IoT-Enabled Campus Prosumer Microgrid Energy Management, Architecture, Storage Technologies, and Simulation Tools: A Comprehensive Study
Abstract
:1. Introduction
2. Methodology
3. Overview of Campus Energy Management
3.1. Objectives of Campus Microgrid Energy Management
3.2. Architecture of Campus Microgrids
3.3. Storage Technologies
4. Energy Management Schemes
4.1. Deterministic Techniques
4.2. Metaheuristic Techniques
4.3. Artificial Intelligence Techniques
5. Tools Used for Energy Management of Campus Microgrids
5.1. MATLAB
5.2. Simulink
5.3. LabVIEW
5.4. HOMER
5.5. PVSyst
5.6. CPLEX
6. IoT Enabled Cyber-Secured Microgrid
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pau, G.; Collotta, M.; Ruano, A.; Qin, J. Smart Home Energy Management. Energies 2017, 10, 382. [Google Scholar] [CrossRef]
- Salvatore, D. Growth and Trade in the United States and the World Economy: Overview. J. Policy Model. 2020, 42, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Petroleum, B. BP Statistical Review of World Energy 2017. Stat. Rev. World Energy 2019, 2019, 65. [Google Scholar]
- Zheng, S.; Shahzad, M.; Asif, H.M.; Gao, J.; Muqeet, H.A. Advanced Optimizer for Maximum Power Point Tracking of Photovoltaic Systems in Smart Grid: A Roadmap Towards Clean Energy Technologies. Renew. Energy 2023. [Google Scholar] [CrossRef]
- Lior, N. Energy Resources and Use: The Present Situation and Possible Paths to the Future. Energy 2008, 33, 842–857. [Google Scholar] [CrossRef]
- Berger, L.T.; Iniewski, K. Smart Grid Applications, Communications, and Security; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 1-118-00439-6. [Google Scholar]
- Göransson, M.; Larsson, N.; Steen, D. Cost-benefit analysis of battery storage investment for microgrid of chalmers university campus using μ-OPF framework. In Proceedings of the 2017 IEEE Manchester PowerTech, Manchester, UK, 18–22 June 2017; IEEE: New York, NY, USA, 2017; pp. 1–6. [Google Scholar]
- Iqbal, M.M.; Waseem, M.; Manan, A.; Liaqat, R.; Muqeet, A.; Wasaya, A. IoT-Enabled Smart Home Energy Management Strategy for DR Actions in Smart Grid Paradigm. In Proceedings of the 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), Islamabad, Pakistan, 12–16 January 2021; pp. 352–357. [Google Scholar] [CrossRef]
- Mazzola, S.; Astolfi, M.; Macchi, E. A Detailed Model for the Optimal Management of a Multigood Microgrid. Appl. Energy 2015, 154, 862–873. [Google Scholar] [CrossRef]
- Raza, A.; Malik, T.N. Energy Management in Commercial Building Microgrids. J. Renew. Sustain. Energy 2019, 11, 015502. [Google Scholar] [CrossRef]
- Muqeet, H.A.; Liaqat, R.; Jamil, M.; Khan, A.A. A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment. Energies 2023, 16, 472. [Google Scholar] [CrossRef]
- Muzzammel, R.; Arshad, R. Comprehensive Analysis and Design of Furnace Oil-Based Power Station Using ETAP. Int. J. Appl. 2022, 11, 33–51. [Google Scholar] [CrossRef]
- García Vera, Y.E.; Dufo-López, R.; Bernal-Agustín, J.L. Energy Management in Microgrids with Renewable Energy Sources: A Literature Review. Appl. Sci. 2019, 9, 3854. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Yang, C.; Deng, K.; Zhou, N.; Wu, H. Multi-Objective Optimization of the Hybrid Wind/Solar/Fuel Cell Distributed Generation System Using Hammersley Sequence Sampling. Int. J. Hydrogen Energy 2017, 42, 7836–7846. [Google Scholar] [CrossRef]
- Machamint, V.; Oureilidis, K.; Venizelou, V.; Efthymiou, V.; Georghiou, G.E. Optimal energy storage sizing of a microgrid under different pricing schemes. In Proceedings of the 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018), Doha, Qatar, 10–12 April 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Muqeet, H.A.U.; Ahmad, A. Optimal Scheduling for Campus Prosumer Microgrid Considering Price Based Demand Response. IEEE Access 2020, 8, 71378–71394. [Google Scholar] [CrossRef]
