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Abstract: Theft of electricity poses a significant risk to the public and is the most costly non-technical
loss for an electrical supplier. In addition to affecting the quality of the energy supply and the strain
on the power grid, fraudulent electricity use drives up prices for honest customers and creates a
ripple effect on the economy. Using data-analysis tools, smart grids may drastically reduce this
waste. Smart-grid technology produces much information, including consumers’ unique electricity-
use patterns. By analyzing this information, machine-learning and deep-learning methods may
successfully pinpoint those who engage in energy theft. This study presents an ensemble-learning-
based system for detecting energy theft using a hybrid approach. The proposed approach uses a
machine-learning-based ensemble model based on a majority voting strategy. This work aims to
develop a smart-grid information-security decision support system. This study employed a theft-
detection dataset to facilitate automatic theft recognition in a smart-grid environment (TDD2022).
The dataset consists of six separate electricity thefts. The experiments are performed in four different
scenarios. The proposed machine-learning-based ensemble model obtained significant results in
all scenarios. The proposed ensemble model obtained the highest accuracy of 88%, 87.24%, 94.75%,
and 94.70% with seven classes including the consumer type, seven classes excluding the consumer
type, six classes including the consumer type, and six classes excluding the consumer type. The
suggested ensemble model outperforms the existing techniques in terms of accuracy when the
proposed methodology is compared to state-of-the-art approaches.

Keywords: smart grids; cybersecurity; theft detection; network analysis; grid system; internet
of things

1. Introduction

A smart grid is an attractive integration of information and communication technolo-
gies (ICTs) [1–3]. It consists of smart meters and sensors linked to the energy server through
wireless/wired communication [4]. Compared to the traditional grid, a smart grid allows
for more efficient management of electric power [5–10]. A smart grid uses an analytical
approach and efficient load scheduling to maximize resource use [11]. To lessen the impact
of peak demand and facilitate more affordable power trading, researchers proposed a hier-
archical energy-management system [12]. A technique based on information-gap decision
theory is offered to mitigate the effects of the intermittent nature of renewable energy [13].

A nation’s ability to effectively and efficiently use its energy resources is crucial to
its social and economic development in light of the high cost of procuring energy and the
limited number of energy resources accessible. The smart grid has become an essential
component of optimizing future energy monitoring. An intelligent monitoring system
keeps tabs on the habits and routines of everyone connected to the system, as well as the
power system architecture and machines used to manage and monitor energy consumption
which make up the smart-grid system [14,15]. The smart grid enables utilities and customers
to do these things by integrating digital technologies with the existing electrical grid. A
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crucial component of the energy internet (EI) is the two-way flow of energy and data [16].
It is the next level of smart-grid technology. The advanced metering infrastructure (AMI) is
the primary foundation of the EI [17]. Incredibly detailed information about energy use is
available to utilities through the AMI. Through the strategic rollout of smart meters, we can
accurately analyze consumer consumption behavior, predict load, and respond to demand.
Power transmission and distribution experience technical and non-technical losses [18].
The term “technical losses” refers to the energy lost in the machinery used to carry out the
electricity transmission and distribution [19]. Non-technical losses (NTL) occur because of
electricity theft, utility-worker misbehavior, and billing discrepancies [20]. Utilities spend
almost USD 96 billion annually on the NTL worldwide, according to research [21].

Power companies, engineers, and academics are all scrambling to find practical so-
lutions to cut down on NTL to prevent this massive financial hit [22]. The most effective
method of preventing energy theft is the introduction of an energy internet based on
smart meters. Possible applications of this technique include the remote monitoring and
recording of consumers’ consumption statistics and the quick transmission of this data
to the utility should any suspicious activity be detected. Though there are many benefits
to using an energy meter, the significant costs associated with deploying and operating
them make them impractical for countries with severe economic challenges. In addition,
increasing cyber dangers must be mitigated before the widespread usage of such devices
is possible. Securing the EI’s information flow takes work because of the unique charac-
teristics of AMI. Criminal individuals can utilize infiltration techniques to tamper with
smart meter data. Thefts of electricity on the EI are distinct from those that occurred on the
traditional grid and involved, for the most part, the physical avoidance of or destruction
of mechanical meters [18]. Artificial-intelligence (AI) algorithms might enable automated
user-energy usage tracking. Combined with data from other smart meters, it might help
catch electricity thieves.

