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Abstract: Dealing with multi-objective problems has several interesting benefits, one of which is that
it supplies the decision-maker with complete information regarding the Pareto front, as well as a
clear overview of the various trade-offs that are involved in the problem. The selection of such a
representative set is, in and of itself, a multi-objective problem that must take into consideration
the number of choices to show the uniformity of the representation and/or the coverage of the
representation in order to ensure the quality of the solution. In this study, day-ahead scheduling has
been transformed into a multi-objective optimization problem due to the inclusion of objectives, such
as the operating cost of multi-energy multi-microgrids (MMGs) and the profit of the Distribution
Company (DISCO). The purpose of the proposed system is to determine the best day-ahead operation
of a combined heat and power (CHP) unit, gas boiler, energy storage, and demand response program,
as well as the transaction of electricity and natural gas (NG). Electricity and gas are traded by MGs
with DISCO at prices that are dynamic and fixed, respectively. Through scenario generation and
probability density functions, the uncertainties of wind speed, solar irradiation, electrical, and heat
demands have been considered. By using mixed-integer linear programming (MILP) for scenario
reduction, the high number of generated scenarios has been significantly reduced. The ε-constraint
approach was used and solved as mixed-integer nonlinear programming (MINLP) to obtain a solution
that meets the needs of both of these nonlinear objective functions.

Keywords: energy hub; stochastic day-ahead operation; multi-microgrid; energy storages; Pareto front

1. Introduction
1.1. Motivation

With limited sources of fossil fuels, renewable energy sources (RESs) are getting
more attention. RESs suffer from uncertainties and a non-dispatchable nature due to their
dependence on weather conditions [1,2]. Energy storage applications in energy systems
can provide technical and economic benefits, as well as mitigate the intermittent nature of
RESs [3]. MMGs have been introduced recently to interact with each other [4], which can
be beneficial for both utilities and consumers, as they can share their energy resources to
improve reliability and reduce cost [5,6]. Increasing the number of MGs in the MMG system
contributes to scheduling challenges for MGs due to the existence of several components
and uncertainties [7]. Approximately half of the energy demanded is for heating around
the globe [8], so investigating MGs as multi-carrier systems is highly important. Due to the
low price, low emissions, and high reliability and efficiency of NG, gas to power facilities
can be a good solution for power shortages [9].
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1.2. Literature Review

Robust optimization is one of the ways to consider the uncertainty of the system
without needing a probability density function (PDF). The authors in [10] have implemented
robust optimization (RO) to address the uncertainties of RES and load. The authors also
used RO for the day-ahead operation of a MMG in grid-connected mode while accounting
for RES and load uncertainties [11]. Stochastic optimization (SO), on the other hand, uses
PDFs of uncertain parameters to generate scenarios and solve the scheduling problem to
obtain an optimal solution [12]. In [13], SO is used to address the uncertainties of the RES,
load, and grid price of networked multi-carrier microgrids considering water–energy nexus
issues. The uncertainties of WT, PV, demand, and electricity price have been addressed in
SO, and the problem of sizing RES and battery energy storage has been modeled as a MILP
problem [14]. Ref. [5] used two-stage stochastic optimization to address the uncertainties of
load and RES. Stochastic planning, along with the MILP method and a security-constrained
joint expansion planning problem, was solved for an integrated power and NG system
in [15]. RO is appropriate when overly conservative control actions are required and
only a limited amount of information is available, whereas SO is used to avoid overly
conservative control [16,17]. In this paper, the SO will be implemented to address the
validity of uncertain parameters, using corresponding PDFs. Two methods of dealing
with multi-objective optimization that do not require complicated mathematical equations
are scalarization and Pareto. In the scalarization method, the multi-objective problem
is converted into a single-objective problem using weights. Meanwhile, non-dominated
solutions are obtained and displayed as a Pareto optimality front in the Pareto method [18].

Uncertain parameters related to growing RESs in power systems present distinct
issues in optimal system operation, necessitating the expansion of flexible resources to
maintain appropriate reliability levels [15]. Taking into account the advantages of gas-
fired generators over conventional generation units, NG will supply 25% of the electric
power generation in the world by 2050 [19]. The establishment of the NG network has
also increased the popularity of CHP units in multi-carrier MMGs to produce heat and
power simultaneously [20,21]. The optimal configuration of an off-grid multi-energy
microgrid, considering the uncertainties of RES and load, was performed in [22], using a
non-dominated, sorting, genetic algorithm to obtain a Pareto solution.

