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Abstract: The design of moisture-durable building enclosures is complicated by the number of
materials, exposure conditions, and performance requirements. Hygrothermal simulations are used
to assess moisture durability, but these require in-depth knowledge to be properly implemented.
Machine learning (ML) offers the opportunity to simplify the design process by eliminating the need
to carry out hygrothermal simulations. ML was used to assess the moisture durability of a building
enclosure design and simplify the design process. This work used ML to predict the mold index and
maximum moisture content of layers in typical residential wall constructions. Results show that ML,
within the constraints of the construction, including exposure conditions, does an excellent job in
predicting performance compared to hygrothermal simulations with a coefficient of determination,
R2, over 0.90. Furthermore, the results indicate that the material properties of the vapor barrier and
continuous insulation layer are strongly correlated to performance.

Keywords: building envelope; moisture; durability; design; machine learning; optimization;
artificial intelligence

1. Introduction

The built environment accounts for almost 40% of global carbon dioxide emissions [1,2].
More than 25% of those emissions, or 11% of total global emissions, is attributed to manu-
facturing building materials such as steel, cement, plastic, and glass. Between 2013 and
2016, emissions from the built environment were flat. However, after 2016, emissions
started to increase again. The emissions growth rate for the past two years was 2% annually
in response to increased construction to meet the growing population’s demand. These
trends are not sustainable and are certainly not aligned with the goals established in the
Paris Agreement, which include a reduction in carbon dioxide emissions of 50% by 2030 [3].

An effort is underway to help architects and engineers reduce energy consumption
and carbon emissions associated with the built environment. In the past, the emphasis was
on carbon dioxide emissions related to heating, cooling, lighting, and plug loads. However,
the amount of carbon dioxide emitted that is associated with the manufacture of building
materials is significant. For example, the production of Portland cement alone accounts
for almost 8% of global greenhouse gas emissions [4]. As a result, tools and databases are
being developed to help architects and engineers carry out life cycle analysis of building
materials to minimize carbon dioxide emissions across all segments of the buildings’ value
chain. Tools such as EC3 [4], One Click LCA [5], GaBi [6], and the ICE Database [7] are just
a few examples of the resources available to provide information regarding the embodied
carbon of building materials.

Another example is the use of plastic foam insulation on the exterior of buildings
to reduce heating and cooling loads. However, to what extent will the negative impact
of the embodied carbon of plastic foam outweigh the energy savings related to the in-
creased insulation value? Addressing this question requires well-characterized material
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and manufacturing processes to, in part, quantify the embodied carbon. Manufacturers
are using international standards to codify this information into what is defined as an
Environmental Product Declaration (EPD) [8]. According to the International EPD System,
the EPD is an independently verified and registered document that quantifies product life
cycle environmental impact in a standardized form that enables a direct comparison [9].
Most importantly, the EPD contains information regarding a material’s embodied carbon
that can then be used as part of a life cycle assessment for the building.

This realization has also driven the growth and development of sustainable build-
ing materials. In response to environmental regulations such as California’s Buy Clean
California Act, manufacturers have begun modifying existing products and developing
products with lower global warming potentials [10]. The challenge accompanying these
changes is the long-term performance and durability of these materials incorporated in
the building envelope. The time to develop and characterize the long-term performance
of building materials is certainly not aligned with adopting these new regulations. The
iterative process of material development, characterization, and systems testing is complex.
The number of elements in residential and commercial wall systems coupled with different
environments or climate zones results in tens of thousands of combinations that must be
analyzed to evaluate suitability and performance. This process is not only time-consuming
but also expensive.

One approach to facilitate material development and deployment in building enclosure
systems from the roof to the foundation is machine learning (ML). ML is a subset of artificial
intelligence (AI) that can learn by using statistical models and algorithms to recognize
patterns in data. This learning is accomplished without an explicit set of instructions
or rules.

An extensive literature review has revealed more than 9000 publications that have
a connection between advanced data analytics and building performance. Hong et al.
focused on 150 publications that applied machine learning to the design, operation, and
control of buildings [11]. Machine learning is finding utility in the built environment
because it offers several benefits or advantages compared to conventional simulation tools.
Speed seems to receive the most attention, provided the data sets are large enough to train
the models. Monitoring building performance lends itself to the collection of large data
sets. The challenge is what to do with it beyond, for example, temperature control. One
case in point is the work by Tzuc et al. They were able to use weather data to train a
neural network to model the hygrothermal performance of a vegetative façade [12]. What
makes ML attractive when it comes to modeling the performance of systems with large
data sets is that there are options. For example, Tijskens and coworkers evaluated or
compared three neural networks’ performance to predict a masonry wall’s hygrothermal
performance [13]. In this case, they found that a convolutional neural network required
less training time and was the best at predicting performance [14]. To facilitate the selection
of moisture-durable constructions, Salonvaara and coworkers implemented ML [15]. They
demonstrated that an artificial neural network and gradient-boosted decision trees could
be used to simulate hygrothermal performance with reasonable accuracy compared to
hygrothermal simulations.