Credible sources have recorded multiple instances of organized energy theft, including
the US Federal Bureau of Investigation [18]. These are based on strategies and methods
manipulated to cause massive, non-trivial losses to smart meters. To successfully address
the NTL issue, employing efficient methods for power-theft detection based on EI is
necessary [23,24]. As conventional detection approaches, such as sending out technical staff
or keeping tabs on things via video surveillance, are time-consuming and labor-intensive,
we need EI-based tactics for energy-theft detection if we solve the NTL problem.

There are three categories of NTL detection strategies: theoretical, hardware and
non-hardware based [25]. Theoretical approaches to the problem of NTLs involve linking
socioeconomic and demographic factors [26]. The hardware-based solutions take additional
precautions in the distribution network to detect electrical theft [27]. Trespassers are not
allowed to tamper with a network’s diagnostics. Consequently, there will be discrepancies
between the smart-meter data and the system states. It is possible to achieve high accuracy
in theft detection, but doing so will require additional equipment. The high upkeep and
sensor-deployment costs make these methods impractical for many utility providers. De-
spite hardware-based solutions, non-hardware-based energy-theft detection procedures do
not need additional NTL-detecting equipment. The two primary categories of such strate-
gies are those grounded in artificial intelligence and those grounded in game theory [28].
To identify the NTL, game-theory-based methods build on the idea of a game between the
provider and the fake customers [29]. A clear definition of the essential responsibilities of
users, violators, regulatory bodies, and distributors renders these strategies impractical de-
spite their lower costs. In contrast, AI-based solutions are more practical since they employ
machine-/deep-learning techniques such as classification and clustering to assess consumer
load profiles and spot outliers [30,31]. This is because fake-customers’ consumption habits
are assumed to be distinct from regular users. The clustering method is the cornerstone of
unsupervised learning since it can be used with an unlabelled dataset [32]. Alternatively, a
labeled dataset is necessary for supervised-learning-based classification [33].
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According to our knowledge, this is the second study to successfully implement a fully
automated identification of theft detection. Machine-learning and deep-learning methods
are applied to customer energy-use data to learn and identify anomalous patterns. This
study employed a method based on artificial intelligence and proposed a machine-learning-
based ensemble model. This paper’s most significant contributions are:

• Proposed a framework based on machine-learning and deep-learning approaches to
develop a decision support system for smart-grid environments and examine smart-
grid energy-usage behavior.

• Proposed an ensemble model based on machine learning to effectively identify six
distinct forms of theft.

• According to experiments, the suggested ML ensemble model performs better than
the state of the art in all circumstances.

The rest of the paper is organized as follows. Section 2 briefly describes previous
studies on electricity-theft detection methods. The proposed approach for this study is
presented in Section 3. The dataset employed in this study is explained in Section 3.1.
The experimental results and comparative analysis is provided in Section 4. This study’s
conclusion and future work are shown in Section 5.

2. Literature Review

Multiple non-technical-losses detection strategies have been implemented to combat
the growing issue of electricity fraud and theft detection. Hardware and data-driven
solutions are only examples of how experts from different fields contribute to non-technical-
losses detection solutions. Hardware solutions rely on gadgets to track the parameters of
the grid system, including energy, current, and voltages [34]. The primary drawback of
this tactic is that it requires expensive new machinery. With the introduction of AMI in the
smart grid, a large amount of data can now be obtained. Therefore, data-driven methods
for identifying NTL have gained popularity as of late [29]. Examples of such approaches
include game theory, statistical methodologies, and machine-learning approaches [35,36].
Compared to other hardware options, these techniques are less complicated and cheaper to
implement. After extensive study, researchers separated energy-theft detection methods
into three categories: supervised, semi-supervised, and unsupervised [17]. According to
the findings, these methods may be broken down into three categories: game-theory-based,
state-based, and classification-based [37]. Most datasets involving electrical theft have an
imbalanced class, with the outliers being substantially smaller than that of the norm [38].
Due to the imbalanced dataset, the trained model will focus on the more common categories
while ignoring the less common ones.