- Hadjidemetriou, L.; Zacharia, L.; Kyriakides, E.; Azzopardi, B.; Azzopardi, S.; Mikalauskiene, R.; Al-Agtash, S.; Al-Hashem, M.; Tsolakis, A.; Ioannidis, D. Design factors for developing a university campus microgrid. In Proceedings of the 2018 IEEE International Energy Conference (ENERGYCON), Limassol, Cyprus, 3–7 June 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Al-Turjman, F.; Abujubbeh, M. IoT-Enabled Smart Grid via SM: An Overview. Future Gener. Comput. Syst. 2019, 96, 579–590. [Google Scholar] [CrossRef]
- Gunduz, M.Z.; Das, R. Cyber-Security on Smart Grid: Threats and Potential Solutions. Comput. Netw. 2020, 169, 107094. [Google Scholar] [CrossRef]
- Muqeet, H.A.; Munir, H.M.; Javed, H.; Shahzad, M.; Jamil, M.; Guerrero, J.M. An Energy Management System of Campus Microgrids: State-of-the-Art and Future Challenges. Energies 2021, 14, 6525. [Google Scholar] [CrossRef]
- Hipwell, S. Developing smart campuses—A working model. In Proceedings of the 2014 International Conference on Intelligent Green Building and Smart Grid (IGBSG), Taipei, Taiwan, 23–25 April 2014; IEEE: New York, NY, USA, 2014; pp. 1–6. [Google Scholar]
- Mitchell Finnigan, S.; Clear, A.K.; Olivier, P. SpaceBot: Towards Participatory Evaluation of Smart Buildings. In Proceedings of the Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; pp. 1–6. [Google Scholar]
- Jung, J.; Villaran, M. Optimal Planning and Design of Hybrid Renewable Energy Systems for Microgrids. Renew. Sustain. Energy Rev. 2017, 75, 180–191. [Google Scholar] [CrossRef]
- Solanki, Z.; Wani, U.; Patel, J. Demand side management program for balancing load curve for CGPIT college, bardoli. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 1–2 August 2017; IEEE: New York, NY, USA, 2017; pp. 769–774. [Google Scholar]
- Mantovani, G.; Costanzo, G.T.; Marinelli, M.; Ferrarini, L. Experimental Validation of Energy Resources Integration in Microgrids via Distributed Predictive Control. IEEE Trans. Energy Convers. 2014, 29, 1018–1025. [Google Scholar] [CrossRef]
- Tellez, S.; Alvarez, D.; Montano, W.; Vargas, C.; Cespedes, R.; Parra, E.; Rosero, J. National laboratory of smart grids (LAB+ i) at the National University of Colombia-Bogota Campus. In Proceedings of the 2014 IEEE PES Transmission & Distribution Conference and Exposition-Latin America (PES T&D-LA), Medellin, Colombia, 10–13 September 2014; IEEE: New York, NY, USA, 2014; pp. 1–6. [Google Scholar]
- Xu, P.; Jin, Z.; Zhao, Y.; Wang, X.; Sun, H. Design and Operation Experience of Zero-Carbon Campus. EDP Sci. 2018, 48, 03004. [Google Scholar] [CrossRef]
- Tatro, R.; Vadhva, S.; Kaur, P.; Shahpatel, N.; Dixon, J.; Alzanoon, K. Building to Grid (B2G) at the California smart grid center. In Proceedings of the 2010 IEEE International Conference on Information Reuse & Integration, Las Vegas, NV, USA, 4–6 August 2010; IEEE: New York, NY, USA, 2010; pp. 382–387. [Google Scholar]
- Savić, N.S.; Katić, V.A.; Katić, N.A.; Dumnić, B.; Milićević, D.; Čorba, Z. Techno-Economic and environmental analysis of a microgrid concept in the University Campus. In Proceedings of the 2018 International Symposium on Industrial Electronics (INDEL), Banja Luka, Bosnia and Herzegovina, 1–3 November 2018; pp. 1–6. [Google Scholar]
- Bracco, S.; Delfino, F.; Laiolo, P.; Rossi, M. The smart city energy infrastructures at the savona campus of the university of genoa. In Proceedings of the 2016 AEIT International Annual Conference (AEIT), Capri, Italy, 5–7 October 2016; pp. 1–6. [Google Scholar]
- Kristiawan, R.B.; Widiastuti, I.; Suharno, S. Technical and Economical Feasibility Analysis of Photovoltaic Power Installation on a University Campus in Indonesia. MATEC Web Conf. 2018, 197, 08012. [Google Scholar] [CrossRef]
- Morales González, R.; van Goch, T.A.J.; Aslam, M.F.; Blanch, A.; Ribeiro, P.F. Microgrid design considerations for a smart-energy university campus. In Proceedings of the IEEE PES Innovative Smart Grid Technologies, Europe, Istanbul, Turkey, 12–15 October 2014; pp. 1–6. [Google Scholar]
- Bertolotti, V.; Procopio, R.; Rosini, A.; Bracco, S.; Delfino, F.; Soh, C.B.; Cao, S.; Wei, F. Energy management system for pulau ubin islanded microgrid test-bed in Singapore. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe), Madrid, Spain, 9–12 June 2020; pp. 1–6. [Google Scholar]
