Blanket Cooling of a Fusion Reactor
Abstract
:1. Introduction
2. Materials, Theory, and Methods
2.1. Materials
2.2. Theory
2.2.1. Heat Transfer
2.2.2. Area Ratio
2.2.3. Fin and Surface Efficiency
2.2.4. Pumping Power
2.3. Methods
3. Results and Discussion
3.1. State of the Art
3.2. Design Approach
3.2.1. Proposed ARC PEXS Design
3.2.2. Fluid surface
3.3. Numerical Simulation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EUROfusion. 2022. Available online: https://www.euro-fusion.org/fusion/history-of-fusion/#c2407 (accessed on 23 May 2022).
- Eddington, A. The Internal Constitution of the Stars. Nature 1920, 106, 14–20. [Google Scholar] [CrossRef]
- Oliphant, M.L.E.; Harteck, P.; Rutherford, O.M. Transmutation Effects Observed with Heavy Hydrogen. Proc. R. Soc. 1934, 144, 692–703. [Google Scholar] [CrossRef]
- Kuang, A.Q.; Cao, N.M.; Creely, A.J.; Dennett, C.A.; Hecla, J.; LaBomard, B.; Tinguely, R.A.; Tolman, E.A.; Hoffman, H.; Major, M.; et al. Conceptual design study for heat exhaust management in the ARC fusion pilot plant. Fusion Energy Des. 2018, 137, 221–242. [Google Scholar] [CrossRef]
- Tungsten, Midwest Tungsten Serv. 2022. Available online: https://www.tungsten.com/material-info/tungsten-w (accessed on 23 May 2022).
- Aldrich, R. Laser Fundamentals. Naval Surface Warfare Center, Dahlgren Division. Available online: https://man.fas.org/dod-101/navy/docs/laser/fundamentals.htm#LASERTYPES (accessed on 26 January 2022).
- Hu, L.; Wirth, B.D.; Maroudas, D. Thermal conductivity of tungsten: Effects of plasma-related structural defects from molecular-dynamics simulations. Appl. Phys. Lett. 2017, 111, 081902. [Google Scholar] [CrossRef]
- Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S.S.; Hassanein, A. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples. Sci. Rep. 2014, 4, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Haubenreich, P.N.; Engel, J.R. Experience with the Molten-Salt Reactor Experiment. Nucl. Appl. Technol. 1970, 8, 118–136. [Google Scholar] [CrossRef]
- Moir, R.W. HYLIFE-II Inertial Confinement Fusion Reactor Design. Fusion Technol. 1991, 19, 617–624. [Google Scholar] [CrossRef]
- Cadwallader, L.C.; Longhurst, G.R. Flibe Use in Fusion Reactors: An Initial Safety Assessment. Ida. Natl. Eng. Environ. Lab. 1999, 1, 1–25. [Google Scholar]
- Janz, G.J.; Gardner, G.L.; Krebs, U.; Tomkins, R.P.T. Molten Salts: Volume 4, Part 1, Fluorides and Mixtures Electrical Conductance, Density, Viscosity, and Surface Tension Data. J. Phys. Chem. Ref. Data 1974, 3, 31–36. [Google Scholar] [CrossRef]
- Romatoski, R.R.; Hu, L.W. Fluoride salt coolant properties for nuclear reactor applications: A review. Ann. Nucl. Energy 2017, 109, 635–647. [Google Scholar] [CrossRef]
- Inconel 718 Technical Data, High Temp. Metals. 2015. Available online: https://www.hightempmetals.com/techdata/hitempInconel718data.php (accessed on 27 January 2022).