The paper takes into account the problem of managing incomplete data in intelligent
systems. We offer a prediction approach for the likely recovery of partially missing or
fully lost data based on the enhancement of an ensemble of two GRNNs with the extra
usage of an extended-input SGTM neural-based mechanism. An actual dataset depicting
air-conditioning monitoring was used to test the enhanced ensemble prediction method’s
ability to fill in the gaps. Future study opportunities and the method’s inherent limitations
are discussed in [39]. This work describes a prediction method employing a new, stacking-
based GRNN ensemble model [40]. Each formed ensemble member processes its dataset,
in which the original dataset’s vectors have been randomized and displaced to the current
point. The researchers selected SGTM neural-based mechanism as a meta-algorithm for the
construction of the result of the ensemble. Its results’ high quality and rapidity are used to
support its selection. Several experimental investigations’ findings on selecting the best
settings for the created ensemble are detailed.

Replicating different types of solar-energy system relies heavily on prefab modeling
techniques [33]. This study presents a literature review on the various methods of modeling
non-technical losses. Time- and money-saving modeling approaches for the electrical sys-
tem were the subject of this study. This review article also covers the benefits and prospects
of modeling methodologies. Many researchers have proposed a technique for building
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non-technical-losses attack models which can accurately reflect the nuances of actual at-
tacks [41–44]. Furthermore, data-driven techniques must capture the behavior of typical
and atypical consumption patterns to detect non-technical losses accurately. Unfortunately,
real-world anomaly cases are not included in any public datasets for developing or testing
detection methods.

The authors proposed a fascinating comparative study of supervised-learning strate-
gies for identifying power outages [45]. This study compares the results of many supervised-
learning methods (including AdaBoost, decision trees, ANNs, and DL-ANNs). The investi-
gation here utilized data that was made accessible online by the State Grid Corporation of
China. Results showed that deep neural networks used in artificial-intelligence research
performed better than alternative supervised-learning classifiers. The authors also pro-
vided a fascinating survey which looked at the causes and manifestations of attacks on
the advanced metering-infrastructure system that lead to non-technical losses [46]. They
also analyzed assaults which originated from less sophisticated sources which were un-
successful. They also spoke about various features, feature-engineering approaches, and
how well they can categorize standard and attack samples [47,48]. In addition, this re-
search looked into the efficacy of numerous learning models at spotting various forms
of cyberattacks. Non-technical-losses attack detection was also summarized, along with
suggestions for improvement. Compared to previous works, our contributions are novel in
the following ways:

• Provide a decision support system based on machine learning and deep learning to
analyze and investigate smart grid energy consumption for smart grids.

• Develop an ensemble model to detect six types of theft: theft1, theft2, theft3, theft4,
theft5, and theft6.

• Experiments reveal that the proposed ensemble model outperforms the state of the art
in every scenario.

3. Proposed Approach

This study introduces a unique ensemble-learning approach and ML-classifier training
method for detecting theft from the provided dataset. The suggested approach as given
in Figure 1 involves an electricity-theft dataset. The suggested technique for this research
study is covered in this section.

Figure 2 shows the proposed solution in detail. The dataset was first gathered with an
Open Energy Data Initiative (OEDI) platform. The three primary stages of data preparation
are label encoding, missing-value removal, and data normalization. Four prominent ML
classifiers, including multi-layer perceptron (MLP), k-nearest neighbour (KNN), random
forest (RF), and extreme gradient boosting (XGB), combined with a unique ensemble-
learning model, which is based on a majority voting approach, are used to detect the
electricity theft. The deep-learning approach is also used in this study. Model predic-
tion on new unseen data was performed after several ML/DL models were trained on
training data.

3.1. Dataset Selection

Measurements of energy use from various consumers over a year are included in
the original data (12 months). Every hour, readings are taken. There are sixteen distinct
consumer categories included in the dataset, each with its unique energy-consumption
patterns. The dataset is provided at Mendeley datasets (https://data.mendeley.com/
datasets/c3c7329tjj/1, accessed date 20 August 2022).

The data include a wide variety of fraudulent activities which specific customers may
initiate. One kind of electricity theft is the intentional lowering of daytime use. To save
energy, multiply the usual usage by 0.1 and 0.8. The second form of theft occurs when
a victim’s electrical use suddenly and for no apparent reason reduces to zero. The third
form of theft works analogous to the first, except that each consumption unit (per hour) is
multiplied by an unpredictable factor. For the fourth form of theft, we produce a random

https://data.mendeley.com/datasets/c3c7329tjj/1
https://data.mendeley.com/datasets/c3c7329tjj/1


Energies 2023, 16, 1907 5 of 16

percentage of the average consumption. The sixth form of theft swaps the positions of
the readings, while the fifth type gives the average consumption. We created a robbery
generator which could randomly produce any of the six forms of theft discussed above.
The primary source of information comes from the Open Energy Data Initiative (OEDI). It
is a database for energy research which collects data from many OEDI offices and labs [27].

