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Abstract: This paper studies the definition and calculation method of power grid strength in
the environment of high-proportion nonsynchronous-machine sources, focusing on the effect of
nonsynchronous-machine sources on voltage support strength and frequency support strength. By di-
viding the nonsynchronous-machine sources into four types, the equivalent circuits of each type under
normal state and fault state are derived, respectively. Based on the Thevenin equivalent impedance of
the power grid and the equivalent impedance of the connected device, the definition and calculation
method of voltage support strength is given, and the new meaning of single-infeed short-circuit
ratio and multi-infeed short-circuit ratio in the context of high proportion nonsynchronous-machine
sources is presented. Based on the initial frequency change rate and the steady-state frequency
deviation of any node in the power grid under the maximum expected active power disturbance, the
equivalent inertia lifting factor and steady-state frequency deviation decreasing factor are defined,
respectively, to describe the contribution of nonsynchronous-machine sources to the power grid
frequency support strength, and the calculation methods of the equivalent inertia lifting factor and
the steady-state frequency deviation decreasing factor are given.

Keywords: power grid strength; voltage stiffness; short-circuit ratio; inertia; frequency change rate;
frequency deviation factor

1. Introduction

Power grid strength is one of the fundamental concepts of the power system. It is
typically used to quantify the effect of interaction between the grid and the connected
device, and the above-mentioned connected device can be a power source, a load, or a
station of various types. The most straightforward explanation of power grid strength is
the classic concept of an infinite power source. If a bus in the power system is referred
to as an infinite power source, it has two connotations [1–3]: The first connotation is that
the voltage amplitude of the bus will remain constant regardless of the type and capacity
of the connected device, and the second connotation is that the voltage frequency of the
bus will remain constant regardless of the type and capacity of the connected device. It
can be seen that for the infinite power source, its voltage amplitude and frequency are not
affected by the type and capacity of the connected device. For the actual power grid, the
voltage amplitude and frequency of any bus must be affected by the type and capacity of
the connected device, and the corresponding index describing the degree of effect is the
power grid strength. Corresponding to the first connotation of an infinite power source, we
use the voltage support strength to describe the degree of voltage amplitude change by the
connection of the device, and corresponding to the second connotation of an infinite power
source, we use the frequency support strength to describe the degree of voltage frequency
change by the connection of the device. Thus, the so-called infinite power source can be
understood as the power source with infinite grid strength.
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In the traditional power system dominated by synchronous generators, the voltage
support strength is usually represented by the short circuit ratio (SCR) [4–6]. The SCR
is defined as the ratio of the three-phase short-circuit capacity of the connecting bus (the
interface bus between the connected device and the grid, denoted as the point of common
coupling (PCC) in the following) to the capacity of the connected device. The three-phase
short-circuit capacity here refers to the short-circuit capacity provided by the synchronous
generators. In traditional power systems, the typical application of SCR is to describe the
power grid strength when the high voltage direct current (HVDC) transmission converter
station is connected. It is generally believed that the HVDC transmission converter station
can operate stably when SCR is greater than 3 [4–6].

With the transition from a traditional power system to a new type of power system
with a high proportion of nonsynchronous-machine sources, it is unreasonable to continue
using the conventional SCR definition to describe the voltage support strength. This is
because the conventional SCR definition considers only the short-circuit current supplied
by the synchronous generators, ignoring the contribution of nonsynchronous-machine
sources. Then, a question naturally arises: if the short-circuit current of the nonsynchronous-
machine source is considered in the calculation of the SCR, is it still possible to utilize
the conventional SCR definition to characterize the voltage support strength? The answer
is no, and the reasons for this statement will be presented in later sections of this paper.
For the new type of power system, the voltage support strength indexes extended from
the conventional SCR definition have been extensively studied. Reference [7] proposes a
generalized short circuit ratio (GSCR) based on a modal method to decouple the multi-
infeed system. However, the modal method is difficult to calculate, so its engineering
applicability is limited. Reference [8] presents a multiple renewable energy station short
circuit ratio (MRSCR) based on the ratio of system short circuit capacity to grid-connected
capacity of new energy, which has engineering applicability. However, the precision of its
calculations is insufficient because only the external properties of new energy as current
sources are considered. Therefore, how to define the voltage support strength in the new
type of power system considering both accuracy and engineering applicability is a pressing
issue that must be tackled [9,10].

In the actual power system, frequency support strength usually exhibits its meaning in
two dimensions. The first is the inertia support capability [1–3], which describes the initial
frequency change rate after an active power disturbance to the power grid. The second is
the primary frequency regulation capability [1–3], which describes the amount of active
power that the power grid can absorb or release during the frequency deviation.

In the traditional power system dominated by synchronous generators, the inertia
support capability can be expressed by the kinetic energy stored in the rotors of the
synchronous generators in the entire grid, and its unit is MWs. It can also be described
by the equivalent inertia time constant of the whole grid H. In other words, H is the time
required for the kinetic energy stored in the rotors of grid-wide synchronous generators
to be released to zero at the constant active power equaling the total capacity of the grid-
wide synchronous generators in the unit of second. For the calculation of inertia and
the minimum inertia demand, there have been numerous pertinent discussions in the
literature [11–22] from the generating unit and system perspectives. In contrast to the
synchronous generator, where the inertia is constant, the inertia of the nonsynchronous-
machine source is dependent on its control system, and the amount of the inertia varies with
the change of the operating point of the nonsynchronous-machine source. Therefore, the
total inertia of the system changes with the operation state from the system’s perspective.
However, how to calculate the inertia support capability in the power system where
synchronous generators and nonsynchronous-machine sources coexist is an issue to be
solved.
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In the traditional power system dominated by synchronous generators, the primary
frequency regulation capability is typically described by the frequency deviation factor β [1–3],
which is related to the droops of the synchronous generator governors and the frequency sen-
sitivity coefficient of the active load of the whole grid. The unit of β is MW/(0.1 Hz). However,
in the power system where synchronous generators and nonsynchronous-machine sources
coexist, how to account for the primary frequency regulation capability of the nonsynchronous-
machine sources is an urgent problem to be solved.

In this paper, the expressions and the calculation methods of the power grid strength
for the power system with high proportion nonsynchronous-machine sources are ex-
amined, including the voltage support strength, the inertia support capability, and the
primary frequency regulation capability. The rest of the paper is organized as follows.
Section 2 discusses the classification and description of the external characteristics of
the nonsynchronous-machine sources; Section 3 describes the operating states and their
corresponding equivalent circuits for the nonsynchronous-machine sources. Section 4
addresses the definition and calculation method of the voltage support strength at any
point in the power grid. Section 5 explores the new meaning of the single-infeed SCR
and the multi-infeed SCR. Section 6 addresses the definition and calculation method of
the frequency support strength in the power system where synchronous generators and
nonsynchronous-machine sources coexist. Finally, Section 7 draws on the conclusion.

