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Abstract: Turbulent convective heat-transfer characteristics in a concentric annular channel with
both walls heated are theoretically modeled and numerically computed in this article. Generalized
algebraic predictive models and equations for heating over a single wall are first reviewed by
summarizing the well-known methods in the literature. These methods are then scrutinized according
to the most recent investigations such that new viewpoints and corrections are introduced accordingly.
Moreover, the application of superposition in temperature is used in the current work instead of
the Nusselt number as seen in the literature. The numerical integration method is applied to the
generalized equations to obtain the solutions, which are found to be in decent agreement with the
direct numerical simulation (DNS) data in the literature. The results in this work also indicate that
the wall heat flux density ratio and the annular radius ratio are two key factors that have a great
influence on the heat-transfer characteristics of the case with both walls heated.

Keywords: turbulent convective heat transfer; concentric annular channel; various thermal boundary
conditions; superposition method

1. Introduction

Concentric annular channels are widely used in the heat exchangers of nuclear reac-
tors [1], thermal power plants [2], and other engineering fields, owing to the high efficiency
in heat transfer. We present a sketch of the annular channel in Figure 1, which is composed
of two pipes with one nested into the other. The inner and outer walls of the annular
channel, whose radii are defined as ai and ao here, respectively, are usually stationary, and
the flow through the channel is driven by an axial pressure gradient dp/dx. When it comes
to the case of nuclear heat transfer, a uniform heat flux over the wall can occur as the
physical properties are consistent, and the turbulent flow is fully developed. A postulate of
the constant heat flux densities over the inner and outer walls, which are defined as qi and
qo, respectively, can be used to simplify the associate theoretical modeling [3].

In recent decades, extensive experimental, DNS, and theoretical studies have been
preformed to investigate the turbulent heat-transfer characteristics in the annular channel.
The earliest method to study the characteristics of turbulent convective heat transfer in the
annular channel is experimentation. Krischer et al. [4] investigated the Nusselt number Nu
in the annular channel with air as the medium under the condition of heating from the
outer wall (qi = 0), and found that the annular radius ratio ai/ao can affect the molecular
Prandtl number Pr and the Reynolds number Re.

Then, Quarmby et al. [5] conducted similar experimental studies for the case of heating
from the inner wall (qi = 0). Later, Gnielinski [6] compared these experimental data and
found that the characteristic of heat transfer in the annular channel was different between
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heating from the inner and outer walls with the same Pr, Re, and ai/ao. In addition,
Kays et al. [7] stated that the characteristics of heat transfer are different with various wall
heat flux density ratios qi/qo in the annular channel, although Pr, Re, and ai/ao are the same.
The recent experimental studies of Wu et al. [8] and Mayer et al. [9] also confirmed that
qi/qo has a great impact on the heat-transfer characteristic in the annular channel with both
walls heated. This evidence shows that there is a more complex heat-transfer characteristic
in the annular channel compared with the round tube or parallel-plate channel.

Figure 1. Turbulent flow and heat transfer in an annular channel.

With the development of modern computer technology, computational fluid dynamics
(CFD) has been widely used in the simulation of a wide range of research and engineering
problems in fields of study and industries [10–12]. As a powerful branch of CFD, direct
numerical simulation (DNS) is capable of offering high-fidelity solutions for turbulent flows
and, thus, works as an ideal candidate for analysis of the characteristic of heat transfer in
the annular channel. The input conditions, such as Pr, Re, and ai/ao, can be controlled
more strictly in DNS compared with in experiments.

In addition, much more information of the flow field, such as the distribution of the
turbulent heat flux density −ρcv′T′ in the entire cross-section, can be acquired at a higher
resolution. Chung et al. [13] investigated the heat-transfer characteristics with Re = 8900,
Pr = 0.71, qi/qo = 1, and ai/ao = 0.1 and 0.5, and analyzed the effects of ai/ao. Ould-
Rouiss et al. [14] conducted DNS for Re = 14,000, Pr = 0.71, ai/ao = 0.1, and qi/qo in the
range of 0.01–100, and analyzed the effects of qi/qo.