The optimal multi-objective energy scheduling of an MG in the presence of RESs
to reduce cost and emissions was investigated in [23], using improved multi-objective
differential evolutionary. Improved differential evolutionary was also used to deal with
the multi-objective feature of the problem and finally calculate the Pareto front for cost
and emission objectives. In [24], an energy optimization model was developed, utilizing
a multi-objective genetic algorithm and multi-objective wind-driven optimization, with
Pareto fronts using the non-linear sorting fuzzy mechanism to solve the multi-objective
energy optimization problem, considering the uncertainties of solar and wind. The authors
in [25] considered the uncertainties of electrical grid price, electrical and thermal demand,
and solar irradiance, using scenario-based optimization in a multi-energy MG, with the
goal of reducing the cost and emissions. The augmented ε-constraint method and MINLP
programming were used to display the Pareto front, and the best compromise was chosen
using fuzzy decision making. However, the presence of WT, microgrid interactions as
MMG, and the entity of DISCO were not investigated in this paper. The authors in [26]
investigated a stochastic day-ahead schedule of an MG with economic and emission
improvement targets, using Pareto front and ε-constraint methods.

Energy storage systems (ESSs) are recognized as a countermeasure against the inter-
mittent nature of RES in multi-energy systems [2]. The energy storage optimization of a
multi-energy MG is proposed in [27] to reduce the cost and emissions. The authors in [28]
studied the integration of battery energy storage with a CHP unit to increase the flexibility
and reliability of the system and decrease operational costs.
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1.3. Research Gap and Contributions

Although some research has been conducted on energy hubs and MMG, there is still
a research gap for multi-energy MMG, where a cluster of MGs can schedule their energy
carriers and resources in accordance with each other. Another research gap is the presence
of DISCO in multi-energy systems, which facilitates the operation of MMGs and introduces
practical challenges to energy systems through the procedure of trading energy with MGs
and the grid. This paper investigates the stochastic day-ahead scheduling for a cluster of
multi-energy MGs and a DISCO, where multiple uncertain parameters exist. The Pareto
front and ε-constraint methods were used to solve the two conflicting objective functions
because the MGs’ cost reduction and DISCO’s profit increase are optimized simultaneously.
Electricity and NG are the energy carriers of this system, and consumers demand electricity
and heat. Electricity prices for MGs are set dynamically, while gas prices are set to be fixed.
The main contributions can be highlighted as follows:

• Considering the uncertainties of wind speed, solar irradiation, electric, and heat
demand through scenario-based stochastic optimization.

• Presenting electric and heat energy storage, as well as electric DR, in the system
structure and analyzing their effect on multi-energy MMG system operation and the
dynamic price of electricity.

• Solving the MINLP stochastic problem through the ε-constraint method to obtain the
Pareto front of the DISCO and MGs objectives and find the best compromise using a
fuzzy decision-making approach.

1.4. Paper Organization

The rest of the paper is organized as follows. Section 2 describes the system model and
mathematical formulation of DISCO and MGs objective functions and their components.
Section 3 gives the simulated system data and its simulation results, along with a brief
description of the results. Section 4 presents the conclusion of the paper, and following is
the nomenclature.

2. Problem Formulation
2.1. System Description

This paper proposes a stochastic optimization framework for the optimal day-ahead
schedule of an energy hub with a DISCO and an MMG. A detailed illustration of the
proposed system can be seen in Figure 1. DISCO, as a dependent entity and as the first
objective function, can exchange power and import NG from the grid. MG, as a dependent
entity and as the second objective function, can exchange power and import NG from
DISCO. The price of traded electric power between the grid and DISCO is based on the time
of use, while the price of traded electric power between DISCO and MGs is dynamic and
obtained during optimization. NG is traded at a fixed price between the grid and DISCO, as
well as between DISCO and MGs. Each MG has WT, PV, CHP, and GB as energy resources
and HS and BS as energy storage. CHP produces electricity and heat simultaneously, and
GB produces heat, both of which consume NG. The consumers located in MGs demand
both electricity and heat. A portion of the electric demand can participate in shiftable
demand response.

