A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting
Abstract
:1. Introduction
1.1. Related Works
1.2. Motivations
1.3. Contributions
- (a)
- A hybrid neural network model combining VMD and GRU is designed for short-term wind speed forecasting. In this hybrid model, the VMD method is used to extract the local characteristics of wind speed. All the obtained subseries are converted into two-dimensional samples for training the GRU neural network and obtaining the predictions of future wind speed.
- (b)
- A grid search with a rolling cross-validation (GSRCV) method is proposed to integrally search the best structure of VMD and GRU. Three key parameters, including the number of decomposed modes in VMD, length of input time steps in GRU, and the number of neurons in the hidden layer of GRU, are concurrently optimized by considering the parameter’s influence on the accuracy of the finally constructed hybrid model.
- (c)
- A comprehensive experiment and analysis based on real-world wind speed data are implemented to evaluate the performance of the proposed VMD-GRU-GSRCV model. The effectiveness of the GSRCV parameter optimization method and VMD data processing strategy are evaluated, respectively, and the overall superiority of the proposed model in comparison with popular hybrid neural network forecasting benchmarks are also verified.
2. Methodology
2.1. Variational Mode Decomposition
2.2. Gated Recurrent Unit
2.3. Grid Search with Rolling Cross-Validation
3. Framework of Proposed Model
3.1. Model Input
3.2. Overall Procedure
4. Experiments
4.1. Collected Data
4.2. Parameters Setting
4.3. Evaluation Metrics
4.4. Results and Analysis
4.4.1. Effect of Parameter Optimization
4.4.2. Effect of Data Processing
4.4.3. Comparison with Hybrid Neural Networks
5. Conclusions and Future Researches
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Acronym | Meaning |
ADMM | Alternate direction method of multipliers |
AGRU | Attention-based gated recurrent unit |
ANN | Artificial neural network |
BiGRU | Bidirectional gated recurrent unit |
BIC | Bayesian information criterion |
BPNN | Back propagation neural network |
Dec-Fore-Int | Decomposition-Forecasting-Integrating |
EEMD | Ensemble empirical mode decomposition |
ELM | Extreme learning machine |
EMD | Empirical mode decomposition |
ENN | Elman neural network |
GRU | Gated recurrent unit |
GSRCV | Grid search with rolling cross-validation |
GWEC | Global Wind Energy Council |
IMF | Intrinsic mode function |
LSTM | Long short-term memory |
MAE | Mean absolute error |
MAPE | Mean absolute percentage error |
NREL | National Renewable Energy Laboratory |
RMSE | Root mean square error |
RNN | Recurrent neural network |
SMAPE | Symmetric mean absolute percentage error |
STC | Spatio-temporal correlation |
VMD | Variational mode decomposition |
Variable/Symbol | Meaning |
br, bz, bh | Biases in GRU |
f | Original signal |
h | Output of hidden state in GRU |
r | Output of reset gate in GRU |
tanh | Hyperbolic tangent function |
xt | Sample of X in time step t |
y | Observed wind speed |
Predicted wind speed | |
z | Output of update gate in GRU |
H | Number of neurons in the hidden layer of GRU |
K | Fold number in the rolling cross-validation |
M | Number of decomposed modes in VMD |
T | Length of input time steps in X |
Wrx, Wrh, Wzx, Wzh, Whh, Whx | Weight matrices in GRU |
X | Input sequence of GRU |
α | Penalty coefficient |
λ | Lagrangian multipliers |
τ | Updating parameter in ADMM |
ε | Tolerance of convergence criterion in ADMM |
δ | Dirac distribution |
σ | Sigmoid function |
um | The mth subseries |
ωm | Center frequency of the mth subseries |
* | Convolution |
⊗ | Hadamard product |
References
- Global Wind Report 2021. Global Wind Energy Council. 2021. Available online: https://gwec.net/wp-content/uploads/2021/03/GWEC-Global-Wind-Report-2021.pdf (accessed on 23 November 2022).