The collection has 560,640 occurrences in total. The dataset has 12 characteristics, one
category feature, and ten numerical features. The dataset is composed of 16 consumer
types, and each consumer type contains 35,040 instances. The dataset has seven classes in
total due to the six distinct forms of theft and the normal class. The normal class contains
331,824 instances, and the remaining six theft classes, theft1, theft2, theft3, theft4, theft5,
and theft6, contain 51,083, 22,958, 44,349, 41,460, 33,553, and 35,413 instances.

3.2. Theft Detection Approach

The information was gathered for 16 distinct customers, as previously said in Section 3.1.
Our technique consists of a series of learning tests by four validation mechanisms. Figure 1
shows the process of the classification mechanisms. The experiments are performed in four
stages to adequately analyze and select the optimum methodology. We began with the
first method (P7), which divides the data into seven classes (6 thefts and normal instances),
utilizing the consumption attributes and the consumer type as inputs, i.e., the classifier
is aware of the consumer type. The second method divides the data into seven classes,
utilizing only the consumption attributes and discarding the consumer type. Five types
of theft and normal class were the only ones taken into account in the third mechanism
(P6C). Based on the experimental results of P7, we concluded that identifying theft6 is
challenging and presented an auxiliary method which only involves six classifications.
In this approach, we also employ a categorization based on a specific customer type.
Classification of P7U and P6U mechanisms occurs regardless of the consumer types. The
customers’ identities still need to be clarified in both processes; we studied seven categories
for the P7U mechanism but only six for the P6U mechanism. Only the top 10 consumption
characteristics are considered when designing these procedures.

Figure 1. Different stages of the methodology.
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Figure 2. Proposed solution for electricity-theft detection.

3.3. Data Pre-Processing

The quality of the data and the important information extracted strongly impact our
model’s capacity to learn, making data pre-processing crucial in machine learning and deep
learning. Due to this, the pre-processing of data is a crucial step in the machine-learning
process [49]. Imputation of missing values, data normalization, and category-codes-based
label encoding are the three most essential steps in preparing data [50]. Our dataset did not
include null values during the pre-processing phase. In the following preprocessing stage,
we eliminated some columns from the dataset that were unimportant to theft identification.
In the data-preprocessing stage, we encoded using category codes. Using this technique,
we were able to convert qualitative information into a numerical format. We started by
checking the column data types; the category column must be of type “category” for this
approach to work. To use this strategy, we first had to convert the data type to a “category.”
Given the wide variety of feature values, we used a generic scaler to normalize the data for
this study. A standard scaler is a python function which normalizes the data to a specified
range [51]. To function, it modifies characteristics such as its distribution so that its mean
is zero and its standard deviation is one. The formula for the standard scaler is shown in
Equation (1), where S

′
is the standardized form of Zi.

S
′
=

(Zi − µ)

σ
(1)

3.4. Classification Models

We analyzed the efficacy of our suggested method and describe the ML ensemble
classifier and DL classifier.

3.4.1. Ensemble-Learning Classifier

Academics have increasingly turned to ensemble learning to solve many ML
challenges [52,53]. Since there are six different forms of theft in the dataset, an ensemble-
learning method was used to identify them and classify them accordingly. Combining many
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ML classifiers and employing different voting processes, ensemble-learning approaches
seek to improve performance [54]. The main advantage of this ML ensemble model is that
it combines the prediction of various ML models, uses the majority voting strategy, and
improves the accuracy rate. As soon as a new data point is received, all the classifiers
within the ensemble make predictions for its class label. The class label that receives the
most votes from the classifiers is then used to label the instance. The suggested method
takes the aggregated predictions from many classifiers and returns the results using a
weighted majority approach. After each categorization model is tweaked, the best results
are provided. Using the formula in the equation, one may maximize support (2).