Machine learning has been applied to other problems beyond hygrothermal perfor-
mance. For example, Kim and coworkers applied ML to optimize a double skin façade for
performance and aesthetics [16]. In addition, they compared the results to conventional
simulations and found that the two were comparable. Another example of an applica-
tion is predicting the performance of enclosures integrated with phase change materials
(PCMs) [17]. In this example, several models were compared to understand the difference
in speed and accuracy when selecting suitable PCMs for this application.

ML was also used to optimize the energy performance of buildings [18]. Using
design variables similar to those used in EnergyPlus [19], the model determined the
optimal design in less than one minute instead of hours using traditional simulation
approaches. Furthermore, the deviation between the optimum value obtained using ML
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and the simulation results using EnergyPlus was less than 3%, indicating good agreement
between the two methods.

Bansal et al. [20] used ML to create a metamodel to forecast long-term hygrothermal
responses and the moisture performance of light wood frames and massive timber walls.
However, the authors note that unless the input data include the full range of variability of
the climate variables, the prediction could be inconsistent. That demonstrates the obvious
limitation of ML methods: extrapolating outside the ranges of the input variables can but
might not necessarily produce erroneous results.

The benefits of ML applied to the built environment are apparent across a wide range
of applications. For example, when designing energy-efficient constructions, it is important
to account for the hygrothermal performance or the relationship between the movement
of heat, air, and moisture through the building envelope and its effect on durability. The
two are not mutually exclusive. Depending on the temperature and relative humidity,
condensation within the building envelope can occur, resulting in durability problems such
as mold and rot. For example, because insulation materials made from natural fibers are
inherently a food source, they are more susceptible to mold growth than synthetic materials
such as plastic foam insulation. To avoid the issue, hygrothermal simulations are used to
evaluate the effect of material properties and wall designs on durability. The approach is
complex and requires expert knowledge to implement. However, the benefits of ML can be
used not only to facilitate the implementation of new materials in wall construction but
also to provide guidance regarding material properties required to achieve a certain level
of performance in a wall design. More importantly, such work is possible in the absence of
expert knowledge.

The conventional approach to material development and deployment consists of the
following steps: (1) new material is developed, (2) hygrothermal properties are charac-
terized, (3) the building envelope material layout is adjusted so the new material can be
incorporated, and (4) hygrothermal simulations are carried out to assess performance
and durability.

In a wall system, the number and combination of variables that describe its perfor-
mance are vast, more than tens of thousands when breaking down the levels with respect
to material properties and the material layers that make up the wall assemblies. Coupled
with climate, the number increases by more than an order of magnitude. Optimizing the
materials and systems using an iterative process, as described earlier, requires significant
resources, time, and cost.

Another limitation of using hygrothermal simulations is that they can only be carried
out in one direction. That is, first, the user determines the properties of the material
and then constructs the wall assembly and runs the simulation. Then, the materials and
design are refined based on expert knowledge to improve performance. Unfortunately, the
simulations cannot be run in the opposite direction where the architect or designer specifies
a level of performance and the simulation generates the design or material properties
required to meet that level of performance.

Because ML looks at patterns in data sets, it is irrelevant whether the starting point
is the material properties or a level of performance at the assembly level. Herein lies the
advantage of using ML over conventional simulation methods, and the present paper
demonstrates this.

2. Building Science Advisor—New Construction

To help architects and engineers select durable enclosure designs with minimal effort,
Oak Ridge National Laboratory developed the Building Science Advisor (BSA). The new
construction tool guides the user to input the following data for a proposed wall: climate
zone, exterior cladding, water-resistive barrier, continuous insulation, sheathing, wall
structure type, cavity insulation, and interior vapor barrier. After the user inputs these
data, the tool searches a database for similar walls. Each entry into the database includes
a set of material properties for some or all the wall layers and an associated moisture
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durability rating. The moisture durability ratings for the condition described in the entry
are pass, inconclusive, or fail. These ratings are based on hygrothermal simulations or
expert opinions. The user’s wall can match more than one entry in the database. If this
happens, the most conservative durability rating and relevant durability guidance are
displayed. The durability guidance will tell the user why the wall did not pass the moisture
durability assessment and what can be done to improve the performance of the wall.

Figure 1 shows a presentation of this information for a user-selected wall. The user
can see and change the wall construction. The wall’s moisture durability and thermal
performance, as well as the wall’s construction visualization and durability guidance,
are displayed.
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Figure 1. Results screen of the BSA new construction tool showing the user-selected wall with
predicted performance and guidance for improving the moisture durability of the selected wall.