2.2. Uncertainty Formulation

Wind speed, solar irradiation, electric, and heat demand uncertainty are all considered
by generating their corresponding PDFs. The uncertainty of wind speed follows the Weibull
distribution, which can be obtained using (1)–(3).
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The uncertainty of solar irradiation follows Beta distribution, which can be obtained
using (4)–(6).
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The uncertainty of electric and heat demand follows the Normal distribution, which
can be obtained using (7).
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Generating scenarios using the mentioned approaches will result in a higher number
of scenarios, which can result in complexity in the optimization process. By using scenario
reduction, the main scenarios can be reduced to a smaller number, while maintaining the
same probable behavior as the initial set. The MILP scenario reduction is suggested for
implementation, and its objective function is to find the minimum number of scenarios
that maintain the characteristics of the initial scenarios. A full explanation can be found
in [29,30].

2.3. DISCO-Level Formulation

The goal of this level is to maximize the profit of DISCO in day-ahead energy manage-
ment by adjusting the amount of electricity and NG transacted between the grid and MGs
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and the price of transactive electric energy. The objective function of this goal is formulated
in (8).

OF1 = max∑
t

∑
i

∑
s

ρt,s

(
πE

t,i,sPE
t,i,s + πGPG

t,i,s − πGrid
t PGrid

t,s − πGasPGas
t,s

)
(8)

Subjected to:
The upper and lower limits for traded electricity and NG between DISCO and the grid

are shown in (9) and (10), respectively. In addition, the maximum and minimum levels
of transactive electric energy are shown in (11). Constraints (12) and (13) ensure that the
amount of MGs’ electricity and gas demand is equal to the imported electricity and gas
from the grid by DISCO.

− PGrid
max ≤ PGrid

t,s ≤ PGrid
max , ∀t, s (9)

0 ≤ PGas
t,s ≤ PGas

max, ∀t, s (10)

πE
i,min ≤ πE

t,i,s ≤ πE
i,max, ∀t, i, s (11)

∑
i

PE
t,i,s = PGrid

t,s , ∀t, i, s (12)

∑
i

PG
t,i,s = PGas

t,s , ∀t, i, s (13)

2.4. MG-Level Formulation

The objective of MGs is to reduce their operation and generation costs through optimal
energy trade with DISCO and the operation schedule of its components, which is shown in
(14). The first and second terms stand for the cost of purchasing electricity and natural gas
from wholesale markets, respectively. The third term stands for the cost of the DR program,
and the last term specifies the cost of energy not supply (ENS) for consumers.

OF2 = min∑
t

∑
i

∑
s

ρt,s

(
πE

t,i,sPE
t,i,s + πGPG

t,i,s + πDR(PDRU
t,i + PDRD

t,i ) + πENSPENS
t,i,s

)
(14)

Subjected to:
The electricity that is exchanged and the NG that is brought in from DISCO are limited

by (15) and (16), respectively.

− PE
i,max ≤ PE

t,i,s ≤ PE
i,max, ∀t, i, s (15)

0 ≤ PG
t,i,s ≤ PG

i,max, ∀t, i, s (16)

2.4.1. WT

The equation for WT power generation is given in (17). The WT output is dependent
on wind speed and can only generate power when the wind speed is between the cut-in
and cut-out speeds of the WT.

PWT
t,i,s =


0 vt,s < Vci or vt,s > Vco

PWT
i,r ×

vt,s−Vci
vr−Vci

Vci ≤ vt,s < Vr

PWT
i,r Vr ≤ vt,s < Vco

(17)
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2.4.2. PV

Another renewable resource in MG’s structure is solar PV, which produces power
from solar irradiation and whose output also depends on ambient temperature. The PV
output power can be calculated using (18).

PPV
t,i,s = PSTC

PV,i
Φt,s

ΦSTC
i

[1 + K(Ta,t − 25)] (18)

2.4.3. CHP Units

A CHP unit consumes NG to generate heat and power simultaneously, and it has
higher efficiency compared to that of single heat or power generation. Power and heat
generation are calculated using (19) and (20). The amount of NG consumed by CHP units
and its ram rate are limited by (21)–(23).

Pe,CHP
t,i,s = ηe,CHP

i Pg,CHP
t,i,s , ∀t, i, s (19)

Ph,CHP
t,i,s = ηh,CHP

i Pg,CHP
t,i,s , ∀t, i, s (20)

0 ≤ Pg,CHP
t,i,s ≤ Pg,CHP

i,max , ∀t, i, s (21)

− Pd,CHP
i ≤ Pg,CHP

t,i,s − Pg,CHP
t−1,i,s ≤ Pu,CHP

i , ∀t > 1, i, s (22)

− Pd,CHP
i ≤ Pg,CHP

t,i,s − Pg,CHP
i,ini ≤ Pu,CHP

i , ∀t = 1, i, s (23)

2.4.4. Gas Boiler

A gas boiler produces heat by consuming NG. The produced heat and consumed NG
limit are shown in (24) and (25), respectively.