The distributions of time-averaged temperature T near the wall and the turbulent heat
flux distribution in the entire radial direction have been presented in current DNS studies,
which provide more detailed information about the characteristics of heat transfer in the
annular channel. Later, Ould-Rouiss et al. [15] conducted DNS with Re = 14,000 and 40,000
and indicated that the values of Re had almost no effects on the normalized turbulent
shear stress. In the latest DNS studies, Bagheri et al. [16–18] analyzed the boundary layer
thickness near the inner and outer walls with the change of ai/ao.

It should be noted that the DNS in current literature is conducted for constant physical
property, i.e., the density ρ, heat capacity c, molecular thermal conductivity k, and molecular
viscosity µ of the flow will be not changed as the temperature changes. Therefore, these
DNS data can show the effects of ai/ao, and qi/qo. On this basis, one dedicates to obtain
a more general conclusion through the theoretical method about the characteristics of
heat transfer in the annular channel to avoid tedious experiment steps or the numerical
simulation process.

These works originate from Churchill et al., who proposed a simplified representation
of heat transfer in terms of the radial heat flux density q for fully developed flows in round
tubes and or parallel-plate channels [19]. On the other hand, the turbulent Prandtl number
Prt is used to build relationship between the momentum and energy transfer based on
the Reynolds analogy. Following the work of Churchill, Yu et al. [20,21] considered an
adaption of the representation in the annular channel and proposed a set of predictions of
Nu for most of the thermal boundary conditions found in practice: uniform heating on the
inner or outer wall, on the both walls, one wall heated and another wall equally cooled, etc.



Energies 2023, 16, 1998 3 of 14

The predicted values for Re, Pr, and ai/ao in a wide range are in good agreement with
the experimental data. Furthermore, Yu et al. [22] generalized their works, in which he was
concerned about the dependence of Nu on Pr/Prt and the extension for a parallel-plate
channel. In addition, the superposition method mentioned by Yu et al. is applied in the
prediction of Nu for different thermal boundary conditions from these specific thermal
boundary conditions.

The theoretical method has the advantage of less cost, thereby, playing an important
role in the prediction of heat-transfer characteristics. However, current theoretical studies
are more concerned about the overall heat transfer in the channel. In addition, there should
be the more specific analysis about the thermal interaction between the inner wall and
the outer wall in the annular channel. Therefore, in this work, we consider turbulent
convective heat-transfer characteristics in the concentric annular channel with both walls
heated, which is the more general case when compared with a single wall heated.

Most existing theoretical works, as well as the associated analyses, were performed
for heating over a single wall. However, our effort in this work is focused on the case of
heating over two walls each imposed with an arbitrary constant heat flux density. The
predictive models and equations for this case can be obtained by applying the principle of
superposition such that the net response of heating over two walls can be related to that of
heating over a single wall.

For the modeling, the assumptions herein are taken as follows: (a) The heat flux
density on both the inner and outer walls, i.e., qi and qo, are arbitrary constant values.
(b) Only single-phase and incompressible flows driven by an axial pressure gradient are
considered, and the physical properties of the fluid are constant. (c) The turbulence is fully
developed, i.e., Re > 4000, and thus the variables of the flow field, such as the axial velocity
u, and temperature T, are time-mean quantities. The aims of the present work include to
obtain the solution of heating over both walls from that of heating over the single wall and
then to investigate the effects of ai/ao and qi/qo on the distribution of the turbulent heat
flux density.

2. Mathematical Formulation
2.1. Review of the Momentum Transfer in the Annular Channel

There are similarities between momentum and heat transfer since the similar mecha-
nism of turbulent exchange leads to both. In the current literature, this analogy has yielded
good results in agreement with the experimental data [23]. For turbulent convective heat
transfer in the annular channel with both walls heated, it is easier to summarize the charac-
teristics of momentum transfer than those of heat transfer. Thus, we start this article by
considering the characteristics of momentum transfer.