- Ibrahim, M.; Alkhraibat, A. Resiliency Assessment of Microgrid Systems. Appl. Sci. 2020, 10, 1824. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Gu, C.; Li, F. Flexible Operation of Shared Energy Storage at Households to Facilitate PV Penetration. Renew. Energy 2018, 116, 438–446. [Google Scholar] [CrossRef]
- Morin, D.; Stevenin, Y.; Grolleau, C.; Brault, P. Evaluation of Performance Improvement by Model Predictive Control in a Renewable Energy System with Hydrogen Storage. Int. J. Hydrogen Energy 2018, 43, 21017–21029. [Google Scholar] [CrossRef]
- Huang, W.; Fu, Z.; Hua, L. Research on optimal capacity configuration for distributed generation of island micro-grid with wind/solar/battery/diesel engine. In Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 20–22 October 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Eseye, A.T.; Zheng, D.; Zhang, J.; Wei, D. Optimal Energy Management Strategy for an Isolated Industrial Microgrid Using a Modified Particle Swarm Optimization. In Proceedings of the 2016 IEEE International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 21–23 October 2016; pp. 494–498. [Google Scholar]
- Madiba, T.; Bansal, R.; Justo, J.; Kusakana, K. Optimal control system of under frequency load shedding in microgrid system with renewable energy resources. In Smart Energy Grid Design for Island Countries; Springer: Berlin/Heidelberg, Germany, 2017; pp. 71–96. [Google Scholar]
- Alvarez, S.R.; Ruiz, A.M.; Oviedo, J.E. Optimal design of a diesel-PV-wind system with batteries and hydro pumped storage in a Colombian community. In Proceedings of the 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, USA, 5–8 November 2017; IEEE: New York, NY, USA, 2017; pp. 234–239. [Google Scholar]
- An, L.N.; Dung, T.T.M.; Quoc-Tuan, T. Optimal energy management for an on-grid microgrid by using branch and bound method. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15 June 2018; IEEE: New York, NY, USA, 2018; pp. 1–5. [Google Scholar]
- Wang, H.; Huang, J. Joint Investment and Operation of Microgrid. IEEE Trans. Smart Grid 2015, 8, 833–845. [Google Scholar] [CrossRef]
- Devi, V.K.; Premkumar, K.; Beevi, A.B. Energy Management Using Battery Intervention Power Supply Integrated with Single Phase Solar Roof Top Installations. Energy 2018, 163, 229–244. [Google Scholar] [CrossRef]
- Ramli, M.A.; Bouchekara, H.; Alghamdi, A.S. Optimal Sizing of PV/Wind/Diesel Hybrid Microgrid System Using Multi-Objective Self-Adaptive Differential Evolution Algorithm. Renew. Energy 2018, 121, 400–411. [Google Scholar] [CrossRef]
- Tayab, U.B.; Yang, F.; El-Hendawi, M.; Lu, J. Energy Management system for a grid-connected microgrid with photovoltaic and battery energy storage system. In Proceedings of the 2018 Australian & New Zealand Control Conference (ANZCC), Melbourne, VIC, Australia, 7–8 December 2018; IEEE: New York, NY, USA, 2018; pp. 141–144. [Google Scholar]
- Solorzano del Moral, J.; Egido, M.Á. Simulation of AC, DC, and AC-DC Coupled mini-grids. In search of the most efficient system. In Proceedings of the 6th European Conference on PV hybrids an Mini Grids, Chambery, France, 25–27 April 2012. [Google Scholar]
- Abd ul Muqeet, H.; Munir, H.M.; Ahmad, A.; Sajjad, I.A.; Jiang, G.-J.; Chen, H.-X. Optimal Operation of the Campus Microgrid Considering the Resource Uncertainty and Demand Response Schemes. Math. Probl. Eng. 2021, 2021, 5569701. [Google Scholar] [CrossRef]
- Ibrahim, H.; Belmokhtar, K.; Ghandour, M. Investigation of Usage of Compressed Air Energy Storage for Power Generation System Improving-Application in a Microgrid Integrating Wind Energy. Energy Procedia 2015, 73, 305–316. [Google Scholar] [CrossRef]
- Jing, W.; Lai, C.H.; Wong, W.S.H.; Wong, M.L.D. Dynamic Power Allocation of Battery-Supercapacitor Hybrid Energy Storage for Standalone PV Microgrid Applications. Sustain. Energy Technol. Assess. 2017, 22, 55–64. [Google Scholar] [CrossRef]