Ph,GB
t,i,s = ηGB

i Pg,GB
t,i,s , ∀t, i, s (24)

0 ≤ Pg,GB
t,i,s ≤ Pg,GB

i,max, ∀t, i, s (25)

2.4.5. Battery Storage

The amount of stored electric power in batteries is displayed in (26) and (27), which
is also restricted by (28). Constraints (29) and (30) are for the charging and discharging
rates of batteries, respectively. Constraint (31) prevents the battery from simultaneously
charging and discharging, while constraint (32) assures that the amount of stored power at
the beginning of the simulation period is identical to the stored power at the end of the
simulation period.

SoCBS
t,i,s = SoCBS

t−1,i,s + ηch,BSPch,BS
t,i − Pdch,BS

t,i /ηdch,BS, ∀t > 1, i, s (26)

SoCBS
t,i,s = SoCini,BS

i + ηch,BSPch,BS
t,i − Pdch,BS

t,i /ηdch,BS, ∀t = 1, i, s (27)

SoCBS
i,min ≤ SoCBS

t,i,s ≤ SoCBS
i,max, ∀t, i, s (28)

0 ≤ Pch,BS
t,i ≤ Zch,BS

t,i PBS
i,max, ∀t, i (29)

0 ≤ Pdch,BS
t,i ≤ Zdch,BS

t,i PBS
i,max, ∀t, i (30)

Zch,BS
t,i + Zdch,BS

t,i ≤ 1, ∀t, i (31)

SoCBS
t=0,i,s = SoCBS

t=T,i,s, ∀t, i, s (32)
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2.4.6. Heat Storage

The amount of stored heat in heat storage is expressed in (33) and (34), which is
restricted by the minimum and maximum amounts in (35). The charge and discharge
rate of heat are shown in (36) and (37), respectively. Constraint (38) does not allow the
simultaneous charge and discharge of heat, and constraint (39) assures that the amount of
stored heat at the beginning of the simulation period is identical to the stored heat at the
end of the simulation period.

SoCHS
t,i,s = SoCHS

t−1,i,s + ηch,HSPch,HS
t,i − Pdch,HS

t,i /ηdch,HS, ∀t > 1, i, s (33)

SoCHS
t,i,s = SoCini,HS

i + ηch,HSPch,HS
t,i − Pdch,HS

t,i /ηdch,HS, ∀t = 1, i, s (34)

SoCHS
i,min ≤ SoCHS

t,i,s ≤ SoCHS
i,max, ∀t, i, s (35)

0 ≤ Pch,HS
t,i ≤ Zch,HS

t,i PHS
i,max, ∀t, i (36)

0 ≤ Pdch,HS
t,i ≤ Zdch,HS

t,i PHS
i,max, ∀t, i (37)

Zch,HS
t,i + Zdch,HS

t,i ≤ 1, ∀t, i (38)

SoCHS
t=0,i,s = SoCHS

t=T,i,s, ∀t, i, s (39)

2.4.7. Demand Response

Shiftable demand response has been utilized to add flexibility to the electric part of
the energy hub. Constraints (40) and (41) show the amount of electric power that can be
delayed to a different time for economic reasons. According to (42), the sum of shift up
load and the sum of shift down load must be equal. Simultaneous shift up and shift down
in each time interval are prevented by using (43).

0 ≤ PDRU
t,i ≤ ZDRU

t,i PDRU
max , ∀t, i (40)

0 ≤ PDRD
t,i ≤ ZDRD

t,i PDRD
max , ∀t, i (41)

∑
t

PDRU
t,i = ∑

t
PDRD

t,i , ∀t, i (42)

ZDRU
t,i + ZDRD

t,i ≤ 1, ∀t, i (43)

2.4.8. Electric Power Balance
According to (44), the electric demand must be supplied using local energy resources,

imported power from DISCO, and flexibilities introduced by a battery and DR.

Pe,CHP
t,i,s + PWT

t,i,s + PPV
t,i,s + Pdch,BS

t,i + PE
t,i,s + PDRD

t,i,s + PENS
t,i,s = PEdemand

t,i,s + Pch,BS
t,i + PDRU

t,i,s , ∀t, i, s (44)

2.4.9. Heat Power Balance

According to (45), the heat demand must be supplied with the generated heat of the
CHP and GB units, with the help of heat energy storage.