2. Classification and Description of the External Characteristics of
Nonsynchronous-Machine Sources

The typical structure of nonsynchronous-machine sources is shown in Figure 1 [23].
In Figure 1, Udc and idc represent the DC voltage and DC current of the voltage source
converter (VSC), respectively; uv and us represent the valve-side voltage and the grid-side
AC bus voltage of the VSC respectively; Ps and Qs represent the active power and the
reactive power input to the AC grid respectively. On the whole, nonsynchronous-machine
sources can be categorized as either grid-forming or grid-following sources [24–31]. The
external characteristic of the grid-forming source is an adjustable voltage source, and when
its active power is adjustable in a wide range, it can serve as a support source of a passive
grid. The external characteristic of the grid-following source is an adjustable current source,
and the grid-following source must be connected to the active power grid.
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2.1. Classification and Controller Structure of Grid-Forming Nonsynchronous-Machine Sources

The grid-forming nonsynchronous-machine sources can be further subdivided into
two types according to their active power adjustable capability. The first type is referred
to as the Vθ type grid-forming nonsynchronous-machine source, and the second type is
referred to as the PV-type grid-forming nonsynchronous-machine source.

2.1.1. Vθ Type Grid-Forming Nonsynchronous-Machine Source

The Vθ type grid-forming nonsynchronous-machine source is characterized by main-
taining the amplitude Usm and frequency f of the AC bus voltage at the reference values.
For the typical structure of the nonsynchronous-machine sources depicted in Figure 1, the
prerequisite for becoming a Vθ type grid-forming nonsynchronous-machine source is that
Udc remains essentially constant when the active power output by the VSC to the AC grid
varies substantially. Moreover, maintaining a constant Udc is the duty of the external circuit
connecting to the DC side of the VSC, not the VSC itself. If the external characteristic of the
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Vθ type grid-forming nonsynchronous-machine source is seen from the PCC of the AC grid,
it is just analogous to the slack bus in the power flow calculation. In other words, it plays
a role in voltage support and power balance in the AC grid. As depicted in Figure 2, the
general structure of the controller of the Vθ type grid-forming nonsynchronous-machine
source is a three-loop controller. The outermost controller loop is the V/f generator, which
determines the reference values of the voltage amplitude U∗sm and frequency f * of the AC
bus voltage us, based on the operating conditions of the DC side of VSC, VSC itself, and
the AC grid. The rest dual-loop controller consists of the typical inner and outer loop
controllers, where the control principles are mature [32–34] and will not be described here.
The inner and outer loop controllers in Figure 2 operate according to U∗sm and the phase
angle reference value θ*; and both the d-axis and q-axis current reference values i∗vd and
i∗vq are subjected to the current limiters to prevent the VSC from overcurrent. Besides, u∗vd
and u∗vq represent the d-axis and q-axis voltage reference values output by the inner loop
current controller, respectively.
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2.1.2. PV Type Grid-Forming Nonsynchronous-Machine Sources

The PV-type grid-forming nonsynchronous-machine source is characterized by main-
taining Usm at U∗sm and adjusting the phase angle θ to maintain Udc at its reference value
U∗dc. The PV-type grid-forming nonsynchronous-machine source corresponds to the pho-
tovoltaic units or wind turbines. The following contents use the photovoltaic unit as an
illustration of the characteristics of the PV-type grid-forming nonsynchronous-machine
source. Assume that the nonsynchronous-machine source shown in Figure 1 is a photo-
voltaic unit. Under the Maximum Power Point Tracking (MPPT) control condition [35], the
reference value U∗dc of Udc is determined by the requirement of the MPPT control; and if
the condition of Udc equaling U∗dc is reached, the phase angle θ is set down, and the output
active power Ps of VSC is equal to the maximum generating power of the photovoltaic
unit. That is, the PV-type grid-forming nonsynchronous-machine source can maintain its
AC bus voltage amplitude at its reference value and set down its AC bus voltage phase
angle θ according to the value of Ps. However, Ps is changing continuously and equaling
the maximum generating power of the photovoltaic unit. Note that the fundamental dif-
ference between the PV-type grid-forming nonsynchronous-machine source and Vθ type
grid-forming nonsynchronous-machine source is whether it can be used as an independent
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support source for the passive power grid. The PV-type grid-forming nonsynchronous-
machine source can only operate when connected to the active power grid. If the external
characteristic of the PV-type grid-forming nonsynchronous-machine source is seen from
the PCC of the AC grid, it is analogous to the PV bus in the power flow calculation. In
other words, it supports voltage and outputting determinate active power in the grid. As
depicted in Figure 3, the general structure of the controller of the PV-type grid-forming
nonsynchronous-machine source is also a three-loop controller. The outermost controller
loop is the V/θ generator, which determines θ* by maintaining Udc at U∗dc, and determines
U∗sm based on the operating conditions of the AC grid. The rest dual-loop controller is the
same as that in Figure 2.
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2.2. Classification and Controller Structure of Grid-Following Nonsynchronous-Machine Sources

According to whether the grid-following nonsynchronous-machine sources are capable of
supporting the AC bus voltage, they can be further subdivided into two types: the PV type grid-
following nonsynchronous-machine source and the PQ type grid-following nonsynchronous-
machine source. The fundamental difference between the grid-following nonsynchronous-
machine sources and the grid-forming nonsynchronous-machine sources is whether the phase-
locked loop (PLL) is adopted to keep synchronization with the grid [36–41]. Therefore, the
grid-following nonsynchronous-machine sources can only operate when connected to the
active power grid.

2.2.1. PV Type Grid-Following Nonsynchronous-Machine Sources

The first type of grid-following nonsynchronous-machine source is referred to as the
PV type grid-following nonsynchronous-machine source, where the grid synchronization
θ is obtained by PLL. The purpose of reactive power control is to maintain Usm at U∗sm,
while the objective of active power control is to maintain Udc and Ps at their respective
reference values U∗dc and P∗s . If the external characteristic of the PV-type grid-following
nonsynchronous-machine source is seen from the PCC of the AC grid, it is analogous
to the PV bus in the power flow calculation. In other words, it plays the role of sup-
porting voltage and outputting determinate active power in the grid. The difference
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between the PV-type grid-following nonsynchronous-machine source and the PV-type
grid-forming nonsynchronous-machine source is only the control strategy, so the same
photovoltaic unit or wind turbine can be constructed as either a PV-type grid-following
nonsynchronous-machine source or a PV type grid-forming nonsynchronous-machine
source. As depicted in Figure 4, the general structure of the controller of the PV-type grid-
following nonsynchronous-machine source is also a three-loop controller. The outermost
controller loop is the P/V generator, which determines P∗s and U∗sm based on the operating
conditions of the DC side of the VSC and the AC grid. The rest dual-loop controller consists
of the typical inner and outer loop controllers, which are very mature and widely accepted.
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2.2.2. PQ Type Grid-Following Nonsynchronous-Machine Sources