- Arani, A.K.; Karami, H.; Gharehpetian, G.; Hejazi, M. Review of Flywheel Energy Storage Systems Structures and Applications in Power Systems and Microgrids. Renew. Sustain. Energy Rev. 2017, 69, 9–18. [Google Scholar] [CrossRef]
- Konstantinopoulos, S.A.; Anastasiadis, A.G.; Vokas, G.A.; Kondylis, G.P.; Polyzakis, A. Optimal Management of Hydrogen Storage in Stochastic Smart Microgrid Operation. Int. J. Hydrogen Energy 2018, 43, 490–499. [Google Scholar] [CrossRef]
- Alsaidan, I.; Khodaei, A.; Gao, W. A Comprehensive Battery Energy Storage Optimal Sizing Model for Microgrid Applications. IEEE Trans. Power Syst. 2017, 33, 3968–3980. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Y.; Zhuo, R.; Jia, H. Energy Storage Capacity Optimization for Autonomy Microgrid Considering CHP and EV Scheduling. Appl. Energy 2018, 210, 1113–1125. [Google Scholar] [CrossRef]
- Ali, A.; Shakoor, R.; Raheem, A.; Awais, Q.; Khan, A.A.; Jamil, M. Latest Energy Storage Trends in Multi-Energy Standalone Electric Vehicle Charging Stations: A Comprehensive Study. Energies 2022, 15, 4727. [Google Scholar] [CrossRef]
- Chedid, R.; Sawwas, A.; Fares, D. Optimal Design of a University Campus Micro-Grid Operating under Unreliable Grid Considering PV and Battery Storage. Energy 2020, 200, 117510. [Google Scholar] [CrossRef]
- Khan, M.R.B.; Pasupuleti, J.; Al-Fattah, J.; Tahmasebi, M. Optimal Grid-Connected PV System for a Campus Microgrid. Indones. J. Electr. Eng. Comput. Sci. 2018, 12, 899–906. [Google Scholar]
- Garcia, Y.V.; Garzon, O.; Andrade, F.; Irizarry, A.; Rodriguez-Martinez, O.F. Methodology to Implement a Microgrid in a University Campus. Appl. Sci. 2022, 12, 4563. [Google Scholar] [CrossRef]
- Leskarac, D.; Moghimi, M.; Liu, J.; Water, W.; Lu, J.; Stegen, S. Hybrid AC/DC Microgrid Testing Facility for Energy Management in Commercial Buildings. Energy Build. 2018, 174, 563–578. [Google Scholar] [CrossRef]
- Kumar, K.P.; Saravanan, B. Real Time Optimal Scheduling of Generation and Storage Sources in Intermittent Microgrid to Reduce Grid Dependency. Indian J. Sci. Technol. 2016, 9, 1–4. [Google Scholar]
- Dagdougui, H.; Dessaint, L.; Gagnon, G.; Al-Haddad, K. Modeling and optimal operation of a university campus microgrid. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 June 2016; IEEE: New York, NY, USA, 2016; pp. 1–5. [Google Scholar]
- Wai, R.-J. Systematic Design of Energy-Saving Action Plans for Taiwan Campus by Considering Economic Benefits and Actual Demands. Energies 2022, 15, 6530. [Google Scholar] [CrossRef]
- Gao, H.-C.; Choi, J.-H.; Yun, S.-Y.; Lee, H.-J.; Ahn, S.-J. Optimal Scheduling and Real-Time Control Schemes of Battery Energy Storage System for Microgrids Considering Contract Demand and Forecast Uncertainty. Energies 2018, 11, 1371. [Google Scholar] [CrossRef]
- Panda, S.; Yegireddy, N.K. Multi-Input Single Output SSSC Based Damping Controller Design by a Hybrid Improved Differential Evolution-Pattern Search Approach. ISA Trans. 2015, 58, 173–185. [Google Scholar] [CrossRef]
- Husein, M.; Chung, I.-Y. Day-Ahead Solar Irradiance Forecasting for Microgrids Using a Long Short-Term Memory Recurrent Neural Network: A Deep Learning Approach. Energies 2019, 12, 1856. [Google Scholar] [CrossRef] [Green Version]
- Bin, L.; Shahzad, M.; Javed, H.; Muqeet, H.A.; Akhter, M.N.; Liaqat, R.; Hussain, M.M. Scheduling and Sizing of Campus Microgrid Considering Demand Response and Economic Analysis. Sensors 2022, 22, 6150. [Google Scholar] [CrossRef] [PubMed]
- Yoldas, Y.; Goren, S.; Onen, A.; Ustun, T.S. Dynamic Rolling Horizon Control Approach for a University Campus. Energy Rep. 2022, 8, 1154–1162. [Google Scholar] [CrossRef]
- Muqeet, H.A.; Ahmad, A.; Sajjad, I.A.; Liaqat, R.; Raza, A.; Iqbal, M.M. Benefits of distributed energy and storage system in prosumer based electricity market. In Proceedings of the 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I CPS Europe), Genova, Italy, 11–14 June 2019; pp. 1–6. [Google Scholar]
- Akindeji, K.T.; Tiako, R.; Davidson, I. Optimization of University Campus Microgrid for Cost Reduction: A Case Study. Trans. Tech. Publ. 2022, 45, 77–96. [Google Scholar] [CrossRef]