- Cassola, F.; Burlando, M. Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output. Appl. Energy 2012, 99, 154–166. [Google Scholar] [CrossRef]
- Liu, H.; Chen, C. Multi-objective data-ensemble wind speed forecasting model with stacked sparse autoencoder and adaptive decomposition-based error correction. Appl. Energy 2019, 254, 113686. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, S.; Zhang, W.; Peng, J.; Cai, Y. Multifactor spatio-temporal correlation model based on a combination of convolutional neural network and long short-term memory neural network for wind speed forecasting. Energy Convers. Manag. 2019, 185, 783–799. [Google Scholar] [CrossRef]
- Singh, S.N.; Mohapatra, A. Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting. Renew. Energy 2019, 136, 758–768. [Google Scholar]
- Rodríguez, F.; Alonso-Pérez, S.; Sánchez-Guardamino, I.; Galarza, A. Ensemble forecaster based on the combination of time-frequency analysis and machine learning strategies for very short-term wind speed prediction. Electr. Power Syst. Res. 2023, 214, 108863. [Google Scholar] [CrossRef]
- Zhao, E.; Sun, S.; Wang, S. New developments in wind energy forecasting with artificial intelligence and big data: A scientometric insight. Data Sci. Manag. 2022, 5, 84–95. [Google Scholar] [CrossRef]
- Liu, G.; Wang, C.; Qin, H.; Fu, J.; Shen, Q. A novel hybrid machine learning model for wind speed probabilistic forecasting. Energies 2022, 15, 6942. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, H.; Wu, J.; Ding, Z.; Wang, Y.G. Robustified extreme learning machine regression with applications in outlier-blended wind-speed forecasting. Appl. Soft Comput. 2022, 122, 108814. [Google Scholar] [CrossRef]
- Wang, J.; An, Y.; Li, Z.; Lu, H. A novel combined forecasting model based on neural networks, deep learning approaches, and multi-objective optimization for short-term wind speed forecasting. Energy 2022, 251, 123960. [Google Scholar] [CrossRef]
- Zhu, Q.; Che, J.; Li, Y.; Zuo, R. A new prediction NN framework design for individual stock based on the industry environment. Data Sci. Manag. 2022, 5, 199–211. [Google Scholar] [CrossRef]
- Sun, W.; Tan, B.; Wang, Q. Multi-step wind speed forecasting based on secondary decomposition algorithm and optimized back propagation neural network. Appl. Soft Comput. 2021, 113, 107894. [Google Scholar] [CrossRef]
- Dokur, E.; Erdogan, N.; Salari, M.E.; Karakuzu, C.; Murphy, J. Offshore wind speed short-term forecasting based on a hybrid method: Swarm decomposition and meta-extreme learning machine. Energy 2022, 248, 123595. [Google Scholar] [CrossRef]
- Lv, S.X.; Peng, L.; Wang, L. Stacked autoencoder with echo-state regression for tourism demand forecasting using search query data. Appl. Soft Comput. 2018, 73, 119–133. [Google Scholar] [CrossRef]
- Liu, H.; Tian, H.Q.; Liang, X.F.; Li, Y.F. Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks. Appl. Energy 2015, 157, 183–194. [Google Scholar] [CrossRef]
- Ding, L.; Bai, Y.; Liu, M.D.; Fan, M.H.; Yang, J. Predicting short wind speed with a hybrid model based on a piecewise error correction method and Elman neural network. Energy 2022, 244, 122630. [Google Scholar] [CrossRef]
- Nasiri, H.; Ebadzadeh, M.M. MFRFNN: Multi-functional recurrent fuzzy neural network for chaotic time series prediction. Neurocomputing 2022, 507, 292–310. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, J.; Qian, H. Short-term wind power forecasting by stacked recurrent neural networks with parametric sine activation function. Electr. Power Syst. Res. 2021, 192, 107011. [Google Scholar] [CrossRef]
- López, G.; Arboleya, P. Short-term wind speed forecasting over complex terrain using linear regression models and multivariable LSTM and NARX networks in the Andes Mountains, Ecuador. Renew. Energy 2022, 183, 351–368. [Google Scholar] [CrossRef]