The theoretical work in this article is based on a assumptions of fully developed flow in
the channel. When applied in a heat exchanger, this implies that the channel has sufficient
length so that the profile of velocity will not change in the axial direction. Therefore, the
equation for the conservation of momentum in cylindrical coordinates can be written as

0 =
dp
dx

+
1
r

∂

∂r

[
r
(

µ
∂u
∂r
− ρv′u′

)]
, (1)

where −ρv′u′ is described as the turbulent shear stress. The total shear stress τ can be
defined as

τ = µ
∂u
∂r
− ρv′u′ = (µ + µt)

∂u
∂r

, (2)

where µt is described as the eddy viscosity. Suggested by Churchill and Chan [19],
Equation (2) can be cast in the following dimensionless form
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τ

τw
=

du+

dy+
+ (v′u′)+ =

µ + µt

µ

du+

dy+
, (3)

where the dimensionless axial velocity u+ =
[
u(ρ/τw)1/2

]
. The ratio of µt/µ can be

obtained by reformulating Equation (3), yielding

µt

µ
=

(v′u′)+

τ/τw − (v′u′)+
, (4)

The terms on the right hand side of the above equation, such as the normalized shear
stress τ/τw and the turbulent shear stress (v′u′)+ = −ρv′u′/τw should be determined as a
prerequisite for the evaluation of µt/µ.

For the flow in the annular channel, it should be noted that there is an asymmetric
distribution of the velocity in the entire cross-section since the turbulence intensity is higher
in the vicinity of the outer wall than in the vicinity of the inner wall [18]. In the same way
for the flow in the round tube or parallel-plate channel, the normalized stress stress τ/τw
in the annular channel can be derived after determining the radial position of the zero
stress a0, which should coincide with the position of the maximum velocity am based on
Equation (3).

However, the earlier experimental and DNS data [24,25] indicates that there are
differences between am and a0. Based on this, Kaneda et al. [26] used two different formulas
to calculate the values of a0 and am, respectively, which is against Equation (3). For
this problem, Boersma et al. [27] proposed that it is caused by measurement error in the
experimental process or by poor radial resolution of the DNS, and they conducted several
DNS experiments with ai/ao = 0.02, 0.04, and 0.1. The DNS data of Boersma et al. indicates
that a0 is coincident with am.

In recent experimental studies, Marlon et al. [28] presented more accurate measure-
ments through particle image velocimetry for various Re and ai/ao. The experimental data
of Marlon et al. agrees with Boersma et al. and indicates that the values of am, i.e., a0, are
mainly affected by ai/ao and almost unaffected by Re.

Based on the experimental and DNS data, the characteristics of the velocity distribution
and the shear tress distribution in the annular channel is illustrated in Figure 2, where
am denotes the position of the maximum velocity and the zero shear stress and divides
the boundary layer into the inner region and outer region. The specific values of am are
evaluated by the empirical expression summarized by Rehme [29], i.e.,

am − ai
ao − am

=

(
ai
ao

)0.386
. (5)

Once am is obtained, the total shear stress τ can be obtained by integrating Equation (1)

τ =

(
−dp

dx

)(
a2

m − r2

2r

)
. (6)

The ratios of τ/τwi and τwi/τwo can be represented as

τ

τwi
=

ai
r

(
a2

m − r2

a2
m − a2

i

)
, (7)

τwo

τwi
=

ai
ao

(
a2

o − a2
m

a2
m − a2

i

)
. (8)
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Figure 2. Velocity and the shear stress distributions in the annular channel.