- Esmaeili, S.; Anvari-Moghaddam, A.; Jadid, S. Optimal Operation Scheduling of a Microgrid Incorporating Battery Swapping Stations. IEEE Trans. Power Syst. 2019, 34, 5063–5072. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Abdel-Fatah, L.; Sangaiah, A. Chapter 10-Metaheuristic algorithms: A comprehensive review. In Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Güven, A.F.; Yörükeren, N.; Samy, M.M. Design Optimization of a Stand-Alone Green Energy System of University Campus Based on Jaya-Harmony Search and Ant Colony Optimization Algorithms Approaches. Energy 2022, 253, 124089. [Google Scholar] [CrossRef]
- Suresh, M.; Meenakumari, R. Optimum Utilization of Grid Connected Hybrid Renewable Energy Sources Using Hybrid Algorithm. Trans. Inst. Meas. Control 2021, 43, 21–33. [Google Scholar] [CrossRef]
- Twaha, S.; Ramli, M.A. A Review of Optimization Approaches for Hybrid Distributed Energy Generation Systems: Off-Grid and Grid-Connected Systems. Sustain. Cities Soc. 2018, 41, 320–331. [Google Scholar] [CrossRef]
- Ali, A.F.; Tawhid, M.A. A Hybrid Particle Swarm Optimization and Genetic Algorithm with Population Partitioning for Large Scale Optimization Problems. Ain Shams Eng. J. 2017, 8, 191–206. [Google Scholar] [CrossRef]
- Almas Prakasa, M.; Subiyanto, S. Optimal Cost and Feasible Design for Grid-Connected Microgrid on Campus Area Using the Robust-Intelligence Method. Clean Energy 2022, 6, 823–840. [Google Scholar] [CrossRef]
- Gbadamosi, S.L.; Nwulu, N.I. Optimal Microgrid Sizing Incorporating Machine Learning Forecasting. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Toronto, ON, Canada, 23–25 October 2019; pp. 1637–1642. [Google Scholar]
- Zaneti, L.A.; Arias, N.B.; de Almeida, M.C.; Rider, M.J. Sustainable Charging Schedule of Electric Buses in a University Campus: A Rolling Horizon Approach. Renew. Sustain. Energy Rev. 2022, 161, 112276. [Google Scholar] [CrossRef]
- Breviglieri, P.; Erdem, T.; Eken, S. Predicting Smart Grid Stability with Optimized Deep Models. SN Comput. Sci. 2021, 2, 1–12. [Google Scholar] [CrossRef]
- Erdem, T.; Eken, S. Layer-Wise Relevance Propagation for Smart-Grid Stability Prediction; Springer: Berlin/Heidelberg, Germany, 2022; pp. 315–328. [Google Scholar]
- Jozi, A.; Pinto, T.; Praça, I.; Vale, Z.; Soares, J. Day Ahead Electricity Consumption Forecasting with MOGUL Learning Model. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Arzani, A.; Boshoff, S.; Arunagirinathan, P.; Enslin, J.H. System design, economic analysis and operation strategy of a campus microgrid. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; IEEE: New York, NY, USA, 2018; pp. 1–7. [Google Scholar]
- Uddin, M.; Romlie, M.; Abdullah, M.; Hassan, K.M.; Tan, C.; Bakar, A. Modeling of campus microgrid for off-grid application. In Proceedings of the 5th IET International Conference on Clean Energy and Technology (CEAT2018), Kuala Lumpur, Malaysia, 5–6 September 2018; pp. 1–5. [Google Scholar]
- Lghoul, R.; Abid, M.R.; Khallaayoun, A.; Bourhnane, S.; Zine-Dine, K.; Elkamoun, N.; Khaidar, M.; Bakhouya, M.; Benhaddou, D. Towards a real-world university campus micro-grid. In Proceedings of the 2018 International Conference on Smart Energy Systems and Technologies (SEST), Seville, Spain, 10–12 September 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Moura, P.; Correia, A.; Delgado, J.; Fonseca, P.; de Almeida, A. University Campus microgrid for supporting sustainable energy systems operation. In Proceedings of the 2020 IEEE/IAS 56th Industrial and Commercial Power Systems Technical Conference (I&CPS), Las Vegas, NV, USA, 29 June–29 July 2008; IEEE: New York, NY, USA, 2020; pp. 1–7. [Google Scholar]
- Zhang, G.; Xiao, C.; Razmjooy, N. Optimal Operational Strategy of Hybrid PV/Wind Renewable Energy System Using Homer: A Case Study. Int. J. Ambient Energy 2022, 43, 3953–3966. [Google Scholar] [CrossRef]
- Sarwar, M.; Warsi, N.A.; Siddiqui, A.S.; Kirmani, S. Optimal Selection of Renewable Energy–Based Microgrid for Sustainable Energy Supply. Int. J. Energy Res. 2022, 46, 5828–5846. [Google Scholar] [CrossRef]