The second type of grid-following nonsynchronous-machine source is referred to as the
PQ-type grid-following nonsynchronous-machine source, where the control strategy is the
same as that of the PV-type grid-following nonsynchronous-machine source. The difference
is only in the purpose of the reactive power control. The purpose of the reactive power
control of the PQ-type grid-following nonsynchronous-machine source is to maintain the
VSC output reactive power Qs at its reference value Q∗s . If the external characteristic of
the PQ-type grid-following nonsynchronous-machine source is seen from the PCC of the
AC grid, it is analogous to the PQ bus in the power flow calculation and injects active and
reactive power to the grid. As depicted in Figure 5, the general structure of the controller of
the PQ-type grid-following nonsynchronous-machine source is also a three-loop controller.
The outermost controller loop is the P/Q generator, which determines P∗s and Q∗s based
on the operating conditions of the DC side of VSC and the AC grid. The rest dual-loop
controller is similar to that in Figure 4.
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3. Operating State and External Characteristic Equivalent Circuits of
Nonsynchronous-Machine Sources

For the four types of nonsynchronous-machine sources described in Section 2, if
the three-loop controller shown in Figures 2–5 is used, the outermost loop controller
determines the synchronization signal θ* or the active power reference value (P∗s or U∗dc)
and the reactive power reference value (Q∗s or U∗sm). The actual control objective is then
accomplished by the conventional inner and outer loop controllers, and the final control
block adopts the inner loop current controller with direct current control [32–34]. Because
of the limiters of i∗vd and i∗vq in the inner loop current controller, once the limiter is activated,
the nonsynchronous-machine source enters the current saturation state; and the output
of the inner loop current controller can no longer achieve the outer loop controller’s
predetermined control target. Thus, the external characteristic of the nonsynchronous-
machine source depends on whether the inner loop current controller operates in the
limiter state. Clearly, the voltage amplitude at the PCC is the primary cause for the inner
loop current controller entering the limiter state. Based on the voltage drop range of
the PCC, the operating states of the nonsynchronous-machine sources can be classified
into two types: the normal state and the fault state. Under the normal state, the voltage
of the PCC is close to the rated value, and i∗vd and i∗vq will not exceed the limit values,
allowing the nonsynchronous-machine sources to reach the predetermined control target.
Under the fault state, the voltage drop of the PCC is relatively large, forcing i∗vd and i∗vq
equalling the current limit values. That is, the nonsynchronous-machine source enters
the current saturation state and is unable to attain the predetermined control target. The
following describes the external characteristic equivalent circuits of the aforementioned
four nonsynchronous-machine source types under their normal and fault states.

3.1. External Characteristic Equivalent Circuits of Nonsynchronous-Machine Sources under the
Normal State

Under the normal state, a Vθ type grid-forming nonsynchronous-machine source
can be equivalent to a voltage source with the constant voltage amplitude and frequency
connected to the PCC as viewed from the AC grid.
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Under the normal state, a PV-type grid-forming or grid-following nonsynchronous-
machine source can be equivalent to a voltage source with the constant voltage amplitude
and phase angle connected to the PCC.

Under the normal state, a PQ-type grid-following nonsynchronous-machine source
can be equivalent to a current source with a constant current amplitude and phase angle.

3.2. External Characteristic Equivalent Circuits of Nonsynchronous-Machine Sources under the
Fault State

Under the fault state, i∗vd and i∗vq equal to the current limit values, the nonsynchronous-
machine source enters the current saturation state. Therefore, the nonsynchronous-machine
source can be equivalent to a current source with a constant current amplitude and phase
angle.

4. Definition and Calculation of Voltage Support Strength at Any Point in the Grid
4.1. Relationship between Thevenin Equivalent Impedance and SCR at Any Bus in the Grid

When exploring the voltage support strength of the power grid, the positive-sequence
AC power grid operating at the fundamental frequency is the objective of the investigation.
Then, based on the Thevenin equivalence theorem [42,43], when viewed from any bus SYS
in the grid, the entire grid can be represented by a Thevenin equivalent circuit, as illustrated
in Figure 6. The Thevenin equivalent circuit is composed of the Thevenin equivalent
electromotive force Eth = Eth∠θth and the Thevenin equivalent impedance Zth = Zth∠ϕth
connected in series. (Note that this paper represents the complex number with a line at
the bottom of the variable). When the device is not connected to the grid, Eth equals the
no-load voltage at SYS Usys0 = Usys0∠θsys0. Zth equals the equivalent impedance when all
the independent sources in the fundamental-frequency positive-sequence grid are set to
zero, as seen from SYS to the grid.
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The following discussion assumes that when the device is not connected to the grid,
the magnitude of the no-load voltage at SYS Usys0 is equal to the rated voltage UN.

Thus, according to Figure 6b, the short-circuit capacity Ssc at SYS can be calculated as
follows:

Ssc =
E2

th
Zth

=
U2

sys0

Zth
=

U2
N

Zth
(1)

If the impedance of the connected device is Zdevice = Zdevice∠ϕdevice, the capacity of
the connected device at the rated voltage Sdevice is calculated as (2).

Sdevice =
U2

N
Zdevice

(2)

Then, the short circuit ratio λSCR of bus SYS corresponding to Zdevice is:

λSCR =
Ssc

Sdevice
=

U2
N

Zth
· Zdevice

U2
N

=
Zdevice

Zth
(3)
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Next, we investigate how the device voltage, namely the voltage of bus SYS
Usys = Usys∠θsys, changes after the device is connected to the grid.

According to Figure 6b,

Usys = Zdevice
Zdevice+Zth

Usys0

= λSCR∠(ϕdevice−ϕth)
1+λSCR∠(ϕdevice−ϕth)

Usys0∠θsys0

(4)

According to (4), after the Zdevice is connected to the grid, the magnitude of the device
voltage Usys changes with λSCR, ϕdevice, and ϕth. Considering a typical case, the Thevenin
equivalent impedance of the grid is purely inductive, while the equivalent impedance of
the connected device is purely resistive, namely, ϕth = 90◦ and ϕdevice = 0◦, respectively.
Under such circumstances, the expression of Usys can be simplified to (5).

Usys =
λSCR√

1 + λ2
SCR

Usys0 =
λSCR√

1 + λ2
SCR

UN (5)

Based on (5), if λSCR >> 1, Usys ≈ UN. Otherwise, Usys is always less than UN. The
variation characteristic of Usys with λSCR is shown in Figure 7. When λSCR = 5, Usys = 0.98UN;
when λSCR = 3, Usys = 0.95UN; and when λSCR = 1, Usys = 0.71UN. Consequently, it is
commonly believed that when SCR is larger than 3, then SYS is a strong bus, as the voltage
drop after being loaded is less than 5% of the rated voltage.