As aforementioned, the term (u′v′)+ should also be determined in advance for the
evaluation of µt/µ in Equation (4). To obtain the specific expression of −ρv′u′, one needs
the expression of u. Although the exact distribution of u is not possible to obtain for
fully turbulent flows, its necessary structural form can be deduced for the individual
regions using dimensional and asymptotic arguments. According to the behavior of u+, the
boundary layer in the inner and outer region is assumed to be constituted of two principal
regions: the viscous sublayer where the molecular viscosity effect is important and the fully
turbulent region where it is not.

For y+ → 0, the total shear stress is all viscous, and u+ ∼ y+. As the y+ increases, the
influence of the molecular viscosity decreases, until in the fully turbulent region, where the
viscosity does not affect the average relative motion ∂u+/∂y+, and thus the velocity profile
can be described by the universal logarithmic law [30]. When considering the annular
channel, the velocity profile near the inner and outer walls can, therefore, be approximated
in a close formulation based on the DNS data [17].

In addition, the interaction between the inner region and outer region will occur
where they intersect, so the terms about the boundary thickness should be considered. For
instance, we adopt the representation proposed by Churchill to describe the velocity profile
in the annular channel, i.e.,

u+
0 =

(y+)2

1 + y+ − exp[−1.75(y+/10)4]

u+
∞ = 6.16 + 2.59 ln y+ + 3.75

(
y+

a+

)2

− 2.97
(

y+

a+

)3 (9)

where δ+ denotes the dimensionless boundary layer thickness, which is computed by

δ+ =

{
(am − ai)(ρτwi)

1/2/µ, for the inner region,
(ao − am)(ρτwo)1/2/µ, for the outer region.

(10)

where am denotes the location of the maximum in the velocity distribution or the zero in
the total shear stress as aforementioned. Here, the subscript 0 accounts for the contribution
from the viscous sublayer, and ∞ from the fully turbulent region. To avoid looking for
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the specific critical point, a general expression proposed by Churchill and Usagi [31] is
applied, i.e.,

(u+)−3 = (u+
0 )
−3 + (u+

∞)−3. (11)

Therefore, the specific expressions for the viscous sublayer and fully turbulent region can
be obtained, i.e.,

(u′v′)+0 = 0.7
(

y+

10

)3(
τ

τw

)
(u′v′)+∞ =

τ

τw
−
(

1− y+

δ+

)[
2.59
y+
− 2.59

y+

(
1 + 3.89

y+

δ+

)] (12)

which can be connected by an expression similar to Equation (11), i.e.,[
(u′v′)+

]−8/7
= ((u′v′)+0 )

−8/7 + ((u′v′)+∞)−8/7. (13)

2.2. Analysis of the Heat Transfer in the Annular Channel with Heating over Both Walls

As shown in Figure 3, the heat transfer boundary conditions imposed on the annular
channel can be divided into three types: only the inner wall is heated with qi

i, as shown in
Figure 3a; only the outer wall is heated with qo

o, as shown in Figure 3b; and a more general
case where both walls are heated with qi and qo, respectively, as shown in Figure 3c. There
are sufficiently accurate correlations, which were proposed by Gnielinski, to predict the
values of Nu for the first two cases in Figure 3 [6].

In addition, Yu et al. [22] discussed the relations between the third case and the first
two cases in Figure 3, and proposed a generalized predictive equation in terms of Nu
for different thermal boundary conditions by applying superposition. The application
of superposition, however, requires that the energy equation is linear in temperature.
We demonstrate this using strict derivations in the paper and provide a more accurate
and detailed predictive equation in terms of the temperature and heat flux density by
using superposition.

(a) (b) (c)

Figure 3. Three types of heat transfer boundary conditions in the annular channel: (a) Heating from
the inner wall. (b) Heating from the outer wall. (c) Heating from both walls.