- Ajiboye, A.A.; Popoola, S.I.; Adewuyi, O.B.; Atayero, A.A.; Adebisi, B. Data-Driven Optimal Planning for Hybrid Renewable Energy System Management in Smart Campus: A Case Study. Sustain. Energy Technol. Assess. 2022, 52, 102189. [Google Scholar] [CrossRef]
- Praveen, T.; Nishanthy, J. optimization of solar energy system for charging of ev at an institution campus. In Proceedings of the 2022 International Virtual Conference on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy Sector for Sustainable Future (PECCON), Chennai, India, 5–6 May 2022; IEEE: New York, NY, USA, 2022; pp. 1–5. [Google Scholar]
- Iqbal, S.; Jan, M.U.; Rehman, A.U.; Shafiq, A.; Rehman, H.U.; Aurangzeb, M. Feasibility Study and Deployment of Solar Photovoltaic System to Enhance Energy Economics of King Abdullah Campus, University of Azad Jammu and Kashmir Muzaffarabad, AJK Pakistan. IEEE Access 2022, 10, 5440–5455. [Google Scholar] [CrossRef]
- Riayatsyah, T.; Geumpana, T.; Fattah, I.R.; Rizal, S.; Mahlia, T.I. Techno-Economic Analysis and Optimisation of Campus Grid-Connected Hybrid Renewable Energy System Using HOMER Grid. Sustainability 2022, 14, 7735. [Google Scholar] [CrossRef]
- Ogbikaya, S.; Iqbal, M.T. Design and Sizing of a Microgrid System for a University Community in Nigeria. In Proceedings of the 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 26–29 January 2022; IEEE: New York, NY, USA, 2022; pp. 1049–1054. [Google Scholar]
- Salmi, M.; Baci, A.B.; Inc, M.; Menni, Y.; Lorenzini, G.; Al-Douri, Y. Desing and Simulation of an Autonomous 12.6 KW Solar Plant in the Algeria’s M’sila Region Using PVsyst Software. Optik 2022, 262, 169294. [Google Scholar] [CrossRef]
- Mohamed, N.; Sulaiman, S.; Rahim, S. Design of Ground-Mounted Grid-Connected Photovoltaic System with Bifacial Modules Using PVsyst Software. J. Phys. Conf. Ser. 2022, 2312, 012058. [Google Scholar] [CrossRef]
- Gálvez, D.M.; Kerdan, I.G.; Carmona-Paredes, G. Assessing the Potential of Implementing a Solar-Based Distributed Energy System for a University Using the Campus Bus Stops. Energies 2022, 15, 3660. [Google Scholar] [CrossRef]
- Duarte, R.V.; Lata-García, J. Optimization of the Economic Dispatch of a Hybrid Renewable Energy System Using CPLEX. In Communication, Smart Technologies and Innovation for Society; Springer: Berlin/Heidelberg, Germany, 2022; pp. 623–633. [Google Scholar]
- Li, J.; Zhao, H. Construction of an Optimal Scheduling Method for Campus Energy Systems Based on Deep Learning Models. Math. Probl. Eng. 2022, 2022, 5350786. [Google Scholar] [CrossRef]
- Recioui, A.; Benaissa, N.; Dekhandji, F.Z. Hybrid Renewable Energy System Optimization Using IHOGA. Alger. J. Signals Syst. 2022, 7, 99–108. [Google Scholar] [CrossRef]
- Gul, E.; Baldinelli, G.; Bartocci, P.; Bianchi, F.; Domenghini, P.; Cotana, F.; Wang, J. A Techno-Economic Analysis of a Solar PV and DC Battery Storage System for a Community Energy Sharing. Energy 2022, 244, 123191. [Google Scholar] [CrossRef]
- Pradhan, J.D.; Hadpe, S.S.; Shriwastava, R.G. Analysis and Design of Overcurrent Protection for Grid-Connected Microgrid with PV Generation. Glob. Transit. Proc. 2022, 3, 349–358. [Google Scholar] [CrossRef]
- Dashtdar, M.; Bajaj, M.; Hosseinimoghadam, S.M.S. Design of Optimal Energy Management System in a Residential Microgrid Based on Smart Control. Smart Sci. 2022, 10, 25–39. [Google Scholar] [CrossRef]
- Kim, J.; Oh, H.; Choi, J.K. Learning Based Cost Optimal Energy Management Model for Campus Microgrid Systems. Appl. Energy 2022, 311, 118630. [Google Scholar] [CrossRef]
- Elenkova, M.; Papadopoulos, T.; Psarra, A.; Chatzimichail, A. A Simulation platform for smart microgrids in university campuses. In Proceedings of the 2017 52nd international Universities Power Engineering Conference (UPEC), Heraklion, Greece, 28–31 August 2017; IEEE: New York, NY, USA, 2017; pp. 1–6. [Google Scholar]