Energies 2023, 16, x FOR PEER REVIEW 9 of 24 
 

 

th
sc

th th th

UE U
S

Z Z Z
= = =

22 2
sys0 N  (1) 

If the impedance of the connected device is Zdevice = Zdevice∠φdevice, the capacity of the 
connected device at the rated voltage Sdevice is calculated as (2). 

N
device

device

2U
S

Z
=  (2) 

Then, the short circuit ratio λSCR of bus SYS corresponding to Zdevice is: 

sc N device device
SCR

device th thN

2

2

S U Z Z
S Z ZU

λ = = ⋅ =  (3) 

Next, we investigate how the device voltage, namely the voltage of bus SYS Usys = 
Usys∠θsys, changes after the device is connected to the grid. 

According to Figure 6b, 

device
sys sys

device th

SCR device th
sys sys

SCR device th

0

0 0

( )
      

1 ( )

Z
U U

Z Z

U
λ ϕ ϕ

θ
λ ϕ ϕ

=
+
∠ −

= ∠
+ ∠ −

 (4) 

According to (4), after the Zdevice is connected to the grid, the magnitude of the device 
voltage Usys changes with λSCR, φdevice, and φth. Considering a typical case, the Thevenin 
equivalent impedance of the grid is purely inductive, while the equivalent impedance of 
the connected device is purely resistive, namely, φth = 90° and φdevice = 0°, respectively. 
Under such circumstances, the expression of Usys can be simplified to (5). 

SCR SCR
sys sys N

SCR SCR

02 21 1
U U U

λ λ

λ λ
= =

+ +
 (5) 

Based on (5), if λSCR >> 1, Usys ≈ UN. Otherwise, Usys is always less than UN. The varia-
tion characteristic of Usys with λSCR is shown in Figure 7. When λSCR = 5, Usys = 0.98UN; when 
λSCR = 3, Usys = 0.95UN; and when λSCR = 1, Usys = 0.71UN. Consequently, it is commonly be-
lieved that when SCR is larger than 3, then SYS is a strong bus, as the voltage drop after 
being loaded is less than 5% of the rated voltage. 

0 1 2 3 4 5 6 7 8 9 10
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 λSCR

sys

N

U
U

 
Figure 7. Variation of device voltage with the short-circuit ratio. Figure 7. Variation of device voltage with the short-circuit ratio.

4.2. Definition of Voltage Support Strength of Any Bus in the Grid

Inspired by the concept of infinite power source, the voltage support strength of any
bus in the grid is defined as the ability to maintain the voltage magnitude close to the
no-load voltage. It is described by Usys/Usys0, which is called the voltage stiffness Kvtg.
Then according to (4),

Kvtg =
Usys
Usys0

=
∣∣∣ Zdevice

Zth+Zdevice

∣∣∣
=
∣∣∣ λSCR∠(ϕdevice−ϕth)

1+λSCR∠(ϕdevice−ϕth)

∣∣∣ (6)

Obviously, the range of Kvtg is [0, 1]. When Zth is zero, Kvtg is equal to 1; and when
Zth is infinity, Kvtg equals zero.

Comparing Kvtg to λSCR, Kvtg provides more grid information than λSCR. λSCR reflects
only the magnitude of Zth and Zdevice, but not their phase angles. In addition, the range
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of λSCR is [0, ∞], while the range of Kvtg is [0, 1]. Figure 7 can also be regarded as the
relationship between short circuit ratio and voltage stiffness under a specific condition.

4.3. Definition of Voltage Support Strength of Any Bus in the Grid

According to (6), Kvtg is uniquely determined by Zth and Zdevice. Due to the known
impedance of the connected device Zdevice, the calculation of Kvtg is equivalent to the
calculation of Zth.

The external characteristic equivalent circuit of a nonsynchronous-machine source is
closely related to its operating states, as determined by the analysis in Section 2. Conse-
quently, the calculation of Zth at any bus in the grid is closely related to the operating states
of the nonsynchronous-machine source. Therefore, each nonsynchronous-machine source
must be calculated by the equivalent circuit under the corresponding state.

In accordance with the calculation principle of the Thevenin equivalence impedance
Zth, each independent source in the fundamental-frequency positive-sequence grid is set
to zero. This indicates that a branch represents the voltage source is replaced with a short
circuit to the ground, and the current source is represented by a branch with an open circuit
to the ground. Thus, when calculating Zth, the synchronous generator is represented by
the impedance branch to ground, and the impedance value is typically set to the transient
reactance. However, the branch adopted by the nonsynchronous-machine source depends
on its operating states.

When the nonsynchronous-machine sources are under the normal states, the Vθ type
grid-forming nonsynchronous-machine source, the PV type grid-forming nonsynchronous-
machine source, and the PV type grid-following nonsynchronous-machine source can be
represented by branches with short circuits to the ground at their PCCs. In contrast, the
PQ-type grid-following nonsynchronous-machine source is represented by the branch with
an open circuit to ground at the PCC. When the nonsynchronous-machine sources are
under the fault states, all four types are represented by branches with open circuits to
ground at their PCCs.

During the actual calculation, due to different fault locations, the voltage drop degree
of each bus in the power grid is different. This indicates that for the same fault, the
operating state of the different nonsynchronous-machine sources may be different, with
some under the fault states and others under the normal states. Therefore, Zth changes
with different fault locations in principle. To simplify the analysis, two types of equivalent
impedance are defined for any bus in the grid, which is of great significance. The first is
called the normal-state Thevenin equivalent impedance Zth,nom, and the second is called
the fault-state Thevenin equivalent impedance Zth,flt. Thus, when calculating Zth,nom, it
is assumed that all the nonsynchronous-machine sources are under normal states. When
calculating Zth,flt, it is considered that all the nonsynchronous-machine sources are under
the fault states.

In addition, it must be pointed out that when the grid-forming nonsynchronous-
machine source does not adopt the conventional inner and outer loop controllers as shown
in Figures 2 and 3 but instead adopts the amplitude-phase angle controller without the
current inner loop control [44–46], the equivalent circuit of the nonsynchronous-machine
source under the fault state is roughly equivalent to the internal electromotive force in series
with the total current limiting impedance. The total current limiting impedance is composed
of the connected reactance and the virtual impedance, where the value is determined by
the controller structure of the nonsynchronous-machine source. The objective of current
limiting impedance is to prevent the output current of the nonsynchronous-machine source
from exceeding its overload current level under the fault state, which is typically 1.1 times
the rated current. Under such circumstances, the fault-state equivalent impedance of the
nonsynchronous-machine source is equal to the total current limiting impedance.
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4.4. Examples of Calculation of Voltage Stiffness and Short-Circuit Ratio

For the system with renewable energy and static synchronous compensator (STAT-
COM), as shown in Figure 8 [47], it is assumed that both wind turbines and photovoltaic
units adopt grid-following control. The impedance of the transmission line xLine is 40 Ω,
and its length is 100 km. The leakage reactance of the transformer uk is 10%, its ratio is
220 kV/500 kV, and its capacity is 300 MVA. xT represents the reactance of the transformer.
The transient reactance of the synchronous generator x′d is 10 Ω. The whole output active
power of renewable energy is 200 MW. Next, the voltage stiffness and short-circuit ratios
are calculated in the following when STATCOM is controlled by the constant AC voltage
amplitude control and the constant reactive power control, respectively.
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Figure 8. Schematic diagram of the system with new energy sources and STATCOM.