- Cortés, R.; Barragán, E.R.; López, V.H.; Ambriz, R.R.; Jaramillo, D. Mechanical properties of Inconel 718 welds performed by gas tungsten arc welding. Int. J. Adv. Manuf. Technol. 2018, 94, 3949–3961. [Google Scholar] [CrossRef]
- Cole, N.C.; Gilliland, R.G.; Slaughter, G.M. Weldability of tungsten and its alloys. Weld. J. 1971, 50, 419–426. [Google Scholar]
- Kind, M.; Martin, H. Verein Deutscher Ingenieure (VDI)—Heat Atlas; Springer: Berlin/Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2010; ISBN 9783540778769. [Google Scholar]
- Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; DeWitt, D.P. Fundamentals of Heat and Mass Transfer, 7th ed.; John Wiley & Sons: New York, NY, USA, 2011; ISBN 978-0470-50197-9. [Google Scholar]
- Sorbom, B.N.; Ball, J.; Palmer, T.R.; Mangiarotti, F.J.; Sierchio, J.M.; Bonoli, P.; Kasten, C.; Sutherland, D.A.; Barnard, H.S.; Haakonsen, C.B.; et al. ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets. Fusion Eng. Des. 2015, 100, 378–405. [Google Scholar] [CrossRef]
- COMSOL, COMSOL Multiphysics®. 2022. Available online: https://doc.comsol.com/6.0/docserver/#!/com.comsol.help.comsol/helpdesk/helpdesk.html (accessed on 20 July 2022).
- Scott, W.A. Cooling of Electronic Equipment; John Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Tuckerman, D.B.; Pease, R.F.W. High-Performance Heat Sinking for VLSI. IEEE Electron Device Lett. 1981, 2, 126–129. [Google Scholar] [CrossRef]
- Duderstadt, J.J.; Hamilton, L.J. Nuclear Reactor Analysis; John Wiley & Sons: New York, NY, USA, 1976; p. 675. [Google Scholar]
- Cao, H.; Chen, G. Optimization design of microchannel heat sink geometry for high power laser mirror. Appl. Therm. Eng. 2010, 30, 1644–1651. [Google Scholar] [CrossRef]
- Peng, Y.F.; Cheng, Z.H.; Zhang, Y.N.; Qiu, J.L. Laser-induced temperature distributions and thermal deformations in sapphire, silicon, and calcium fluoride substrates at 1.315 μm. Opt. Eng. 2001, 40, 2822. [Google Scholar] [CrossRef]
- Li, Q.; Fischer, L.; Qiao, G.; Mura, E.; Li, C.; Ding, Y. High performance cooling of a HVDC converter using a fatty acid ester-based phase change dispersion in a heat sink with double-layer oblique-crossed ribs. Int. J. Energy Res. 2020, 44, 5819–5840. [Google Scholar] [CrossRef] [Green Version]
- Chandler, D. A New Path to Solving a Longstanding Fusion Challenge, MIT News. 2018. Available online: https://news.mit.edu/2018/solving-excess-heat-fusion-power-plants-1009 (accessed on 13 February 2022).
Parameter | Correlation | Units | Uncertainty |
---|---|---|---|
density [12] | = 2413–0.488 · T[K] | kg/m3 | 2% |
heat capacity [13] | = 2386 | J/(kg·K) | 3% |
dynamic viscosity [12] | = 0.116 · e(3755/T[K]) | mPa·s | 20% |
thermal conductivity [13] | = 1.1 | W/(m·K) | 10% |
Boundary Condition | Value | Quantity |
---|---|---|
max heat flux density | ~12 MW/m2 | |
Tmax tungsten | 1500 K | |
ΔTmax FLiBe | ~75 K |