- Muqeet, H.A.; Javed, H.; Akhter, M.N.; Shahzad, M.; Munir, H.M.; Nadeem, M.U.; Bukhari, S.S.H.; Huba, M. Sustainable Solutions for Advanced Energy Management System of Campus Microgrids: Model Opportunities and Future Challenges. Sensors 2022, 22, 2345. [Google Scholar] [CrossRef]
- Kourgiozou, V.; Commin, A.; Dowson, M.; Rovas, D.; Mumovic, D. Scalable Pathways to Net Zero Carbon in the UK Higher Education Sector: A Systematic Review of Smart Energy Systems in University Campuses. Renew. Sustain. Energy Rev. 2021, 147, 111234. [Google Scholar] [CrossRef]
- Talei, H.; Essaaidi, M.; Benhaddou, D. Smart Campus Energy Management System: Advantages, Architectures, and the Impact of Using Cloud Computing. In Proceedings of the 2017 International Conference on Smart Digital Environment, Rabat, Morocco, 21–23 July 2017; pp. 1–7. [Google Scholar]
- Hussain, A.; Bui, V.-H.; Kim, H.-M. A Resilient and Privacy-Preserving Energy Management Strategy for Networked Microgrids. IEEE Trans. Smart Grid 2016, 9, 2127–2139. [Google Scholar] [CrossRef]
- Handschin, E.; Petroianu, A. Energy Management Systems: Operation and Control of Electric Energy Transmission Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 3-642-84041-8. [Google Scholar]
- Sexauer, J.M.; McBee, K.D.; Bloch, K.A. Applications of Probability Model to Analyze the Effects of Electric Vehicle Chargers on Distribution Transformers. IEEE Trans. Power Syst. 2012, 28, 847–854. [Google Scholar] [CrossRef]
- Lunz, B.; Yan, Z.; Gerschler, J.B.; Sauer, D.U. Influence of Plug-in Hybrid Electric Vehicle Charging Strategies on Charging and Battery Degradation Costs. Energy Policy 2012, 46, 511–519. [Google Scholar] [CrossRef]
- Mahmood, A.; Amjad, M.; Malik, M.; Ali, A.; Muhammad, A. Reactive Power Control of A 220kv Transmission Line Using PWM Based Statcom with Real Time Data Implementation. Univ. Eng. Technol. Taxila Tech. J. 2016, 21, 43. [Google Scholar]
- Ali, A.; Amjad, M.; Mehmood, A.; Asim, U.; Abid, A. Cost Effective Power Generation Using Renewable Energy Based Hybrid System for Chakwal, Pakistan. Sci. Int. 2015, 27, 6017–6022. [Google Scholar]
- Lazaroiu, G.C.; Dumbrava, V.; Costoiu, M.; Teliceanu, M.; Roscia, M. Smart campus-an energy integrated approach. In Proceedings of the 2015 International Conference on Renewable Energy Research and Applications (ICRERA), Palermo, Italy, 22–25 November 2015; IEEE: New York, NY, USA, 2015; pp. 1497–1501. [Google Scholar]
- Xie, Y.; Lin, S.; Liang, W.; Yang, Y.; Liu, M. An Interval Probabilistic Energy Flow Calculation Method for CCHP Campus Microgrids. IEEE Syst. J. 2022, 16, 6219–6230. [Google Scholar] [CrossRef]
- Campus Microgrid Project by LSIS at SNU—News—Newsroom—SNU NOW. Available online: https://en.snu.ac.kr/snunow/snu_media/news?md=v&bbsidx=126250 (accessed on 1 September 2022).
- Kavousi-Fard, A.; Abunasri, A.; Zare, A.; Hoseinzadeh, R. Impact of Plug-in Hybrid Electric Vehicles Charging Demand on the Optimal Energy Management of Renewable Micro-Grids. Energy 2014, 78, 904–915. [Google Scholar] [CrossRef]
- Ovalle, A.; Hably, A.; Bacha, S.; Ahmed, M. Voltage Support by optimal integration of plug-in hybrid electric vehicles to a residential grid. In Proceedings of the IECON 2014—40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, 29 October–1 November 2014; IEEE: New York, NY, USA, 2014; pp. 4430–4436. [Google Scholar]
- Aram, A. Microgrid Market in the USA. Glob. Innov. Rep. 2017, 2017, 2630. [Google Scholar]
- Dehkordi, N.M.; Baghaee, H.R.; Sadati, N.; Guerrero, J.M. Distributed Noise-Resilient Secondary Voltage and Frequency Control for Islanded Microgrids. IEEE Trans. Smart Grid 2018, 10, 3780–3790. [Google Scholar] [CrossRef]
- Levron, Y.; Shmilovitz, D. Power Systems’ Optimal Peak-Shaving Applying Secondary Storage. Electr. Power Syst. Res. 2012, 89, 80–84. [Google Scholar] [CrossRef]
- Díaz-González, F.; Sumper, A.; Gomis-Bellmunt, O.; Villafáfila-Robles, R. A Review of Energy Storage Technologies for Wind Power Applications. Renew. Sustain. Energy Rev. 2012, 16, 2154–2171. [Google Scholar] [CrossRef]