- Memarzadeh, G.; Keynia, F. A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets. Energy Convers. Manag. 2020, 213, 112824. [Google Scholar] [CrossRef]
- Wu, J.; Li, N.; Zhao, Y.; Wang, J. Usage of correlation analysis and hypothesis test in optimizing the gated recurrent unit network for wind speed forecasting. Energy 2022, 242, 122960. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, M.; Zhao, G. Hybrid model based on VMD decomposition, clustering analysis, long short memory network, ensemble learning and error complementation for short-term wind speed forecasting assisted by Flink platform. Energy 2022, 261, 125248. [Google Scholar] [CrossRef]
- Niu, Z.; Yu, Z.; Tang, W.; Wu, Q.; Reformat, M. Wind power forecasting using attention-based gated recurrent unit network. Energy 2020, 196, 117081. [Google Scholar] [CrossRef]
- Tian, C.; Niu, T.; Wei, W. Developing a wind power forecasting system based on deep learning with attention mechanism. Energy 2022, 257, 124750. [Google Scholar] [CrossRef]
- Joseph, L.P.; Deo, R.C.; Prasad, R.; Salcedo-Sanz, S.; Raj, N.; Soar, J. Near real-time wind speed forecast model with bidirectional LSTM networks. Renew. Energy 2023, 204, 39–58. [Google Scholar] [CrossRef]
- Yu, M.; Niu, D.; Gao, T.; Wang, K.; Sun, L.; Li, M.; Xu, X. A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and BiGRU optimized by the attention mechanism. Energy 2023, 269, 126738. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Li, Y.; Wang, J.; Dang, Z. Forecasting wind speed using empirical mode decomposition and Elman neural network. Appl. Soft Comput. 2014, 23, 452–459. [Google Scholar] [CrossRef]
- Santhosh, M.; Venkaiah, C.; Kumar, D.V. Short-term wind speed forecasting approach using ensemble empirical mode decomposition and deep Boltzmann machine. Sustain. Energy Grids Netw. 2019, 19, 100242. [Google Scholar] [CrossRef]
- He, Y.; Wang, Y. Short-term wind power prediction based on EEMD–LASSO–QRNN model. Appl. Soft Comput. 2021, 105, 107288. [Google Scholar] [CrossRef]
- Nasiri, H.; Ebadzadeh, M.M. Multi-step-ahead stock price prediction using recurrent fuzzy neural network and variational mode decomposition. arXiv 2022, arXiv:2212.14687. [Google Scholar]
- Qiao, B.; Liu, J.; Wu, P.; Teng, Y. Wind power forecasting based on variational mode decomposition and high-order fuzzy cognitive maps. Appl. Soft Comput. 2022, 129, 109586. [Google Scholar] [CrossRef]
- Li, J.; Song, Z.; Wang, X.; Wang, Y.; Jia, Y. A novel offshore wind farm typhoon wind speed prediction model based on PSO-Bi-LSTM improved by VMD. Energy 2022, 251, 123848. [Google Scholar] [CrossRef]
- Hu, H.; Wang, L.; Tao, R. Wind speed forecasting based on variational mode decomposition and improved echo state network. Renew. Energy 2021, 164, 729–751. [Google Scholar] [CrossRef]
- Wang, X.; Ren, H.; Zhai, J.; Xing, H.; Su, J. Adaptive support segment based short-term wind speed forecasting. Energy 2022, 249, 123644. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, J.; Li, C.; Fu, W.; Peng, T. A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting. Energy Convers. Manag. 2017, 143, 360–376. [Google Scholar] [CrossRef]
- Wu, B.; Wang, L.; Zeng, Y.R. Interpretable wind speed prediction with multivariate time series and temporal fusion transformers. Energy 2022, 252, 123990. [Google Scholar] [CrossRef]
- Wang, X.; Luo, D.; Zhao, X.; Sun, Z. Estimates of energy consumption in China using a self-adaptive multi-verse optimizer-based support vector machine with rolling cross-validation. Energy 2018, 152, 539–548. [Google Scholar] [CrossRef]
- Lv, S.X.; Peng, L.; Hu, H.; Wang, L. Effective machine learning model combination based on selective ensemble strategy for time series forecasting. Inf. Sci. 2022, 612, 994–1023. [Google Scholar] [CrossRef]
- NREL Data Catalog. Available online: https://data.nrel.gov/submissions/33 (accessed on 23 November 2022).