The moisture durability performance is based either on the mold index calculated
from the hygrothermal modeling outputs as outlined in ASHRAE Standard 160 or on the
consolidated expert opinion [21]. Typically, the entries in the database from hygrothermal
simulations specify the material properties of every layer in the wall, and the entries from
expert opinion specify only the material properties of select layers. The expert opinion-
based entries focus on common issues found in walls that are known to cause long-term
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moisture durability problems. A more thorough description of how this tool works can be
found in the literature [22].

3. Building Science Advisor—Retrofit

The retrofit web tool has similar inputs for the wall construction as the new construc-
tion tool. In the retrofit web tool, the user describes the existing wall to be retrofitted
and then selects the desired retrofit: exterior, gut, or interior retrofit. Figure 2 shows the
materials in the wall that can be changed depending on the chosen retrofit approach. After
the user selects the preferred retrofit approach, the tool searches a database of hygrothermal
simulation results for matches on the unchanged materials. For example, suppose the user
selected an exterior retrofit. In that case, entries in the database are found with the same
wall structure, interior vapor retarder, and interior finish as the existing wall.

Energies 2023, 16, x FOR PEER REVIEW 5 of 22 
 

 

Figure 1. Results screen of the BSA new construction tool showing the user-selected wall with pre-
dicted performance and guidance for improving the moisture durability of the selected wall. 

The moisture durability performance is based either on the mold index calculated 
from the hygrothermal modeling outputs as outlined in ASHRAE Standard 160 or on the 
consolidated expert opinion [21]. Typically, the entries in the database from hygrothermal 
simulations specify the material properties of every layer in the wall, and the entries from 
expert opinion specify only the material properties of select layers. The expert opinion-
based entries focus on common issues found in walls that are known to cause long-term 
moisture durability problems. A more thorough description of how this tool works can be 
found in the literature [22]. 

3. Building Science Advisor—Retrofit 
The retrofit web tool has similar inputs for the wall construction as the new construc-

tion tool. In the retrofit web tool, the user describes the existing wall to be retrofitted and 
then selects the desired retrofit: exterior, gut, or interior retrofit. Figure 2 shows the mate-
rials in the wall that can be changed depending on the chosen retrofit approach. After the 
user selects the preferred retrofit approach, the tool searches a database of hygrothermal 
simulation results for matches on the unchanged materials. For example, suppose the user 
selected an exterior retrofit. In that case, entries in the database are found with the same 
wall structure, interior vapor retarder, and interior finish as the existing wall. 

All matches with a mold index of less than two are presented to the user. The matches 
can be filtered for desired materials, and then one wall can be selected to view its moisture 
and thermal performance, which can be compared with the existing wall. Figure 3 shows 
the result screen for the tool, where the existing and retrofit wall materials, moisture du-
rability, and thermal performance are compared. 

 
Figure 2. Wall materials that can be changed depending on the type of wall retrofit. CI = Continuous 
Insulation. 
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Insulation.

All matches with a mold index of less than two are presented to the user. The matches
can be filtered for desired materials, and then one wall can be selected to view its moisture
and thermal performance, which can be compared with the existing wall. Figure 3 shows
the result screen for the tool, where the existing and retrofit wall materials, moisture
durability, and thermal performance are compared.

The core of these webtools is in the database used to assess the moisture durability
of a user’s wall. Most entries for the retrofit and new construction databases are based on
hygrothermal simulation results. However, to cover the wide range of layer and material
combinations for walls in each climate zone requires millions of simulations, which is
expensive in both simulation computing time and server speed when hosted for the
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webtool. Furthermore, using a static database does not allow flexibility for the user to input
new or custom materials to be evaluated in a wall.
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4. Hygrothermal Simulations to Create Inputs for Machine Learning

The BSA tool helps users answer design questions regarding thermal performance and
durability. Hygrothermal simulations are time-consuming and require expertise not only in
heat and mass transfer but also in setting up numerical models to evaluate the performance
and risks of the designs. Furthermore, once the simulations have been carried out for a
specific design, the remaining question is whether the solution is optimal and what should
be completed to make it perform better. Therefore, a quicker and simpler tool is needed to
evaluate and optimize the design.

The number of simulations to create a database to cover all possible design options the
user might select can rise to millions of cases. That is because each layer in the wall can have
multiple options. For example, the input options for the cladding could be different types of
brick, fiber cement siding, vinyl siding, wood siding, and others. The water-resistive barrier
can be almost water vapor impermeable, very vapor open, or somewhere in between. Wall
assemblies with just three options for a 7-layer wall assembly in 15 climates result in more
than 30,000 simulation cases in just 1 orientation. Adding options to select would increase
the number of cases exponentially.