When the STATCOM adopts the constant AC voltage amplitude control and the
constant active power control, it is a PV-type grid-following nonsynchronous-machine
source. According to the rules stated in Section 3.1, the system’s Thevenin equivalent
circuits are depicted in Figure 9. For the PCC, the wind turbines and the photovoltaic units
are collectively regarded as connected devices. Firstly, the voltage stiffness and short circuit
ratio of the PCC are calculated when the STATCOM is in the normal state. The equivalent
circuit of the STATCOM is a constant voltage source. The independent voltage source is
represented by the branch with a short circuit to the ground when calculating the Thevenin
equivalent impedance. Therefore, as shown in Figure 9a, Zth,nom = xLine when seen from
the PCC to the AC system. Thus, Kvtg at the PCC is 0.858, whereas λSCR at the PCC is 6.05.
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Then, the voltage stiffness and short-circuit ratio of the PCC are calculated when an AC
fault occurs at the 500 kV network, which leads to a large drop in the Esys, and we assume
that the AC fault does not change x′d. At this time, due to the AC voltage drop, the STAT-
COM is under the fault state and operates under the current saturation state. The equivalent
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circuit of the STATCOM is a constant current source. When calculating the Thevenin equiv-
alent impedance, the independent current source is represented by the branch with an open
circuit to the ground. Therefore, as shown in Figure 9b, Zth, flt = xLine + xT + x′d. Therefore,
Kvtg at the PCC is 0.806, whereas λSCR at the PCC is 4.167.

When the STATCOM adopts the constant reactive power control and the constant
active power control, the system’s Thevenin equivalent circuits are depicted in Figure 10.
In both scenarios, the equivalent circuit of the STATCOM is a constant current source.
When calculating the Thevenin equivalent impedance, the independent current source
is represented by the branch with an open circuit to the ground. Therefore, as shown in
Figure 10a,b, Zth,nom = Zth, flt = xLine + xT + x′d. Therefore, Kvtg at the PCC is 0.806, whereas
λSCR at the PCC is 4.167.
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5. New Exploration of Single infeed SCR and Multi-Infeed SCR

The concept of short circuit ratio has been used in the early development stage of
HVDC transmission. In 1992 and 1997, the CIGRE working group on AC/DC interaction
and the IEEE working group on the interaction between DC transmission systems and AC
systems with low SCR jointly published research reports [4–6] and provided a compre-
hensive and in-depth description of SCR, which has led to its widespread recognition and
application in the field of HVDC transmission [48–52].

The concept of single-infeed SCR proposed by CIGRE and IEEE joint Working Group
in 1992 was defined based on the short circuit capacity [4]. When there are only synchronous
generators in the power grid, the SCR defined based on short circuit capacity is completely
consistent with the SCR defined by the Thevenin equivalent impedance, as the short circuit
current of the synchronous generator is entirely determined by its impedance, without any
current limiters. However, the SCR based on the short circuit capacity definition and the
SCR based on the Thevenin equivalent impedance definition is fundamentally different
for the nonsynchronous-machine source. Due to overcurrent limiters, it is useless to
describe SCR with the short circuit capacity for nonsynchronous-machine sources. In other
words, for nonsynchronous-machine sources, the short circuit capacity cannot characterize
the ability of a bus to maintain its loaded voltage close to its no-load voltage. When
nonsynchronous-machine sources exist, it is more appropriate to define the SCR by the
following expression.

λSCR =
Zdevice

Zth
(7)

Due to the uniform treatment of the synchronous generators and the nonsynchronous-
machine sources in this definition, the application of the SCR can be extended to the power
grid where synchronous generators and nonsynchronous-machine sources coexist.

In 2007, the CIGRE multiple DC infeed working group [53,54] introduced the notion
of effective short circuit ratio (ESCR) to describe the voltage support strength of multiple
DC infeed systems. Here we will give a new exploration of the voltage support strength
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of multiple DC infeed AC systems. The following example of the double DC infeed AC
system demonstrates the new exploration.

The investigated double DC infeed AC system is shown in Figure 11a. In accordance
with the Thevenin equivalence concept of the two-port network [55], Figure 11b depicts
the equivalent circuit of the double DC infeed AC system. In Figure 9, the infeed bus of
the double DC lines is represented by i and j, respectively, and Uio and Ujo represent the
voltage phasors (i.e., no-load voltages) when the double DC lines are not connected to
the power grid. Zii, Zjj, and Zij are the equivalent impedances of the two-port Thevenin
equivalent circuit for the fundamental-frequency positive-sequence AC grid. ZDCi and
ZDCj are the equivalent impedances of the double DC lines in their rated operating states.
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Consider the DC line i as an example. Firstly, the Thevenin equivalent electromotive
force Eth and the Thevenin equivalent impedance Zth, seen from bus i to the grid when DC
line j is not connected, are studied. Then the Thevenin equivalent electromotive force Em

th
and the Thevenin equivalent impedance Zm

th are examined when the DC line j is connected
to the grid. The superscript “m” here represents the multiple DC infeed.

In the single DC infeed condition, that is, when the DC line j is not connected, the ZDCj
branch in Figure 9b is an open circuit, and Eth and Zth are calculated as (8).{

Eth = Uio
Zth = Zij + Zii

(8)

In the multiple DC infeed condition, that is, when DC line j is connected, Em
th and Zm

th
are calculated as (9). 

Em
th = Um

io = Uio +
Zij

Zij+Zjj+ZDCj
U jo

Zm
th = Zii +

Zij(Zjj+ZDCj)

Zij+Zjj+ZDCj

(9)

The ratios of the Thevenin equivalent electromotive forces and the Thevenin equivalent
impedances in the two conditions are shown in (10).