- Wu, H.; Meng, K.; Fan, D.; Zhang, Z.; Liu, Q. Multistep short-term wind speed forecasting using transformer. Energy 2022, 261, 125231. [Google Scholar] [CrossRef]
- Zhang, C.; Peng, T.; Nazir, M.S. A novel integrated photovoltaic power forecasting model based on variational mode decomposition and CNN-BiGRU considering meteorological variables. Electr. Power Syst. Res. 2022, 213, 108796. [Google Scholar] [CrossRef]
- Chengqing, Y.; Guangxi, Y.; Chengming, Y.; Yu, Z.; Xiwei, M. A multi-factor driven spatiotemporal wind power prediction model based on ensemble deep graph attention reinforcement learning networks. Energy 2023, 263, 126034. [Google Scholar] [CrossRef]
- Peng, L.; Sun, C.; Wu, W. Effective arithmetic optimization algorithm with probabilistic search strategy for function optimization problems. Data Sci. Manag. 2022, 5, 163–174. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, H.; Hua, L.; Sun, W.; Nazir, M.S.; Peng, T. An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction. Energy 2022, 254, 124250. [Google Scholar] [CrossRef]
- Peng, L.; Wang, L.; Xia, D.; Gao, Q.L. Effective energy consumption forecasting using empirical wavelet transform and long short-term memory. Energy 2022, 238, 121756. [Google Scholar] [CrossRef]
- Xian, H.; Che, J. Unified whale optimization algorithm based multi-kernel SVR ensemble learning for wind speed forecasting. Appl. Soft Comput. 2022, 130, 109690. [Google Scholar] [CrossRef]
Sample | Number | Statistical Indicators | |||||
---|---|---|---|---|---|---|---|
Min | Max | Mean | Std | Skewness | Kurtosis | ||
All | 8759 | 0.3540 | 34.4508 | 4.4725 | 3.2083 | 2.3805 | 12.4166 |
Train | 7319 | 0.3540 | 22.0702 | 4.1857 | 2.8162 | 2.0871 | 9.0252 |
Test | 1440 | 0.3723 | 34.4508 | 5.9303 | 4.4461 | 2.1242 | 10.3104 |
Modules | Parameters | Ranges/Values |
---|---|---|
VMD | Search range of M | [2, 30] |
Search step of M | 3 | |
GRU | Search range of T | [1, 12] |
Search step of T | 2 | |
Search range of H | [10, 50] | |
Search step of H | 10 | |
Epochs | 100 | |
Batch size | 12 | |
GSRCV | Fold number K | 10 |
Methods | Selection Results | ||
---|---|---|---|
M | T | H | |
Decentralized | 16 | 2 | 50 |
GSRCV | 23 | 7 | 50 |
Methods | RMSE | MAE | MAPE | SMAPE | p-Value | Time (s) |
---|---|---|---|---|---|---|
Decentralized | 0.2797 | 0.2104 | 5.66% | 5.57% | 1.22 × 10−17 * | 122.18 |
GSRCV | 0.2047 | 0.1435 | 3.77% | 3.74% | - | 221.17 |
Methods | RMSE | MAE | MAPE | SMAPE | p-Value | Time (s) |
---|---|---|---|---|---|---|
Original | 2.2486 | 1.5375 | 34.68% | 29.05% | 3.90 × 10−18 | 82.64 |
EMD | 1.3390 | 0.9490 | 22.34% | 20.00% | 3.90 × 10−18 * | 188.50 |
EEMD | 1.0498 | 0.7793 | 18.41% | 20.66% | 3.90 × 10−18 * | 249.04 |
VMD | 0.2047 | 0.1435 | 3.77% | 3.74% | - | 221.17 |
Models | RMSE | MAE | MAPE | SMAPE | p-Value | Time (s) |
---|---|---|---|---|---|---|
BPNN | 0.2825 | 0.1785 | 4.61% | 4.55% | 1.86 × 10−4 * | 64.57 |
ENN | 0.2208 | 0.1582 | 4.14% | 4.07% | 4.08 × 10−2 * | 142.82 |
BiGRU | 0.2114 | 0.1483 | 3.82% | 3.77% | 2.77 × 10−1 | 297.26 |
AGRU | 0.2433 | 0.1529 | 3.63% | 3.61% | 1.04 × 10−1 | 286.96 |
Dec-Fore-Int | 0.2774 | 0.1577 | 3.91% | 3.77% | 2.00 × 10−1 | 1791.92 |
Proposed | 0.2047 | 0.1435 | 3.77% | 3.74% | - | 221.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, S.; Wang, L.; Wang, S. A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting. Energies 2023, 16, 1841. https://doi.org/10.3390/en16041841
Lv S, Wang L, Wang S. A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting. Energies. 2023; 16(4):1841. https://doi.org/10.3390/en16041841
Chicago/Turabian StyleLv, Shengxiang, Lin Wang, and Sirui Wang. 2023. "A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting" Energies 16, no. 4: 1841. https://doi.org/10.3390/en16041841
APA StyleLv, S., Wang, L., & Wang, S. (2023). A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting. Energies, 16(4), 1841. https://doi.org/10.3390/en16041841