Ph,CHP
t,i,s + Ph,GB

t,i,s + Pdch,HS
t,i = PHdemand

t,i + Pch,HS
t,i , ∀t, i, s (45)

2.4.10. Gas Balance

Constraint (46) states that the NG imported from DISCO should be identical to the
NG consumed by the CHP and GB units.

PG
t,i,s = Pg,CHP

t,i,s + Pg,GB
t,i,s , ∀t, i, s (46)
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2.5. Solution Methodology

Maximizing DISCO profit and minimizing MGs are two conflicting objective functions.
The Pareto front and ε-constraint methods were used to find a compromise between these
objective functions [31,32]:

1. Find the maximum and minimum values of OF2 and save them.
2. Add OF2 to the constraints as follows:

OF2 ≥ ε (47)

3. The value of ε varies between the minimum and maximum values OF2, while OF1
is maximized.

Finally, the best compromise was selected using fuzzy decision making. The member-
ship value for the nth objective function of the jth solution in the Pareto front is found by
the membership function defined in (48).

µ
j
n =


0 OFn ≤ OFmin

n
OFn−OFmin

n
OFmax

n −OFmin
n

OFmin
n ≤ OFn < OFmax

n

1 OFn < OFmax
n

(48)

The solution with the highest value of µj, calculated using (49), is selected as the
optimal solution.

µj =
∑
n

Wnµ
j
n

∑
j

∑
n

Wnµ
j
n

(49)

The complete procedure of the proposed system optimization is summarized in the
flow chart illustrated in Figure 2.
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3. Simulation Results
3.1. System Data

The proposed system was investigated for a hypothetical distribution system, using GAMS
and MATLAB software with a time interval of 1 h for 24 h. The scenarios were generated in
MATLAB R2021b, and the generated scenarios were reduced in the GAMS software using the
CPLEX solver. To solve the MINLP optimization, the ANTIGONE framework—a deterministic,
general, mixed-integer, nonlinear, global optimization framework—was utilized.

This system has three MGs, and the day-ahead predicted electric and heat demand
can be found in Figure 3. The forecasted solar radiation and wind speed are also illustrated
in Figure 4. The parameters of the proposed system are given in Table 1. The time of
use wholesale electric price, parameters of the RES resources, and battery energy storage
are taken from ref. [33]; however, the capacity of these resources has been modified. The
parameters of heat storage and the efficiency of the gas boiler are taken and modified
from [34] and [35], respectively.
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Table 1. Parameters of the proposed system.

Parameter Value Parameter Value Parameter Value

Pgrid
max 6 MW Pg,CHP

i,ini
0 MWh SoCHS

i,min 0 MWh

PGas
max 9 MW Pd,CHP

i 1 MWh SoCini,HS
i 0 MWh

PE
i,max 2 MW Pu,CHP

i 1 MWh SoCHS
i,max 0.4 MWh

PG
i,max 3 MW ηGB

i 0.85% PHS
i,max 0.2 MW

πE
i,min USD 30/MWh Pg,GB

i,max
1 MW PDRU

max 10%
πE

i,max USD 100/MWh ηch,BS 95% PDRD
max 10%

πG USD 15/MWh ηdch,BS 95% PPV
STC,i 0.4 MWh

πGas USD 20/MWh SoCini,BS
i 0.1 MWh K −0.005%/C0

πDR USD 3/MWh SoCBS
i,min 0.1 MWh ΦSTC

i 1000 W/m2

πENS USD 400/MWh SoCBS
i,max 0.9 MWh PWT

r,i 0.4 MWh
ηe,CHP

i 0.4% PBS
i,max 0.25 MW Vci 4 m/s

ηh,CHP
i 0.35% ηch,HS 90% Vr 14 m/s

Pg,chp
i,max

2 MW ηdch,HS 90% Vco 25 m/s

3.2. Scenario Generation and Reduction

Each uncertain parameter had seven scenarios for each time interval, so the total
number of generated scenarios for four uncertain parameters was 74 = 2401. This high
number of scenarios was reduced to 26 scenarios using MILP scenario reduction. The PDFs
of uncertain parameters were generated in MATLAB R2021b, and the generated scenarios
were reduced in the GAMS software using the CPLEX solver.