Em
th

Eth
=

Um
io

Uio
= 1 +

Zij
Zij+Zjj+ZDCj

· U jo
Uio

Zm
th

Zth
= Zii

Zij+Zii
+

Zij
Zij+Zii

· Zjj+ZDCj
Zij+Zjj+ZDCj

(10)

For the actual power grid parameters and operating states, the Thevenin equivalent
electromotive force changes greatly in the two conditions, while the Thevenin equivalent
impedance changes only slightly. Usually,

Rm
eth =

Em
th

Eth
=

Um
io

Uio
=

∣∣∣∣∣1 + Zij

Zij + Zjj + ZDCj
·

U jo

Uio

∣∣∣∣∣ ≤ 1 (11)
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Rm
zth =

Zm
th

Zth
=

Zii
Zij + Zii

+
Zij

Zij + Zii
·

Zjj + ZDCj

Zij + Zjj + ZDCj
≈ 1 (12)

λm
SCR =

ZDCi
Zm

th
≈ ZDCi

Zth
= λSCR (13)

Km
vtg =

Um
i

Uio
=

1
Uio

∣∣∣∣ Em
th · ZDCi

Zm
th + ZDCi

∣∣∣∣ ≈ Em
th

Uio
·
∣∣∣∣ ZDCi
Zth + ZDCi

∣∣∣∣ = Rm
ethKvtg (14)

in (11)–(14), Rm
eth is the ratio of the Thevenin equivalent electromotive forces seen from

bus i to the AC grid in the multiple DC infeed condition and in the single DC infeed
condition, which is called the multiple DC infeed no-load voltage drop factor. Uio is the
no-load voltage phasor of bus i in the single DC infeed condition and Um

io is the no-load
voltage phasor of bus i in the multiple DC infeed condition. Rm

zth is the ratio of the Thevenin
equivalent impedances seen from bus i to the AC grid in the multiple DC infeed condition
and the single DC infeed condition. λSCR is the SCR of DC line i in the single DC infeed
condition and λm

SCR is the SCR of DC line i in the multiple DC infeed condition. Kvtg is
the voltage stiffness of DC line i in the single DC infeed condition and Km

vtg is the voltage
stiffness of DC line i in the multiple DC infeed condition.

As shown in (13), it is insufficient to use the SCR index to characterize the voltage sup-
port strength in the multiple DC infeed condition because the values of SCR in single and
multiple DC infeed conditions change slightly. However, it is of greater index significance
to use voltage stiffness to characterize the voltage support strength in the multiple DC in-
feed condition because Km

vtg can reflect the change in the Thevenin equivalent electromotive
force in the multiple DC infeed condition and Km

vtg is equal to Kvtg multiplied by Rm
eth in the

multiple DC infeed condition.
It is meaningful to compare Km

vtg with the multiple DC infeed ESCR proposed by the
CIGRE working group [53,54]. It can be found that the multiple DC infeed ESCR cannot
directly reflect the drop in the no-load voltage due to multiple DC infeed and does not
convey the physical substance of the reduction in voltage support strength in the multiple
DC infeed scenario. ESCR, as a voltage support strength index, is difficult to create a unified
numerical criterion in practice.

If the DC infeed shown in Figure 9 is generalized by a PQ-type grid-following
nonsynchronous-machine source, such as a conventional PQ-type grid-following wind
farm or photovoltaic station, the voltage support strength of the AC power grid can also
use Km

vtg as an index.

6. Definition and Calculation Method of Frequency Support Strength in the New Type
Power System

The frequency support strength has two manifestations: the inertia support capabil-
ity and the primary frequency regulation capability. The synchronous generator has both
inertia support capability and primary frequency regulation capability. The inertia of the
synchronous generator is independent of its operating point and is a constant value [1–3].
The primary frequency regulation capability of the synchronous generator is closely related
to its operating point and the droop of its governor. The load possesses a small amount of
inertia support and frequency regulation effect. Different from the synchronous generator, the
inertia support capability and primary frequency regulation capability of the nonsynchronous-
machine source are entirely determined by its control modes and output power margin. The
nonsynchronous-machine source in the early stage is usually controlled by MPPT, and its out-
put power is decoupled from the frequency of the power grid. Under such circumstances, the
nonsynchronous-machine source has no support for the frequency stability of the power grid.
With the increasing proportion of the nonsynchronous-machine source, the control strategy
of the nonsynchronous-machine source must be changed to couple its output power with
the grid frequency so as to have inertia support capability and primary frequency regulation
capability.
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The inertia support and primary frequency regulation capabilities of the power grid
can be characterized by the dynamic response curve after a large disturbance [56,57], as
shown in Figure 12, in which the actual frequency dynamic response curve is represented
by segmented polylines. Line Section 1 represents the inertia response period, while line
Sections 2 and 3 represent the inertia response and primary frequency regulation joint
action period. Line Section 4 represents the primary frequency regulation period. Based
on the frequency dynamic response curve, three parameters are usually used to describe
the inertia support and the primary frequency regulation capability of the power grid. The
first parameter is the initial rate of change of frequency (RoCoF) of a disturbance, namely
the slope of the line Section 1. The second parameter is the highest or lowest frequency,
denoted by f zenith or f nadir, respectively. The third parameter is the steady-state frequency
deviation, denoted by ∆f ∞.
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6.1. Implementation of Inertia and Primary Frequency Regulation of
Nonsynchronous-Machine Sources

For the Vθ type grid-forming nonsynchronous-machine source shown in Figure 2, it
is the support source of the connected grid. Within the range of its current capacity, the
grid frequency is entirely determined by it and is unaffected by various grid disturbances.
Therefore, in the range of its current capacity, the inertia support provided by the Vθ

type grid-forming nonsynchronous-machine source is infinite. However, once it hits the
current limit as a result of the fault, the inertia support and primary frequency regulation
capabilities are no longer available.

For the PV-type grid-forming nonsynchronous-machine source shown in Figure 3,
the inertia support capability is determined by the outermost loop controller, namely the
V/θ generator, which usually adopts power synchronization control [57,58] or virtual
synchronous machine control [59–66]. It has been proved that power synchronization
control and virtual synchronous machine control are essentially consistent [67–69]; hence,
the distinction between the two is ignored in this article. After adopting the power synchro-
nization control, the V/θ generator is implemented in accordance with the Vθ decoupling
mode. The θ generator is the so-called power synchronization loop (PSL) [57,58], which
imitates the swing equation of the synchronous generator. The V generator is usually
implemented by a reactive power-voltage droop controller [34].

The principle of PSL is to mimic the nonsynchronous-machine source as a synchronous
generator, and the output of PSL is the rotor angle θ [34]. The swing equations of a
synchronous generator are:

2H
d∆ω

dt
= Pm − Pe − D∆ω (15)

dθ

dt
= ω ·ω0 (16)
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where H is the inertia time constant of the generator (unit: s), which determines the inertia
support capability of the nonsynchronous-machine source. ∆ω = ω0 − ω is the generator
speed deviation. ω is the actual speed (per unit value), and ω0 is the rated speed (per unit
value). t represents the time, where the unit is s. Pm and Pe are the mechanical power and
electromagnetic power (in per unit value); D is the damping coefficient (in per unit value);
θ is the generator’s electrical rotor angle, where the unit is rad. By substituting the Pm of the
generator for the active power reference value P∗s of the nonsynchronous-machine source
and Pe of the generator for the actual active power, Ps, of the nonsynchronous-machine
source, the control block diagram of PSL is illustrated in Figure 13 [34].
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Figure 13. Power synchronization loop diagram of the PV-type grid-forming nonsynchronous-
machine source.