Fin Length [mm] | [-] | [-] | [mm] |
---|---|---|---|
1.5 | ~0.80 | ~2.5 | ~1.2 |
2.5 | ~0.65 | ~3.5 | ~1.4 |
3.5 | ~0.53 | ~4.5 | ~1.6 |
[Bar] | [MW] | % of Output |
---|---|---|
1 | 1.8 | 0.9 |
2 | 3.6 | 1.8 |
4 | 7.1 | 3.6 |
8 | 14.2 | 7.1 |
16 | 28.4 | 14.2 |
Exp. | [μm] 1 | [μm] 2 | [μm] 3 | |||||
---|---|---|---|---|---|---|---|---|
1 | 56 | 44 | 320 | 1.034 | 4.7 | 47 | 0.110 | 1.81 |
2 | 55 | 45 | 287 | 1.172 | 6.5 | 65 | 0.113 | 2.77 |
3 | 50 | 50 | 302 | 2.137 | 8.6 | 86 | 0.090 | 7.90 |
Reactor Type 1 | PWR a | BWR/6 b | HTGR c | LMFBR d | GCFR e | CANDU PHW f | ||
---|---|---|---|---|---|---|---|---|
Manufacturer 2 | W a | B&W b | GE c | - | - | - | - | - |
Coolant | H2O | H2O | H2O | H2O | He | Na | He | D2O |
Avg. heat flux 3 | 0.685 | 0.64 | 0.65 | 0.503 | 0.204 | 0.105 | 0.093 | 0.050 |
Max. heat flux 3 | 1.83 | 1.68 | 1.73 | 1.115 | 0.583 | 2.37 | 1.68 | 1.15 |
Assumed Conditions | Value | Unit |
---|---|---|
heat flux density | 2 | MW/m² |
cooling region radius | 23.5 | mm |
mirror thickness | 2 | mm |
channel width | 1 | mm |
channel depth | 2 | mm |
fin width | 1.5 | mm |
water flow rate | 500 | mL/min |
specific mass flow rate | 4.8 | kg/(m²·s) |
[-]; amin 3 | [-] | 1 | 1 [K] | 1 | 1 | 2,* [MW] | 4,* [—] |
---|---|---|---|---|---|---|---|
1.5/2.5; 9160 | 1 | 0.134 | 1465 | 10,703 | 39 | 14.4 | 7.2% |
2 | 0.260 | 1433 | 11,222 | 133 | 14.4 | 7.2% | |
3 | 0.393 | 1429 | 11,266 | 269 | 13.3 | 6.7% | |
4 | 0.527 | 1434 | 10,842 | 443 | 12.2 | 6.1% | |
5 | 0.666 | 1434 | 10,851 | 675 | 11.8 | 5.9% | |
10 | 1.350 | 1556 | 8542 | 2774 | 9.6 | 4.8% | |
20 | 2.664 | 1917 | 8472 | 8494 | 8.0 | 4.0% | |
2.5/3.5; 6540 | 1 | 0.102 | 1467 | 9324 | 27 | 11.1 | 5.6% |
2 | 0.199 | 1435 | 10,146 | 82 | 10.6 | 5.3% | |
3 | 0.300 | 1435 | 9927 | 162 | 8.0 | 4.0% | |
4 | 0.402 | 1425 | 10,118 | 285 | 7.8 | 3.9% | |
5 | 0.518 | 1442 | 9740 | 423 | 7.3 | 3.7% | |
10 | 1.033 | 1621 | 7340 | 1569 | 5.4 | 2.7% | |
20 | 2.026 | 2131 | 5495 | 4806 | 4.2 | 2.1% | |
3.5/4.5; 5090 | 1 | 0.081 | 1486 | 9510 | 22 | 9.3 | 4.7% |
2 | 0.160 | 1449 | 9364 | 59 | 6.9 | 3.5% | |
3 | 0.246 | 1448 | 9193 | 114 | 5.6 | 2.8% | |
4 | 0.328 | 1464 | 8922 | 185 | 5.0 | 2.5% | |
5 | 0.413 | 1490 | 8524 | 273 | 4.6 | 2.3% | |
10 | 0.855 | 1692 | 6596 | 1032 | 3.6 | 1.8% | |
20 | 1.675 | 2368 | 4549 | 3170 | 2.8 | 1.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beaufait, R.; Fischer, L. Blanket Cooling of a Fusion Reactor. Energies 2023, 16, 1890. https://doi.org/10.3390/en16041890
Beaufait R, Fischer L. Blanket Cooling of a Fusion Reactor. Energies. 2023; 16(4):1890. https://doi.org/10.3390/en16041890
Chicago/Turabian StyleBeaufait, Robert, and Ludger Fischer. 2023. "Blanket Cooling of a Fusion Reactor" Energies 16, no. 4: 1890. https://doi.org/10.3390/en16041890
APA StyleBeaufait, R., & Fischer, L. (2023). Blanket Cooling of a Fusion Reactor. Energies, 16(4), 1890. https://doi.org/10.3390/en16041890