3.3. Comparison of Different Cases

To analyze the effectiveness of the proposed system, three cases were considered
as follows:

Case 1: Without ESS and DR
Case 2: With ESS and without DR
Case 3: With ESS and DR
One of the important parameters that contributes to higher MGs operational costs,

according to Equation (14), is ENS. The ENS of the electrical load is illustrated in Figure 5.
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According to Figure 5, the ENS of the electrical load has been significantly improved
by implementing both DR and ESS. The extraordinary ENS occurred on t20 in Case 1 and
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had a value of 66 KWh. This value fell to 8 KWh in case 2 and almost diminished in case 3.
The improvement also occurred in other hours, especially at t10 and t18. Table 2 compares
the results in terms of DISCO profit, MGs cost, and ENS.

Table 2. Comparison of the results for different cases.

Case MGs Cost (USD) DISCO Profit (USD) ENS (MWh)

Case 1 9593.0917 4272.9564 0.1194
Case 2 10,022.8378 4548.1967 0.0213
Case 3 9474.8072 4431.2495 0.0074

The proposed system in Case 3 achieves a negligible ENS with 0.0074 MWh, which
accounted for 0.1194 MWh in Case 1. In terms of MGs’ cost, the value decreased from USD
9593.09 to USD 9474.80, representing a 1.23% decrease in the MGs’ cost. Using only ESS,
Case 2 increased the MGs’ cost while being beneficial for DISCO with a 6% increase in
profit, from USD 4272.95 to USD 4548.19. Case 3 was also in favor of DISCO since it caused
a profit increase of 3.5% compared to Case 1. Overall, according to these results, the ESS
was beneficial for DISCO, and the DR was beneficial for MGs, and this is mainly because
both the DISCO and MGs objectives are optimized. Moreover, Case 3 was the optimal case
in terms of the economics and reliability of the system, and in the following, the optimal
day-ahead operation is given for Case 3.

3.4. Results for Case 3

Figure 6 displays the Pareto front for Case 3. The objective function of the MGs cost is
minimization, and its equivalent maximization problem is max −OF2. Each red point in
this figure corresponds to the best solution of DISCO profit when the MGs cost is restricted
by the ε-constraint method. The optimal solution, among all available Pareto fronts, was
selected using fuzzy decision making. The weight of each objective function in the fuzzy
decision-making process was set to 0.5.
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Figure 6. Pareto optimal front of DISCO profit and MGs Cost.

The optimal stochastic electricity management of MGs and DISCO for Case 3 is
presented in Figure 7. Positive values are supply values; for example, a positive value for
the grid means that the MGs or DISCO import power, and a positive value for the battery
means that the battery is in a discharging state. On the other hand, negative values are
considered demanded values.
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In accordance with Figure 7, all MGs, apart from MG3, exported electricity in the
early hours because CHP units and local renewable energy sources were able to meet
the MGs’ need for electricity. Any extra electricity was sold to DISCO for a price of USD
30/MWh. However, the demand for MG3 was relatively high compared to other MGs,
and this MG was not able to export energy. Another effect of the increased demand was
higher transactive energy prices between the MG3 and DISCO, which accounted for USD
100/MWh for nearly the entire 24 h. CHP units were mostly in operation during t1–t20 in
MG1, during t2–t11 and t17–t22 in MG2, and during t9–t19 in MG3. Shift-up DR occurred
during off-peak hours, while shift down occurred during on-peak hours to help MGs
satisfy their demand and reduce the electric energy price. The values for ENS were so small
that they are not evidently displayed in Figure 7; however, they were clearly displayed
and discussed in Figure 5. Figure 7 also illustrates the power exchange between the grid
and DISCO. According to this figure, DISCO imported power during all hours, and its
minimum value accounted for 0.1078 MWh in t6, while its peak values were during t12–t16,
and the maximum amount of power imported from the grid was at t15, with 5.7192 MWh.
Although DISCO could export power to the grid, it did not happen, and the imported power
to DISCO from MGs was exported to other MGs by DISCO. At t6, the entire DISCO and all
the MGs were almost electrically self-satisfied. The optimal stochastic heat management of
the MGs and the gas management of the MGs and DISCO are illustrated in Figure 8.