Notably, the PV-type grid-forming nonsynchronous-machine source achieves its pri-
mary frequency regulation by changing the reference value of the DC voltage U∗dc. It must
have the ability to reduce power for frequency regulation but not necessarily have the
ability to increase power for frequency regulation. For example, the initial value of U∗dc
corresponds to the maximum power output, but the frequency of the grid is too high, so the
active power output must be decreased. Consequently, the primary frequency regulation is
to make the nonsynchronous-machine source run away from the maximum power point
by changing the value of the U∗dc so as to reduce the active output. Conversely, power
increase frequency regulation depends on whether the nonsynchronous-machine source
has sufficient power support.

The V generator usually adopts the reactive power-voltage droop control [34], and its
typical control strategy is shown as (17).

U∗sm = U∗sm0 + kp(Q∗s −Qs) (17)

where U∗sm is the reference value of the output voltage; U∗sm0 is the base voltage; Q∗s is the
reference value of the reactive power; Qs is the actual reactive power. Then, the diagram of
the V generator can be obtained in Figure 14.
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For the PV-type grid-following nonsynchronous-machine source in Figure 4, its inertia
support and primary frequency regulation capabilities are determined by the outermost
loop P/V generator. Still, the premise is that the nonsynchronous-machine source provides
adequate power reserve. The P/V generator is usually implemented in PV decoupling
mode, where the V generator is exactly the same as the V generator of the PV-type grid-
forming nonsynchronous-machine source. When the output power reference value P∗s of
the P generator in the outermost loop in Figure 4 is decoupled from the grid frequency, the
nonsynchronous-machine source lacks inertia support and primary frequency regulation
capabilities. When P∗s is proportional to the derivative of the power grid frequency, the
nonsynchronous-machine source has the inertia support capability. When P∗s is related to
the frequency deviation of the power grid, the nonsynchronous-machine source has the
ability of primary frequency regulation.

When the nonsynchronous-machine source possesses both inertia support and primary
frequency regulation capabilities, the active power reference value generated by the P
generator is typically expressed as (18), where Ps0 is the constant power component; f 0 is
the rated frequency of the power grid; f is the actual frequency of the power grid; Mnon is
the equivalent inertial time constant of the nonsynchronous-machine source; and knon is
the proportional coefficient of the primary frequency regulation of the nonsynchronous-
machine source.

P∗s = Ps0 + Mnon
d f
dt

+ knon( f0 − f ) (18)

For the PQ-type grid-following nonsynchronous-machine source in Figure 5, its inertia
support and primary frequency regulation capabilities are determined by the outermost
loop P/Q generator. Still, the premise is that the nonsynchronous-machine source provides
adequate power reserve. The P/Q generator is usually implemented separately according
to the PQ decoupling method, where the outermost P generator is the same as the PV-
type grid-following nonsynchronous-machine source. When the PQ-type grid-following
nonsynchronous-machine source has both inertia support and primary frequency regulation
capabilities, the active power reference value generated by the P generator is also typically
expressed as (18).

6.2. Definition and Calculation Method of the Inertia Support Strength of
Nonsynchronous-Machine Sources

The direct manifestation of inertia is the RoCoF. Specifically, the initial RoCoF under a
disturbance is exclusively associated with the inertia and the disturbance itself. Thus, the
calculation of inertia can be transformed into the calculation of the initial RoCoF.

For a specific power system, there is a maximum limit for RoCoF [56], such as limiting
the maximum RoCoF to 1 Hz/s, etc. The minimum inertia requirement is usually calculated
from the maximum limit value of the RoCoF and the anticipated maximum active power
disturbance. Different power grids have different standards regarding the maximum
anticipated active power disturbance. For instance, the maximum active power disturbance
specified by the European power grid is the loss of 3000 MW generation power [11], while
the maximum active disturbance specified by the Chinese power grid is generally the
bipolar blocking of a single maximum UHVDC transmission line [70,71].

In this paper, the Equivalent Inertia Lifting Factor (EILF) is utilized to characterize the
inertia support strength of the nonsynchronous-machine source. The derivation process is
as follows. Under the specified maximum active power disturbance, the initial RoCoF of a
node in the grid is (19) [12,16].

d fnode
dt

∣∣∣∣
t=0

= kconst
∆Pmax

Heq
(19)

where kconst is a constant related to the operation state of the system; Pmax is the unbalanced
power under the specified maximum active power disturbance; and Heq is the equivalent
inertial time constant of the system under the investigated operation state.
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For the investigated operation state of the system, we define d fnode
dt

∣∣∣0
t=0

to represent
d fnode

dt

∣∣∣
t=0

when all nonsynchronous-machine sources adopt the controllers without inertial
support abilities. The controllers without inertial support abilities can be realized by setting

H and Mnon to zero in Figure 10 and (18). Then we define d fnode
dt

∣∣∣1
t=0

to represent d fnode
dt

∣∣∣
t=0

when all nonsynchronous-machine sources adopt the controllers with inertial support
abilities. Then, the equivalent inertia lifting value contributed by the nonsynchronous-
machine sources with the inertial support controllers is defined as the Equivalent Inertia
Lifting Factor Hamp, as shown in (20).

Hamp =
H1

eq

H0
eq

=
d f
dt

∣∣∣∣0
t=0

/
d f
dt

∣∣∣∣1
t=0

(20)

In (20), H0
eq represents the equivalent inertia time constant of the whole power system

when all the nonsynchronous-machine sources are controlled without inertial support
abilities. H1

eq represents the equivalent inertia time constant of the whole power system
when all the nonsynchronous-machine sources are controlled with inertial support abilities.
Therefore, Hamp can represent the inertia support strength of the nonsynchronous-machine
sources. According to (20), Hamp is suitable for digital simulation calculations, and the

initial d fnode
dt

∣∣∣
t=0

of a disturbance can be obtained by numerical differentiation. In addition,
the grid nodes for evaluating the inertia support strength should be chosen based on the
actual situation of the grid, and multiple nodes can be chosen simultaneously. Generally,
the power grid regions with an insufficient number of synchronous generators are chosen
because their RoCoFs are usually the largest; that is, their inertia support strength is the
weakest.

6.3. Definition and Calculation Method of the Primary Frequency Regulation Capability of
Nonsynchronous-Machine Sources

The primary frequency regulation capability can be represented by the frequency
deviation factor [2,72]. In the new type of power system, the frequency deviation factor β
can be defined as (21).

