefficients of determination, while error terms show the ANN model lack of data.

Normal plot of residuals

%9 5
95 7 e
2 904 Ep“
5 802 -
8 70
@
S50
=2
Tg 30
20 5
= E
2 102 o S
5 =
7 (=]
14 = SEC:
1.4 mm13.7

| T T \ | T | \
-3 -2 -1 0 1 2 3 4

Externally studentized residuals

Figure 3. Normality plot of residuals obtained by RSM.

3.2. ANN Model

The influence of drying temperature, processing time, and drying type (RWD, CD, and
VD) on the SEC was researched with the ANN model. The ideal neural network constructed
displayed high generalization capabilities for the testing data and could properly predict
the output parameters of the drying samples given the observed input parameters. Based
on ANN developed, the optimal number of the hidden layer neurons for the SEC was
10 (network MLP 5-10-1), focusing on achieving the high coefficient of determination. R?
(overall 0.976 for ANN throughout the training period) and lower values of SOS (Table 3).

The performance of ANN described with coefficients of determination (R?) between
experimentally measured and ANN outputs during training, testing and validation steps
as shown in Table 4.

Table 4. Coefficients of determination (R?) during training, testing and validation steps.

Train Test Validation

1.MLP 5-3-1 0.976 0.971 0.972

The obtained weights and biases obtained during ANN modeling were shown in
Tables 5 and 6, calculated according to Equation (3).

ANN model was exploited to foresee an experimental set of values, quite adequately,
for the selected parameters as shown in Figure 4 where the experimental and ANN model
data were presented.
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Table 5. The weight coefficients and biases Wy and Bj.

1 2 3 4 5 6 7 8 9 10
T —3.381 —0.627 —1.471 —3.081 0.330 —0.465 —1.424 —0.671 0.143 —1.357
t 1.760 —0.577 —1.341 0.312 0.296 0.300 0.158 0.422 —0.206 1.462
CD —-0.575 0.087 -0.778 0.057 —0.834 —-0.335 -0.296 0.098 -0.271 —0.232
VD 0.490 0.392 —0.381 0.815 0.356 0.400 —0.510 0.009 —0.312 0.188
RWD —0.039 —0.328 1.113 —1.218 0.559 —0.089 0.420 —0.255 0.539 —0.094
bias 0.007 0.107 0.056 -0.292 0.103 0.097 —0.306 —0.087 0.006 -0.131

Table 6. The weight coefficients and biases W, and B,.

1 2 3 4 5 6 7 8 9 10 Bias
SEC 0.161 0.746 0.468 —0.457 0.335 —0.254 —0.135 0.316 —0.197 —0.148 —0.383

14

12

10

SEC (M]/g) (Output)
o
o

0 2 4 6 8 10 12 14
SEC (M]/g) (Target)

Figure 4. Comparison among experimentally gained and ANN model delivered values of SEC.

Figure 4 presents the experimental and ANN model predicted data, revealing that the
ANN model adequately predicted observed variable. Additionally, the SOS performed by
the ANN model was of the same size as the experimental errors. In contrast, the predicted
values were like the preferred values concerning the ANN model R? value.

3.2.1. The Exactness of the Models

The obtained model results were verified as follows: the RZ, x2, MBE, RMSE, and MPE
were calculated, Table 7. The results reveal that the ANN model had an insignificant lack of
fit tests, which indicates that the model adequately anticipated the values of the analyzed
parameters.

Table 7. Goodness of fit parameters.

Model x2 RMSE MBE MPE R?
ANN 0.457 0.668 —0.064 10.408 0.932
RWD 0.501 0.680 0.000 10.430 0.587

CD 0.036 0.183 0.000 6.862 0.916

VD 0.751 0.833 0.000 9.088 0.870
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3.2.2. Optimization of Drying Conditions to Minimize SEC by ANN

The results of ANN optimization were achieved by analyzing the model described
in Equation (1). The primary goal of this research was to minimize the SEC value using
SOP and ANN models while changing drying temperature, ultrasonication time or drying
method. The domain of the experimental variable was utilized to define the required
parameter range for the optimization. The maximum calculated values for SEC were 70 °C,
40 min, and CD drying method, respectively (Table 8).

Table 8. Predicted and experimental values of SEC for RSM and ANN models validation.

Drying A . RSM ANN
Run No Temperature I%lit;?:(()rr:ics)tlon ﬁ?&:ﬁ Ac(tll\l;]l y S)EC Predicted RSl\(/{, /P;rror Predicted ANl(\(I, /Error
(o) 8 SEC (M]/g) ° SEC (M]/g) °
1 50 35.5 RWD 4.60 4.45 3.26 4.68 1.74
2 70 40 CD 1.45 1.34 7.59 1.52 2.07
3 70 24 VD 4.90 5.08 3.67 4.93 0.61

3.2.3. Global Sensitivity Analysis—Yoon’s Interpretation Method

Yoon’s global sensitivity equation, which corresponds to the weight coefficients of
the generated ANN model, was used to examine the impacts of drying circumstances and
drying type parameters (temperature and time) on the SEC [44]. Following the ANN global
sensitivity analysis, the graphical illustration of Yoon's interpretation method results was
presented in Figure 5. Based on Figure 5, all observer parameters positively influenced
the SEC. The processing time was a more influential parameter positively influencing SEC
than drying temperature, with an approximately relative influence of 17.88%. On the other
hand, the VD was the most positively influential parameter on the SEC with the relative
importance of 46.89%. The positive influence on the SEC was also observed for CD (28.23%)
and RWD (9.66%), Figure 5.

507

40

30

207

10

Relative importance of variables on SEC (%)

T t CD VD RWD
Variables

Figure 5. The relative importance of T, t, CD, VD and RWD on SEC.

4. Conclusions

The energy consumption values that correspond to the total work of the process carried
out under specific circumstances, including the selection of the environmental parameters
(moisture, temperature, and particle size composition) that are most appropriate, are
characterized by the lowest unit energy consumption as well as a decrease in the emission
of pollutants into air.

This study has focused on the optimization of the caper drying process, emphasizing
the determination of the most energy-efficient drying method combined with ultrason-
ication pretreatment. The drying conditions for RWD, CD, and VD were expressed as
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Second-order polynomial regression equations obtained for SEC. For RWD and CD, drying
temperature was found to have an increasing and ultrasonication time decreasing effect on
SEC. However, a different behavior was obtained for the VD method as, a higher drying
temperature level lowered the SEC values specific to higher ultrasonication time levels.
The optimum drying-temperature—ultrasonication-time conditions that minimize specific
energy consumption for three drying methods were successfully predicted by RSM as;
50 °C-35.5 min (4.45 M]J/g), 70 °C-40 min (1.34 MJ/g) and 70 °C-24 min (5.08 M]/g) for
RWD, CD, and VD, respectively. It was evident that ultrasonication pretreatment had a
major role in the reduction of SEC value even at relatively higher drying temperatures for
all three drying methods. This study revealed that RSM could provide a basis for adequate
precision in the possible practical use of the energy-efficient caper drying. Validation of
the models for SEC optimization showed that the ANN had a lower overall error. In three
validation cycles, the RSM model showed a slightly higher error (3.26%, 7.59%, and 3.67%),
while the ANN model predicted a lower error (1.74%, 2.07%, and 0.61%). Although both
models were effective, the ANN model was a more reliable tool for optimizing SEC.
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