For fully developed turbulence, the profile of the temperature, i.e., (Tw − T)/(Tw − Tm),
will not change in the axial direction, or T is similar to linear changes. Therefore, the govern-
ing equation for the conservation of energy in cylindrical coordinates can be represented as

ρcu
∂T
∂x

=
1
r

∂

∂r

[
r
(

k
∂T
∂r
− ρcv′T′

)]
, (14)

where the specific boundary conditions for the three cases are given by
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−k
∂T
∂r

∣∣∣∣
r=ai

= qi
i,−k

∂T
∂r

∣∣∣∣
r=ao

= 0, heating over the inner wall

−k
∂T
∂r

∣∣∣∣
r=ai

= 0,−k
∂T
∂r

∣∣∣∣
r=ao

= qo
o, heating over the outer wall

−k
∂T
∂r

∣∣∣∣
r=ai

= qi,−k
∂T
∂r

∣∣∣∣
r=ao

= qo, heating over both walls

(15)

In Equation (14), the unknown quantity −ρcv′T′ is described as the turbulent heat flux
density. By introducing the eddy conductivity kt, −ρcv′T′ can be expressed in the form

−ρcv′T′ = kt
∂T
∂r

, (16)

and then the radial heat flux density q can be expressed in the form of the Fourier law

q = −(k + kt)
∂T
∂r

. (17)

The eddy conductivity kt is caused by turbulence and mainly produces effects in the
fully developed turbulent region, which is the similar to eddy viscosity µt. Therefore,
we attempt to establish a contact between the thermal diffusion process and momentum
diffusion process caused by turbulence. In the literature, the Reynolds analogy is usually
used to investigate the heat-transfer characteristics in the boundary layer, in which the
turbulent Prandtl number Prt is described the ratio of momentum to thermal diffusivity, i.e.,

Prt =
µtc
kt

. (18)

Yakhot [32] evaluated the reliability of this method to predict the temperature distribution,
and the solution from this method is in good agreement with the experimental data with
Pr in the range of 10−2–106.

Here, we used the ratio kt/k to discuss the characteristics of kt, which benefits the
analysis of the heat transfer of the more general case shown in Figure 3c and, furthermore,
obtains the distribution of −ρcv′T′. Therefore, based on Equations (18) and (4), kt/k can be
represented as

kt

k
=

Pr
Prt

µt

µ
=

Pr
Prt

(
v′u′

)+
τ/τw −

(
v′u′

)+ . (19)

In this article, a fluid with constant physical properties is discussed, which is applied to the
flow with a small temperature difference across the boundary layer. Thus, the molecular
conductivity k, molecular viscosity µ, and molecular Prandtl number Pr are assumed as
constant. As for Prt in Equation (19), Kays [33] showed the characteristics away from the
wall through the investigation of experimental and DNS data: it has a maximum value
near the wall and tends to be a constant far from the wall.

However, the eddy conductivity kt has little effect on the thermal conduction domi-
nated region near the wall; thus, Prt can be regarded as a constant. Recently, the investiga-
tions of Straub et al. [34] and Lei et al. [35] have shown that, for flows with large values of
Prandtl number Pr, such as air and water, Prt can be further simplified as a function of Pr;
for example [36]

Prt = 0.85 +
0.015

Pr
. (20)

For instance, we use Pr = 0.71 for the air in this work [37]. As discussed previously in
Section 2.1, the eddy viscosity µt is evaluated as a complicated function of the radius
location r; as a result, kt can be finally formulated as a function of r.

Owing to the characteristics of kt, the energy balance equation (Equation (14)) can be
further simplified to a linear partial differential equation. This will facilitate the analysis of
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the case of heating over two walls by applying the principle of superposition associated
with the linear partial differential equation. Motivated by the work of Lundberg et al. [38]
on laminar flows, we applied the superposition in terms of temperature for the fully
developed turbulent convection in this work

T = Ti + To − Te, (21)

where T, Ti, and To are the temperature distributions for heating over both walls, the inner
wall, and the outer wall, respectively. The entrance temperature Te corresponds to the
temperature distribution for both walls with zero heat flux density.