≈
X = argmax(Nj(X1

i ), Nj(X2
i ), ...., Nj(Xn

i )) (2)

In Equation (2), Nj(Xi) stands for the group that received the most votes (ref. votes).
The ensemble uses several classification algorithms, such as random forest (RF), XGBoost,
and multilayer perceptron (MLP). Soft voting is used in the ensemble-model voting process.
The voting classifier is a function of sklearn which combines and converts multiple weaker
models into an individual, more robust model. This study used the voting-classifier
function of the sklearn python library to combine the three machine-learning models (RF,
MLP, and XGB) into a single, more robust model. The parameters of XGB, MLP, and RF
remained their default. The individual machine-learning models that contribute to the
voting process are explained below:

Random forest: The RF algorithm is a form of supervised learning. It can perform vari-
ous tasks such as classification, regression, and more. Similarly, this is an ensemble-learning
technique. It is a part of the ML ensemble model, which generates several classification
trees [55]. An ensemble method produces a more precise classification tree than a single
method. In place of more conventional classifiers, random forests are frequently employed
when dealing with complicated datasets. The many decision trees that make up random for-
est’s (RF) categorization engine each settle on a single-best possible target label. To produce
the forecast, we employed the method of majority vote. A random forest has an n-estimator
of 100. In addition, we used a Gini criteria parameter with a zero random state. It takes at
least two split samples and one leaf sample to reliably generate a statistical distribution.

Extreme gradient boosting: Maximizing efficiency while using available memory is
the goal of the XGB technique. The XGBoost optimization method is used in this ensemble
classification model to improve classification accuracy further. The XGBoost classifier
is used to boost the accuracy of the classification process. The scalable ML technique
XGBoost optimizes the loss function with gradient descent and provides predictions by
way of an enhancing ensemble of weak classification trees [56]. XGBoost’s novel gradient-
boosting model combines weak and stronger learners through a flexible and adaptive
process. At each iteration of gradient boosting, the residual error is used to fine tune the
prior prediction and optimize the loss function. XGBoost’s objective function for measuring
model performance is specified by the equation where the loss function is regularized.

J(α) = L(α) + σ(α). (3)

The parameter estimates denoted by α in Equation (3) are derived from the input data.
The loss function measures the model’s complexity, where L is the training portion, and
σ is the regularization term. This research employed these parameters for the XGBoost
algorithm: XGBoost’s model’s maximum depth was set using a dedicated parameter. The
maximum depth has a value of 6. Parameters included a scale position weight of 1, a
minimum children weight of 1, a booster of a gb-tree, and an eta value of 0.3.

Multi-layer perceptron (MLP): a part of an artificial neural network that takes inputs in
a forward (ANN). Classification and prediction problems are ideal for MLP. Back probation
is another supervised-learning strategy used in MLP training. The MLP model consists
of a minimum of three layers of nodes: an input layer, a hidden layer, and an output
layer. The MLP model’s third and final layer consists of one or more computational nodes.
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To summarize the results of the MLP model’s computation nodes, an output layer is
produced. The feature values of an attribute are represented by the nodes in the input
layer, whereas the nodes in the output layer are responsible for classifying the attribute. To
train, MLP employs a supervised-learning strategy based on the function F(Z) : Ax → By.
Assuming an input dimension of x, the output dimension is y. An assortment of attributes,
denoted by Z = z1, z2, . . . , zn, and the desired outcome, T, are available. Each “node”
represents a neuron approximating a nonlinear activation function to perform classification
or regression. With rectified linear unit (ReLU) as the activation function and adam as the
optimizer, the staple length of the hidden layer is around 100 in this study. The greatest
number of iterations was around 200, and the alpha value was 0.0001.

3.4.2. Deep-Learning Classifier

The deep-learning model was also used in this study to compare ML and DL ap-
proaches on the provided dataset. The deep-learning model comprises a single input layer
with 720 parameters and two hidden layers. The first hidden layer contains 975 parameters
and the ReLU activation function, while the second hidden layer contains 112 parameters.
The last layer is a fully connected layer where the results of all the previous layers are stored
vertically. The total number of trainable parameters is 1747. The categorical_crossentropy
and 0.01 learning rate are used to compute the loss. The validation split value is 0.2. A total
of 20% of the training data is utilized for validation purposes. The model training comprises
50 epochs, and the verbose value is 1. In the end, validation, training loss, and accuracy
are calculated, and multiple other evaluation metrics are used to assess the deep-learning
model’s ability.