The heat demand was met through the generated heat of CHP and GB by consuming
NG. GB was in operation during all hours, except for t3–t5 in MG1. Compared to the other
MGs, MG3 heat demand was mostly supplied by its GB unit, especially during the early
hours of scheduling, when its productions were just below 800 KWh. Since CHP produces
heat and power simultaneously, the operating period of CHP units is the same as described
in Figure 7. The optimal operation of heat storage can also be seen in MGs. The MGs stored
energy in off-peak periods to be consumed in on-peak periods to help the system supply
its heat demand optimally and reliably. As can be seen in MG2, energy storage was also
able to flatten the demand profile of the heat demand by charging at t8–9 and t18–20 and
discharging at t12 and t22–23. Moreover, the imported NG by MGs is illustrated in Figure 8.
The stacked sum of the MGs’ NG consumption is DISCO’s imported NG from the grid. The
imported NG by DISCO peaked at t18, with 6.05 MWh.



Energies 2023, 16, 1802 13 of 17

Energies 2023, 16, x FOR PEER REVIEW 13 of 17 
 

 

this MG was not able to export energy. Another effect of the increased demand was higher 

transactive energy prices between the MG3 and DISCO, which accounted for USD 

100/MWh for nearly the entire 24 h. CHP units were mostly in operation during t1–t20 in 

MG1, during t2–t11 and t17–t22 in MG2, and during t9–t19 in MG3. Shift-up DR occurred 

during off-peak hours, while shift down occurred during on-peak hours to help MGs 

satisfy their demand and reduce the electric energy price. The values for ENS were so 

small that they are not evidently displayed in Figure 7; however, they were clearly 

displayed and discussed in Figure 5. Figure 7 also illustrates the power exchange between 

the grid and DISCO. According to this figure, DISCO imported power during all hours, 

and its minimum value accounted for 0.1078 MWh in t6, while its peak values were during 

t12–t16, and the maximum amount of power imported from the grid was at t15, with 

5.7192 MWh. Although DISCO could export power to the grid, it did not happen, and the 

imported power to DISCO from MGs was exported to other MGs by DISCO. At t6, the 

entire DISCO and all the MGs were almost electrically self-satisfied. The optimal 

stochastic heat management of the MGs and the gas management of the MGs and DISCO 

are illustrated in Figure 8. 

 

Figure 8. Optimal stochastic heat management of MGs and NG management of MGs and DISCO. 

The heat demand was met through the generated heat of CHP and GB by consuming 

NG. GB was in operation during all hours, except for t3–t5 in MG1. Compared to the other 

MGs, MG3 heat demand was mostly supplied by its GB unit, especially during the early 

hours of scheduling, when its productions were just below 800 KWh. Since CHP produces 

heat and power simultaneously, the operating period of CHP units is the same as 

described in Figure 7. The optimal operation of heat storage can also be seen in MGs. The 

MGs stored energy in off-peak periods to be consumed in on-peak periods to help the 

system supply its heat demand optimally and reliably. As can be seen in MG2, energy 

storage was also able to flatten the demand profile of the heat demand by charging at t8–

9 and t18–20 and discharging at t12 and t22–23. Moreover, the imported NG by MGs is 

illustrated in Figure 8. The stacked sum of the MGs’ NG consumption is DISCO’s 

imported NG from the grid. The imported NG by DISCO peaked at t18, with 6.05 MWh. 

  

Figure 8. Optimal stochastic heat management of MGs and NG management of MGs and DISCO.

4. Conclusions

This paper presented optimal day-ahead scheduling of a multi-energy MMG system,
considering the DISCO profit and MGs cost. DISCO was able to sell electrical energy
and NG to MGs by purchasing these energy carriers from the grid. MGs are composed
of WT, PV, CHP, GB, HS, and BS, and traded electrical energy and NG with a dynamic
and fixed price. The intermittent nature of RES and its demands were addressed through
scenario-based stochastic optimization. Scenarios were generated by using appropriate
PDFs, and to reduce the computation complexity, the generated scenarios were reduced
using MILP scenario reduction. Since the problem was multi-objective with two conflicting
objective functions, the Pareto front was obtained using the ε-constraint method, and the
best compromise of the MINLP stochastic optimization problem was selected with fuzzy
decision making. According to the simulation results, the proposed strategy can achieve
optimal day-ahead energy scheduling for a multi-energy MMG with great performances
in both DISCO profit and MGs cost. Three cases have been investigated to understand
the effect of ESS and DR on the optimal operation of the system. According to the results,
implementing only ESS in the system (Case 2) increased the MGs cost, while it was beneficial
for DISCO, with a 6% increase in profit, so this case was not interesting for MGs. On the
other hand, presenting both ESS and DR, Case 3, caused the MGs cost reduction to be 1.23%
lower and the DISCO profit increase to be 3.5% higher. Furthermore, the reliability of the
system improved, with the ENS of the system reducing from 0.1194 MWh to 0.0074 MWh.
Further studies will investigate other approaches to solving multi-objective optimization in
microgrids, such as converting multi-stage optimization to single-stage optimization. In
addition, it is suggested to consider more reliability indices in the proposed system and to
add more flexibility to the system.
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Nomenclature