β =
1

Rgen
+ Dload + Knon (21)

where Rgen is the equivalent droop of all synchronous generator governors, where the unit
is Hz/MW; Knon is the equivalent frequency regulation coefficient of all nonsynchronous-
machine sources, where the unit is MW/Hz; Dload is the frequency regulation coefficient of
the system active power load, and its unit is MW/Hz. The common unit of β is MW/0.1 Hz.

β represents the relationship between the active power disturbance ∆P and the steady-
state frequency deviation ∆f ∞, as shown in (22).

∆ f∞ =
∆P
β

(22)

Imitating the definition of inertia support strength, the steady-state frequency de-
viation decreasing factor Rdeltf is adopted to describe the primary frequency regulation
capability of the nonsynchronous-machine sources in this paper. Rdeltf is defined as (23).

Rdeltf =
∆ f 1

∞
∆ f 0

∞
=

β0

β1 (23)

where ∆ f 0
∞ and β0 are the steady-state frequency deviation and the frequency deviation

factor when all the nonsynchronous-machine sources are controlled without primary
frequency regulation abilities. ∆ f 1

∞ and β1 are the steady-state frequency deviation and
frequency deviation factors when all the nonsynchronous-machine sources are controlled
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with primary frequency regulation abilities. Therefore, Rdeltf can represent the primary
frequency regulation capabilities of the nonsynchronous-machine sources. According to
(23), Rdeltf can be calculated easily using digital simulation. It is worth noting that the
selected frequency monitoring point impacts both Hamp and Rdeltf because the frequency
of different nodes in the network varies during the transient process.

6.4. Simulation Validation

A modified IEEE 39-mode test system, as represented in Figure 15, is built to as-
sess the efficacy of the suggested frequency support strength indices. The installed ca-
pacity of the synchronous generator sources is 7600 MW, while the installed capacity
of the nonsynchronous-machine sources is 2072 MW. The average inertia of the syn-
chronous generator sources is 4.55, and the rotational reserve rate is 10%. In Figure 15, the
nonsynchronous-machine sources are connected to buses 4, 18, and 21 accordingly.

Energies 2023, 16, x FOR PEER REVIEW 20 of 24 
 

 

Imitating the definition of inertia support strength, the steady-state frequency devi-
ation decreasing factor Rdeltf is adopted to describe the primary frequency regulation ca-
pability of the nonsynchronous-machine sources in this paper. Rdeltf is defined as (23). 

deltf

1 0

0 1

f
R

f
β
β

∞

∞

Δ
= =

Δ
 (23) 

where 
0f∞Δ  and β0 are the steady-state frequency deviation and the frequency deviation 

factor when all the nonsynchronous-machine sources are controlled without primary fre-

quency regulation abilities. 
1f∞Δ  and β1 are the steady-state frequency deviation and fre-

quency deviation factors when all the nonsynchronous-machine sources are controlled 
with primary frequency regulation abilities. Therefore, Rdeltf can represent the primary fre-
quency regulation capabilities of the nonsynchronous-machine sources. According to (23), 
Rdeltf can be calculated easily using digital simulation. It is worth noting that the selected 
frequency monitoring point impacts both Hamp and Rdeltf because the frequency of different 
nodes in the network varies during the transient process. 

6.4. Simulation Validation 
A modified IEEE 39-mode test system, as represented in Figure 15, is built to assess 

the efficacy of the suggested frequency support strength indices. The installed capacity of 
the synchronous generator sources is 7600 MW, while the installed capacity of the non-
synchronous-machine sources is 2072 MW. The average inertia of the synchronous gener-
ator sources is 4.55, and the rotational reserve rate is 10%. In Figure 15, the nonsynchro-
nous-machine sources are connected to buses 4, 18, and 21 accordingly.  

30

39

2

25

37

29

17

26

9

3

38

16

5

4

18

27

28

35

24

36

2221

20

34

2319

3310

11

12

14

15

8

31

13

6

32

7

G10
G8

G1

G9

G6

G7

G4

G5

G3

G2

1

WG1

WG2

WG3

DC1

 
Figure 15. Modified IEEE 39-node test system. 

The following two scenarios are considered to calculate the equivalent inertia lifting 
factor and the steady-state frequency deviation decreasing factor. Firstly, when all the 
nonsynchronous-machine sources adopt the constant active power control and the con-
stant reactive power control, they have no frequency support abilities. The RoCoF and the 
steady-state frequency deviation can be obtained by the simulation. As shown in Figure 

Figure 15. Modified IEEE 39-node test system.

The following two scenarios are considered to calculate the equivalent inertia lifting
factor and the steady-state frequency deviation decreasing factor. Firstly, when all the
nonsynchronous-machine sources adopt the constant active power control and the con-
stant reactive power control, they have no frequency support abilities. The RoCoF and the
steady-state frequency deviation can be obtained by the simulation. As shown in Figure 16,
d fnode

dt

∣∣∣0
t=0

= 0.303 Hz/s, and ∆ f 0
∞ = −0.136 Hz. Then, when all the nonsynchronous-

machine sources adopt the PSL control and the constant reactive power control, they have both
inertia support and primary frequency regulation. Mnon of all the nonsynchronous-machine

sources is set to 6.8, and knon is set to 30. As shown in Figure 16, d fnode
dt

∣∣∣1
t=0

= 0.214 Hz/s, and

∆ f 1
∞ = −0.096 Hz. Therefore, Hamp is 1.416, and Rdeltf is 0.706.
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7. Conclusions

The fundamental characteristic of the new type of power system is that the dominant
sources have shifted from traditional synchronous generators to nonsynchronous-machine
sources. Accordingly, the definitions and calculation methods of power grid strength must
be revised. This paper has investigated these challenges, and the key conclusions are given
below.

(1) Nonsynchronous-machine sources can be categorized into four types at the macro
level: Vθ type grid-forming, PV-type grid-forming, PV-type grid-following, and
PQ-type grid-following.

(2) The external characteristics of nonsynchronous-machine sources are closely related
to their operating states. Once they reach the current saturation state, their control
objectives cannot be realized.

(3) The classical SCR index can be defined by the Thevenin equivalent impedance of the
power grid and the equivalent impedance of the connected device. This definition
is more suitable for describing the effect of nonsynchronous-machine sources on the
voltage support strength.

(4) The voltage stiffness index Kvtg presented in this paper reflects more comprehensive
information than SCR since it considers the respective impedance angles of both
the Thevenin equivalent impedance and the equivalent impedance of the connected
device.

(5) The physical significance of the multiple DC infeed SCR is further clarified by the
multi-port Thevenin equivalent circuit, where the essence is that when multiple nodes
in the grid simultaneously connect loads, the voltage drop on each node is larger than
when a single node connects a load alone.

(6) The inertia support capability of nonsynchronous-machine sources can be described
by the equivalent inertia lifting factor, while the primary frequency regulation ca-
pability of nonsynchronous-machine sources can be described by the steady-state
frequency deviation decreasing factor.
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