It is noted that the heat flux density q and turbulent heat flux density −ρcv′T′ can
be obtained by taking the derivative of the temperature T, and Te can be eliminated as a
result, i.e.,

q = qi + qo. (22)

where qi and qo denote the distributions of the flux density obtained for the case of heating
over the inner wall only (namely, qi

i = qi) and the outer wall only (namely, qo
o = qo),

respectively. For clarification, the coefficient k is a constant, and kt depends on the radius
location r only, which means that−(k+ kt) is independent from the three types of boundary
conditions in this work. Te in Equation (21) is eliminated after taking the derivative.

Instead of using the original form of Equation (22), we perform the normalization with
respect to the heat flux density qi specified at the inner wall, yielding

q
qi

=
qi

qi
+

qo

qo

qo

qi
. (23)

Here, it should be noted that qi and qo are specified values, and qi and qo are unknown
variables that can be evaluated by considering the case of heating over a single wall. For
instance, in view of the case of heating over the inner wall only (namely, qi

i = qi), the radial
heat flux density qi can be obtained by integrating Equation (14).

qi =
ρc
2r

∫ a2
o

r2
u

∂Ti

∂x
dr2. (24)

Then, the heat flux density at the inner wall qi
i can be obtain from Equation (24) by setting

r = ai, i.e.,

qi
i =

ρc
2ai

∫ a2
o

a2
i

u
∂Ti

∂x
dr2 =

ρc
(
a2

o − a2
i
)
um

2ai

∂Ti
m

∂x
, (25)

where the expression of the dimensionless mixed-mean velocity u+
m = um(ρ/τwi)

1/2 is
given by Kaneda et al. [26], which is

u+
m =

1

(ao/ai)
2 − 1

∫ (ao/ai)
2

1
u+dR2

i

= 3.2 + 2.293 ln

[
(a+o − a+i )

(ao + ai)ai

a2
m − a2

i

]
− 275

(a+o − a+i )
a2

m − a2
i

(ao + ai)ai
,

(26)

where Ri = r/ai.
The research of Churchill et al. [39] shows that, when the heat flux density at the wall

is constant, the gradient of the radial temperature in the axial direction is constant for the
fully developed turbulence, i.e., ∂T/∂x = ∂Tm/∂x = ∂Tw/∂x. Therefore, by substituting
for Equation (26), Equation (24) can be simplified as

qi

qi
i
=

1

Ri[(ao/ai)
2 − 1]

∫ (ao/ai)
2

R2
i

u+

u+
m

dR2
i . (27)
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Similarly, the radial heat flux density for the case of heating from the outer wall, i.e.,
qo/qo

o, can be expressed as

qo

qo
o
=

1

Ro[1− (ai/ao)
2]

∫ R2
o

(ai/ao)
2

u+

u+
m

dR2
o , (28)

where Ro = r/ao. Thus, qi/qi and qo/qo in Equation (23) can be determined by Equa-
tions (27) and (28), respectively.

2.3. The Numerical Method

It is noted that Equation (27) and (28) are integral formulas. Due to their complexity,
a numerical method is used for the computation involved. Here, the ratio of qi/qi in
Equation (27) is used as an example to illustrate the numerical solution method in this
work. First, the expression of qi/qi can be written as

q(r) = g(r)
∫ a+o

r
f (r)dr, (29)

where r is the radial coordinate, q(r) = qi/qi, g(r) =
1

Ri

[
(ao/ai)

2 − 1
] , and f (r) =

u+

u+
m

.