3.5. Performance Evaluation Measures

Assessing the quality of a machine-/deep-learning algorithm is crucial to any investi-
gation’s success. Metrics used for evaluation determine how well a machine-learning or
deep-learning model performs. It is possible to put a model through its paces using any
one of a wide variety of evaluation measures. Accuracy, precision, recall, the F-measure, the
AUC score, and the confusion matrix are all taken into account, as well as a few others that
are often used to evaluate performance in this study, as shown in Equations (4)–(7). Results
such as true positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN) can be determined by examining the resulting confusion matrices. Values for accuracy,
precision, recall, and F-measure, can be calculated using the below equations:

ACCURACY =
(TP + TN)

(TP + FP + TN + FN)
(4)

PRECISION =
(TP)

(TP + FP)
(5)

RECALL =
(TP)

(TP + FN)
(6)

F1− SCORE =
(2 ∗ (TP))

(2 ∗ TP + FP + FN)
(7)

Accuracy is a measure of the quality of the models’ classification performance. It
represents the percentage of labels assigned to the correct categories. Accuracy might be
a percentage between 0 and 100, where higher values indicate better performance. The
precision of an algorithm may be calculated by dividing the number of correct predictions
by the total number of positive outcomes. In statistics, recall is the ratio of true positives
to all anticipated positives. The F1 score is a combined measurement of both precision
and recall. It is a valuable which supplements the accuracy score, the primary metric for
evaluating performance.
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Area under the Receiver Operating Characteristic (ROC) Curve

One technique to evaluate a model’s predictive abilities is ROC curve analysis, which
involves a plot of sensitivity versus specificity. The area under the receiver operating
characteristic (ROC) curve can be used to determine whether a classification algorithm
consistently assigns correct labels to data. The ROC curve is constructed by putting the TPR
on the y axis and the FPR on the x axis. A probability curve depicting TPR versus FPR at
different cutoffs is shown. The area under the curve (AUC) is a statistic used to distinguish
between groups. An improved ability to predict classes is indicated by a higher AUC for
a model. The AUC can range from 0 to 1, with 0 indicating that the classifier incorrectly
labels positive data as negative and 1 indicating that the classifier correctly labels positive
and negative data.

4. Experimental Results and Discussion

This section reviews the key findings and compares them to the conventional ap-
proaches. For experimentation, Python 3 and a Jupyter notebook were run on a laptop
with a GTX 1050 GPU, 2GB VRAM, an i5-8300H CPU, and 16GB RAM. The experimental
results of this study are shown in Tables 1–4. This study uses various machine-learning
and deep-learning approaches and proposes an ML_Ensemble model to build a decision
support system for smart-grid information security. This study used an electricity-theft
dataset collected over 12 months. The so-called “known consumer” type uses 11 input
features, including the consumption attributes and consumer type. This second option,
“unknown customer”, solely uses the consumption variables, leaving out the consumer
type. The ML and DL classifiers with seven and six output classes are evaluated.

Table 1. Proposed-approach classifiers accuracy.

Accuracy

Number of Classes 7 Classes 7 Classes 6 Classes 6 Classes

Classifier/Protocol KC UKC KC UKC

KNN 84.34 84.10 90.50 89.65
XGB 85.67 85.70 91.21 90.79
RF 85.72 85.65 94.70 94.69

MLP 78.85 76.41 83.27 84.70
DNN 77.05 76.02 83.24 83.45

ML_Ensemble 88.00 87.24 94.75 94.70

Table 2. Proposed-approach classifiers F1-score. Key: known consumer—KC, unknown
consumer—UKC.

F1-Score

Number of Classes 7 Classes 7 Classes 6 Classes 6 Classes

Classifier/Protocol KC UKC KC UKC

KNN 81.90 81.60 90.54 88.90
XGB 82.17 82.90 91.25 90.88
RF 84.10 84.70 85.83 95.93

MLP 74.50 71.90 82.90 82.95
DNN 74.70 71.90 83.10 81.50

ML_Ensemble 85.49 84.82 94.87 94.90
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Table 3. Proposed-approach classifiers recall. Key: known consumer—KC, unknown
consumer—UKC.

Recall

Number of Classes 7 Classes 7 Classes 6 Classes 6 Classes

Classifier/Protocol KC UKC KC UKC

KNN 84.34 84.10 90.55 89.85
XGB 85.15 85.60 91.20 91.78
RF 85.70 85.71 95.84 95.67

MLP 78.20 76.85 83.50 84.90
DNN 77.45 76.20 83.10 83.55

ML_Ensemble 88.55 87.50 94.88 94.88

Table 4. Proposed-approach classifiers precision. Key: known consumer—KC, unknown
consumer—UKC.