- Subburaj, A.S.; Pushpakaran, B.N.; Bayne, S.B. Overview of Grid Connected Renewable Energy Based Battery Projects in USA. Renew. Sustain. Energy Rev. 2015, 45, 219–234. [Google Scholar] [CrossRef]
- Cui, S.; Wang, Y.-W.; Xiao, J.-W.; Liu, N. A Two-Stage Robust Energy Sharing Management for Prosumer Microgrid. IEEE Trans. Ind. Inform. 2018, 15, 2741–2752. [Google Scholar] [CrossRef]
- Husein, M.; Chung, I.-Y. Optimal Design and Financial Feasibility of a University Campus Microgrid Considering Renewable Energy Incentives. Appl. Energy 2018, 225, 273–289. [Google Scholar] [CrossRef]
Sr. No | Selection Criteria | Cited Papers |
---|---|---|
1 | Simulated or installed campus microgrid | [20,21,22,23,24,25,26,27,28,29,30,31,32,33] |
2 | Campus microgrid architecture | [34,35,36,37,38,39,40,41,42,43,44,45,46] |
3 | Storage technologies | [47,48,49,50,51,52,53,54,55,56,57,58,59,60,61] |
4 | Optimization techniques | [62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79] |
5 | Simulation/cost analysis tools | [80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100] |
6 | Internet of Things (IoT) | [101,102,103,104,105] |
Ref | Campus Name | Country | Optimization Method | Outcome |
---|---|---|---|---|
[65] | University of Engineering and Technology, Taxila | Pakistan | MILP |
|
[66] | Malta College of Arts, Science, and Technology | Malta | MILP |
|
[68] | University of KwaZulu--Natal | South Africa | Quadratic Programming | Substantial savings on fuel |
[71] | Yalova University | Turkey | Jaya-Harmony Search |
|
[75] | Universitas Negeri Semarang | Indonesia | Modified PSO and GA |
|
[76] | University of Johannesburg | South Africa | Waikato Environment for Knowledge Analysis (WEKA) |
|
[77] | University of Campinas | Brazil | Rolling Horizon |
|
[101] | Korea Advanced Institute of Science and Technology | Korea | Self-Organizing Map Algorithm |
|
[80] | Polytechnic of Porto | Portugal | Fuzzy logic |
|
Ref | Campus | Resources | Tool |
---|---|---|---|
[17] | Malta College of Arts, Science, and Technology | Solar, diesel generator, and BSS | MATLAB |
[81] | Clemson University | Solar and BSS | MATLAB |
[102] | Democritus University of Thrace | Solar and BSS | MATLAB |
[57] | University of Puerto Rico | Solar, CHP, and BSS | Simulink |
[82] | Universiti Teknologi PETRONAS | PV, gas turbine, and BSS | Simulink |
[83] | Al Akhawayn University | Solar and BSS | LabVIEW |
[84] | University of Coimbra | Solar, BSS, and EV | LabVIEW |
[86] | Jamia Millia Islamia University | Solar, wind, and BSS | HOMER |
[87] | Covenant University | Solar, diesel generator, grid, and BSS | HOMER |
[88] | Thiagarajar College of Engineering | Solar | HOMER |
[89] | University of Azad Jammu and Kashmir | Solar, grid, and BSS | HOMER |
[90] | Syiah Kuala University | Solar and wind | HOMER |
[94] | National Autonomous University of Mexico | Solar and grid | PVSyst |
[123] | Seoul National University | Solar and ESS | MDStool |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Muqeet, H.A.; Khan, T.; Hussain, A.; Waseem, M.; Niazi, K.A.K. IoT-Enabled Campus Prosumer Microgrid Energy Management, Architecture, Storage Technologies, and Simulation Tools: A Comprehensive Study. Energies 2023, 16, 1863. https://doi.org/10.3390/en16041863
Ali A, Muqeet HA, Khan T, Hussain A, Waseem M, Niazi KAK. IoT-Enabled Campus Prosumer Microgrid Energy Management, Architecture, Storage Technologies, and Simulation Tools: A Comprehensive Study. Energies. 2023; 16(4):1863. https://doi.org/10.3390/en16041863
Chicago/Turabian StyleAli, Amad, Hafiz Abdul Muqeet, Tahir Khan, Asif Hussain, Muhammad Waseem, and Kamran Ali Khan Niazi. 2023. "IoT-Enabled Campus Prosumer Microgrid Energy Management, Architecture, Storage Technologies, and Simulation Tools: A Comprehensive Study" Energies 16, no. 4: 1863. https://doi.org/10.3390/en16041863
APA StyleAli, A., Muqeet, H. A., Khan, T., Hussain, A., Waseem, M., & Niazi, K. A. K. (2023). IoT-Enabled Campus Prosumer Microgrid Energy Management, Architecture, Storage Technologies, and Simulation Tools: A Comprehensive Study. Energies, 16(4), 1863. https://doi.org/10.3390/en16041863