The upper limit a+o in Equation (29) should be determined before calculating the qi/qi,
since other quantities, such as ai/ao and Re, are given as input. Based on the definition of
a+o , a+i , Re, and u+

m , one can build a relationship between them, i.e.,

a+o − a+i =
Re

2u+
m

. (30)

By substitution of u+
m with Equation (26),we can construct a Newton iterative formula

about a+o − a+i , i.e.,

a+o − a+i =
Re

2

{
3.2 + 2.293 ln

[
(a+o − a+i )

(ao + ai)ai

a2
m − a2

i

]
− 275

(a+o − a+i )
a2

m − a2
i

(ao + ai)ai

} , (31)

where the unknown term
(ao + ai)ai

a2
m − a2

i
can be determined using Equation (5). Then, the

Newton iterative method is applied to solve the value of a+o − a+i , and the specific values
of a+o and a+i can be determined for the given ai/ao.

The numerical integration of Equation (29) is performed using the trapezoidal method
due to the complexity of u+. The integral interval [r+n , a+o ] is divided into m parts, and
the width of the part

[
r+m , r+m+1

]
is less than 1 to ensure that the error of numerical inte-

gration can be neglected. Then, the integral value of function f (r) in
[
r+m , r+m+1

]
, i.e., Im, is

approximately represented by the area of the trapezoidal, i.e.,

Im =
∫ r+m+1

r+m
f (r)dr ' 1

2
[

f
(
r+m
)
+ f

(
r+m+1

)]
· |r+m+1 − r+m |. (32)

It is noted that Im is the difference between the primitive functions r+m+1 and r+m ; thus, the
boundary condition, which is the heat flux density at the outer wall qi(a+o ), should be
determined. Here, we consider the case of the first type in Figure 3, and the outer wall is
adiabatic, i.e., qi(a+o ) = 0.

Then, Equation (28) can be solved in a similar way. Note that the lower limit a+i should
be determined, and the boundary condition is the heat flux density at the inner wall, i.e.,
qo(a+i ) = 0.



Energies 2023, 16, 1998 10 of 14

3. The Numerical Results and Analysis

In the previous subsections, the expressions of the normalized radial heat flux density
q/qw (qw = qi for heating over the inner wall and both walls, and qw = qo for heating
from the outer wall) are deduced for the three cases. Then, by Equations (18) and (17), the
distributions of the normalized turbulent heat flux density −ρcv′T′/qw can be obtained by

−ρcv′T′

qw
=

1− 1[
1 +

(
Pr
Prt

)
(v′u′)+

τ/τw − (v′u′)+

]

(

q
qw

)
, (33)

which is the main quantity used to assess the current model and the heat-transfer character-
istics in the annular channel.

For the validation purpose, the solutions of −ρcv′T′/qw for heating over both walls
predicted in this work are all provided compared with the DNS data of Ould-Rouiss et al. [14]
and Chung et al. [13]. Figure 4a illustrates the distribution of −ρcv′T′/qw in the entire radial
direction for various annular radius ratios ai/aos (Re = 8900, and equal heat flux density on
both walls, i.e., qi/qo = 1), while Figure 4b shows the distribution of −ρcv′T′/qw for various
wall heat flux density ratios qi/qos with ai/ao = 0.1 and Re = 14,000. We found that the
distributions of −ρcv′T′/qw from this work are all in good agreement with those of the DNS
data for various ai/aos and qi/qos, thereby, demonstrating the promising performance of the
proposed model and the numerical method applied to solve it.

(a) (b)

Figure 4. The solution of−ρcv′T′/qw from this work compared against DNS data: (a) The comparison
with that of Ould-Rouiss [14]. (b) The comparison with that of Chung [13].

According to Figure 4, the effect of Re on the normalized turbulent heat flux is neg-
ligible; thus, the effects of ai/ao and qi/qo on −ρcv′T′/qw and q/qw are investigated in
this work. The distributions of −ρcv′T′/qw and q/qw for ai/ao = 0.1 and 0.5 are shown
in Figure 5a (Re =10,000). As ai/ao is increased to 0.5, a point symmetric profile can be
obtained, and the point of the zero value approaches the outer wall.