Indices
t Index of time ηe,CHP

i , ηh,CHP
i Electricity/heat efficiency of CHP unit [%]

i Index of microgrids Pg,GB
i,max Maximum capacity of GB unit [MW]

s Index of scenarios ηGB
i Heat efficiency of GB unit [%]

n Index of objective functions Variables
Parameters Zch,BS

t,i , Zdch,BS
t,i Binary variable for battery charging and discharging power

PWT
t,i,s Output power of WTs at time t and scenario s [MWh] Zch,HS

t,i , Zdch,HS
t,i Binary variable for SC charging and discharging power

PPV
t,i,s Output power of PVs at time t and scenario s [MWh] ZDRU

t,i , ZDRD
t,i Binary variable for shift UP/DOWN of DR

PWT
i,r Rated power of WTs [MW] Pe,CHP

t,i,s , Ph,CHP
t,i,s Electricity/heat production of CHP unit [MWh]

νt,s Wind speed at time t and scenario s [m/s] Pg,CHP
t,i,s Consumed NG by CHP unit [MWh]

Vci, Vco, Vr Cut in, cut out and rated speed of WT Ph,GB
t,i,s , Pg,GB

t,i,s Heat production/NG consumption of GB unit [MWh]
PSTC

PV,i PV power output at STC πE
t,i,s Price of power exchange between DISCO and MG i [USD/MWh]

Φt,s Irradiance at time t and scenario s [p.u] PE
t,i,s Power exchange between DISCO and MG i [MW]

ΦSTC
i Irradiance at STC condition [p.u] PG

t,i,s NG imported from DISCO by MG i [MW]
K PV temperature coefficient of power PGrid

t,s Power purchased from wholesale grid [MW]
Ta,t Ambient temperature at time t PGas

t,s NG purchased from wholesale grid [MW]
πGrid

t Grid price for electricity at time t [USD/MWh] Pch,BS
t,i , Pdch,BS

t,i Charging and discharging power of battery [MWh]
πGas Grid price for NG Pch,HS

t,i , Pdch,HS
t,i,s Charging/discharging power of heat storage [MWh]

πE
i,max, πE

i,min Maximum/Minimum price of energy exchange between MGs and DISCO SoCBS
t,i,s, SoCHS

t,i,s Stat of charge of battery/heat storage [MWh]
PGrid

max Maximum electricity imported from grid PENS
t,i,s ENS of load

PGas
max Maximum NG imported from grid PDRU

t,i , PDRD
t,i shift UP/DOWN power of DR

k, c Shape/scale index Acronym
δ, µ Standard deviation/mean value MMG Multi-microgrids
α, β Shape parameters DISCO Distribution company
PBS

max, PHS
max Maximum charging & discharging of battery/heat storage [MW] RES Renewable energy source

SoCBS
i,ini, SoCHS

i,ini Initial energy storage of battery/heat storage [MWh] WT Wind turbine
SoCBS

i,max, SoCBS
i,min Maximum/Minimum SoC of battery [MWh] PV Photovoltaic

SoCHS
i,max, SoCHS

i,min Maximum/Minimum SoC of heat storage [MWh] B Battery
PDRU

i,max , PDRD
i,max maximum shift UP/DOWN power of DR PDF Probability density function

ηch,BS, ηdch,BS Charging & discharging efficiency of battery [%] MILP Mixed-integer linear programming
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ηch,HS, ηdch,HS Charging & discharging efficiency of heat storage [%] MINLP Mixed-integer nonlinear programming
πDR, πENS Cost of DR/ENS [USD/MW h] MG Microgrid
PE

i,max Maximum exchange power between DISCO and MG i [MW] DR Demand response
PG

i,max Maximum imported NG from DISCO by MG i [MW] SoC State of charge
ρt,s Probability for scenario s at time t STC Standard testing condition
Pg,CHP

i,max Maximum capacity of CHP unit [MW] NG Natural gas
Pu,CHP

t,i , Pd,CHP
t,i Ramp up/down limit of CHP unit [MW] CHP Combined heat and power

ENS Energy not supplied
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