Precision

Number of Classes 7 Classes 7 Classes 6 Classes 6 Classes

Classifier/Protocol KC UKC KC UKC

KNN 80.30 80.50 90.55 88.78
XGB 81.15 81.20 91.22 90.79
RF 83.57 83.72 95.83 95.87

MLP 72.25 70.90 81.54 82.10
DNN 72.90 68.70 83.14 80.50

ML_Ensemble 83.40 82.10 94.90 94.85

Two auxiliary mechanisms are evaluated for every primary mechanism. In the first
stage, ML and DL classifiers are evaluated with seven output classes and 11 features,
including consumer type. In the next stage, ML and DL classifiers are evaluated with seven
output classes and 10 features, excluding consumer type. Furthermore, the experiments
are performed with six output classes, including and excluding the consumer type. As
detecting theft involving six classes proved difficult, as shown in Figure 3a, we presented
an additional technique focusing on these theft types. This study employed five evaluation
metrics to assess the model’s abilities for electricity-theft detection. This study used
accuracy, precision, recall, F1-score, AUC score, and confusion matrix to analyze the
models. This study uses four machine-learning models and a deep neural network (DNN).
The four machine-learning models are nearest neighbour (KNN), extreme gradient boosting
(XGB), random forest (Rf), and multi-layer perceptron (MLP). This work provided a more
robust ensemble model which outperformed previous approaches in terms of performance
by combining the prediction of weak machine-learning models to create a better decision
support system. To experiment, the dataset was initially split in half; 80% of the data was
used to train the machine-learning models, while the remaining 20% was used for testing.
Additionally, 80 percent of training data was further separated into 70 percent and 10
percent, with 10 percent used for DNN model validation and 70 percent used for DNN
model training.

While analyzing the results of seven output classes with 11 features, including the
consumer type, the ML_Ensemble model obtained the highest results with an accuracy rate
of 88%. The proposed model outperformed all other ML and DL models. The precision,
recall, and F1-score of the ML_Ensemble model with 11 features and seven classes were
also computed. The precision score, recall score, and F1-score were 83.40%, 88.55%, and
85.49%. The ROC curve was plotted to show the performance of models during the
training process. The ROC curve is shown in Figure 4a. The ROC curve score is 91%,
depicting that the proposed model performed very well on this dataset. The confusion
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matrix was also plotted to identify the classwise accuracy. Figure 3a shows the confusion
matrix of the proposed ensemble model, where diagonal values show those instances
accurately classified by the proposed ensemble model and others which were misclassified.
The ML_Ensemble model also obtained the highest result, with ten features and seven
classes, excluding the consumer type. The proposed model obtained the best accuracy of
87.24% with 82.10% precision, 87.50% recall, and 84.82% F1 score. The wall time of the
proposed ensemble model was, on average, 36 min for each experiment. The confusion
matrix of the ensemble classifier with ten features and seven classes is shown in Figure 3b,
while the ROC curve is shown in Figure 4b.

The experiments were also performed with six classes and computed the experimental
results. In the experiments with six classes and 11 features, the ML_Ensemble model again
outperformed the other ML and DL model results. The proposed ML_Ensemble achieved
a 94.75% accuracy score. The precision, recall, and F1 score were also computed. The
findings show that the ensemble model with six classes and 11 features obtained 94.90%
precision, 94.88% recall, and 94.87% F1 score. The confusion matrix of this stage of the
experiment with the ensemble model is depicted in Figure 3c, and the ROC curve of the
ensemble model with six classes is shown in Figure 4c. The last stage of experiments
was performed with ten features and six classes. Again, the proposed ensemble model
performed more effectiely than other ML and DL models. The proposed ML_Ensemble
model obtained the best score of 97.70% with 94.85% precision, 94.88% recall, and 94.90%
F1 score. According to the results, the proposed ML_Ensemble model performed better
than all other machine-learning and deep-learning models.

(a) (b)

(c) (d)

Figure 3. Proposed approach results with four distinct mechanisms. (a) Confusion matrix of ensem-
ble model with P7C mechanism. (b) Confusion matrix of ensemble model with P7U mechanism.
(c) Confusion matrix of ensemble model with P6C mechanism. (d) Confusion matrix of ensemble
model with P6U mechanism.
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(a) (b)

(c) (d)

Figure 4. Proposed approach ROC curve of four distinct mechanisms. (a) ROC curve of ensemble
model with P7C mechanism. (b) ROC curve of ensemble model with P7U mechanism. (c) ROC curve
of ensemble model with P6C mechanism. (d) ROC curve of ensemble model with P6U mechanism.