It can be inferred that, when ai/ao = 1, the inner and outer walls exhibit the same
characteristics of heat transfer. The effects of qi/qo are shown in Figure 5b. The distributions
of−ρcv′T′/qw and q/qw do not exhibit a point symmetric profile as qi/qo increases; instead,
it bears resemblance to the case of heating from the inner wall. On the contrary,−ρcv′T′/qw
and q/qw and with a small qi/qo are similar to the case of heating from the outer wall. It is,
therefore, confirmed that the case of heating from the inner/outer wall can be considered as
a special case of heating from both walls with a rather high/low wall heat flux density ratio.
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(a) (b)

Figure 5. The distributions of −ρcv′T′/qw and q/qw for various ai/aos and qi/qos: (a) for various
ai/aos (qi/qo = 1) and (b) for various qi/qos (ai/ao = 0.1).

4. Conclusions

We theoretically modeled turbulent convective heat-transfer characteristics in a con-
centric annular channel for heating over both walls, each with an arbitrary constant heat
flux density. We demonstrated the linearity of the energy equation in temperature using
strict derivations and then proposed more accurate and detailed predictive equations by
applying the principle of superposition in temperature. The accuracy of this method was
evaluated through a comparison between the solutions predicted herein and the DNS data
from the literature.

The numerical results indicate that both the annular radius ratio ai/ao and wall heat
flux density ratio qi/qo are two key factors affecting the turbulent heat-transfer charac-
teristics. As ai/ao increases, the inner and outer walls approach identical characteristics
of heat transfer. However, for qi/qo, the results reveal a different mechanism such that,
at a very high/low heat flux density ratio, heating over two walls works as if only one
side wall is heated. The investigation of this work included a comprehensive and accurate
analysis of the heat-transfer characteristics in an annular channel, and the results support
the theoretical research in the existing literature.
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Nomenclature

a radius of annulus (m)
am radius of maximum in velocity (m)

a+ dimensionless radius
[

a(τwρ)1/2/µ
]

c specific heat capacity ( J · kg−1 ·K−1 )
h heat transfer coefficient [(Tw − Tm)/qw] (W ·m−2 ·K−1)
Nu Nusselt number [2h(ao − ai)/k]
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k molecular conductivity (W ·m−1 ·K−1)
kt eddy conductivity (W ·m−1 ·K−1)
p time-averaged pressure (Pa)
Pr molecular Prandtl number [µc/k]
Prt turbulent Prandtl number
q radial heat flux density (W ·m−2)
r radial coordinate (m)
Re Reynolds number [2(ao − ai)umρ/µ]

r∗ normalized radial coordinate
[

r− ai
ao − ai

]
Re Reynolds number [2(ao − ai)umρ/µ]
T time-averaged temperature (K)
T+ dimensionless temperature

[
k(ρτw)

1/2(Tw − T)/µqw

]
Tm mixed-mean temperature

[
1

um(a2
o−a2

i )

∫ a2
o

a2
i

uTdr2
]

(K)

u time-averaged axial velocity (m · s−1)

um mixed-mean axial velocity
[

1
(a2

o−a2
i )

∫ a2
o

a2
i

udr2
]

(m · s−1)

u+ dimensionless axial velocity
[
u(ρ/τw)1/2

]
x axial coordinate (m)
y distance from the wall (m)
y+ dimensionless distance from the wall

[
y(τwρ)1/2/µ

]
δ boundary layer thickness (m)
µ molecular viscosity (Pa · s)
µt eddy viscosity (Pa · s)
ρ molecular density (kg ·m−3)
−ρv′u′ turbulent shear stress (Pa)
−ρcv′T′ turbulent heat flux density (W ·m−2)
τ shear stress (Pa)
(v′u′)+ dimensionless turbulent stress[−ρv′u′/τw]
Subscript w wall
Subscript i pertains to the inner wall
Subscript o pertains to the outer wall
Superscript i heated over the inner wall only
Superscript o heated over the outer wall only
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