Comparative Analysis

A comparison between the suggested method and the state-of-the-art method is pro-
vided in Table 5. Our research is compared to the standard method described in [57] to
validate our findings. The experimental conditions in the proposal and existing research
are very similar. The existing approach employed five classifiers with various evalua-
tion mechanisms. The baseline method achieved the maximum accuracy (85%) using the
random forest in the first stage of the experiments (with 11 features and seven classes),
whereas the suggested ML_Ensemble model achieved the highest accuracy (88%) under
the same conditions. A 3% improvement in accuracy was achieved using the proposed
approach. Next, experiments were conducted using seven classes and ten features; the exist-
ing technique achieved the highest accuracy (84.89%) with the random forest, whereas the
suggested ML_Ensemble model achieved the best accuracy (87.24%) using identical empiri-
cal parameters, a 2.35 percentage point improvement in accuracy. Third-stage experiments
employing the baseline method’s selection of six classes and eleven characteristics yielded
an accuracy of 94.71% when using the RF model. Using the suggested ML_Ensemble model,
we achieved a maximum accuracy of 94.75 percent. The baseline technique employing
the RF model achieved the highest accuracy (94.64 percent) when used with the dataset,
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including the six classes and ten characteristics used in the final round of testing. The
proposed method, employing the ML_Ensemble model, achieved 94.70 percent accuracy.
Overall, the accuracy of the suggested method is higher than that of the baseline method
throughout all experimental phases.

Table 5. Comparative analysis.

Accuracy

Number of Classes 7 Classes 7 Classes 6 Classes 6 Classes

Classifier/Protocol KC UKC KC UKC

Existing research results [57]
KNN 84.91 84.69 90.72 90.50

DT 82.67 82.48 93.36 93.19
RF 85.00 84.89 94.71 94.64

Bagging 84.85 84.65 90.76 90.56
ANN 80.49 78.55 86.41 85.52

Proposed approach results
Proposed Ensemble 88.00 87.24 94.75 94.70

5. Conclusions

In this research, a decision support system for smart-grid environments was developed
and assessed using a unique and extensive dataset for energy-theft detection (ETD2022).
The ETD2022 dataset includes 560 and 640 samples, each having 11 numeric characteristics
and one categorical feature for the target class. The proposed approach utilized machine
learning and deep learning to make a decision support system. The four machine-learning
models—KNN, XGB, RF, MLP, and a deep neural network were combined on ETD2020 to
create a decision support system. To develop an intelligent autonomous decision support
system, this study proposed a unique ML_Ensemble classifier based on a majority voting
mechanism. Four common performance indicators—accuracy, precision, recall, and F mea-
sure—were also employed to gauge how well the applied models worked. In every scenario
(mechanisms), the ML_Ensemble model achieved the best accuracy results. The proposed
ensemble model obtained the highest accuracy of 88%, 87.24%, 94.75%, and 94.70% with
seven classes including the consumer type, seven classes excluding the consumer type, six
classes including the consumer type, and six classes excluding the consumer type. The
biggest drawback of the suggested method is how expensive and computationally intensive
the ensemble model is.

5.1. Future Work

To improve the efficacy of our seven-class and six-class classification methods, we
will focus in the future on creating a more efficient model which decides in significantly
less time and is computationally less expensive. Furthermore, increased data-engineering
and feature-selection work can enhance the recognition outcomes and impact overhead.
In the future, we intend to use deep neural network-based approaches to build better
models soon, but this was not valid due to the limited processing resources available in our
commodity PCs.

5.2. Limitations

Some of the limitations of this research are as follows;

• The computational cost of the proposed ensemble model with four distinct mecha-
nisms is very high.

• The deep-learning approach could perform better in all the mechanisms due to the
small dataset.
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• The main limitation of this work is its computational complexity, which we will resolve
in the future.

• One of the limitations is that this method does not apply to detecting real-time elec-
tricity at the moment. Still, our future goal is to use this technique to identify power
outages in real-time. This method was tested using OEDI consumption patterns,
and it may be further verified using datasets from other regions to ensure it works
well elsewhere.
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