A standard or typical database includes climate zone, wall orientation, the identity
of the layers (e.g., “brick” or “mineral fiber insulation”), description or property of the
layers (e.g., “thickness” or “vapor permeability”), and performance parameters (e.g., “mold
index” or “maximum moisture content”). Named inputs, or categories, are sufficient in a
database that is used only to select the performance for the cases the database includes. In a
previous paper, the authors used machine learning to predict performance using categorical
inputs [15]. However, when using categorical inputs, the user would not be able to evaluate
the performance of a wall with a material layer that is not included in the original data
set. Furthermore, interpolating between the simulated cases in the database would not
be possible with categorical or named inputs. Therefore, we elected to use the material
properties of the layers in the database instead of names or categories of materials, which is
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what is performed in BSA. These inputs would then be analyzed with ML techniques to
interpolate new results between the simulated cases.

Even though the simulations for the BSA tool include mass walls, this paper focuses
on lightweight wood frame construction.

4.1. Design Process

Hygrothermal simulations are post-processed per ASHRAE Standard 160 [21] to
consider the maximum acceptable moisture content in a critical layer and the mold growth
index in the wall. The exterior sheathing was selected as the critical layer. The mold growth
index (MI) was calculated on both the exterior and interior sides of the insulated cavity
to account for performance in cold and hot-humid climates. Mold growth in the building
assembly was predicted by running a five-year simulation and taking the maximum MI.
The MI can range from between 0 and 6 [23].

An additional criterion for some materials, such as wood-based sheathing boards,
is typically the limit for moisture content. Wood begins to suffer damage if its moisture
content remains at 20% for days or longer. High moisture content for a prolonged period
can allow the wood to begin to rot. In addition, dimensional changes due to high moisture
can further create damage and impact the integrity of the building envelope assembly.

4.2. Wall Assemblies and Climates Included in the Study

One-dimensional simulations were carried out for lightweight and masonry walls
using a hygrothermal simulation tool [24]. The simulation parameters used in the training
set included 19 climate locations covering all 8 US climate zones and the wall structures, as
depicted in Figure 4. The simulations included the locations and climate zones listed in
Table 1. Mobile, AL, Grand Island, NE, and Burlington, VT, were used to test the model’s
ability to predict performance; hence, they were not part of the training set.
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Table 1. Locations and climate zones used in simulations for hygrothermal performance. Italicized
locations were used as testing climates and were not part of the training set for ML.

Location Climate Zone Climate Characteristic

Miami, FL 1A Hot humid
Houston, TX 2A Hot humid
Mobile, AL 2A Hot humid
Phoenix, AZ 2B Hot dry
Tucson, AZ 2B Hot dry
Atlanta, GA 3A Mixed humid
Los Angeles, CA 3B Hot dry
San Francisco, CA 3C Marine
Baltimore, MD 4A Mixed humid
Knoxville, TN 4A Mixed humid
Albuquerque, NM 4B Mixed dry
Seattle, WA 4C Marine
Chicago, IL 5A Cold wet
Madison, WI 5A Cold wet
Syracuse, NY 5A Cold wet
Grand Island, NE 5A Cold wet
Flagstaff, AZ 5B Cold dry
Minneapolis, MN 6A Cold wet
Burlington, VT 6A Cold wet
Boise, ID 6B Cold dry
Anchorage, AK 7 Very cold
Fairbanks, AK 8 Subarctic

The layer details are listed in Table 2.

Table 2. Layer options for the lightweight and the masonry walls used in parametric simulations,
adapted from ref. [15].

Layer Lightweight Wall Masonry Wall

Brick, buff matt brick, vinyl, fiber
cement, stucco, wood X

Vinyl, stucco X
Ventilated, nonventilated air gap X X
Continuous insulation, extruded
polystyrene (XPS), expanded
polystyrene, mineral fiber, cork
(0/16/25/38/51/76/102 mm)
Water-resistive barrier, permeance:
0.5, 5, 10, or 50 perms X X

OSB (oriented strand board),
plywood, chipboard, wood
fiberboard, wood, exterior grade
gypsum board

X

89 mm or 140 mm wood frame X
203 mm CMU (concrete masonry
unit), grouted or ungrouted X

Cavity insulation: Fiberglass,
closed-cell spray foam, no insulation X

Interior continuous insulation: None,
25 mm XPS, 25 mm mineral fiber X

Vapor retarder: None, 0.5/1/5 perm,
variable permeance X X

Gypsum wallboard and latex paint X X
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4.3. Example of Simulation Results for Machine Learning Analyses

The performance data for ML analyses were created by running hygrothermal simula-
tions for wall assemblies in different climates. An example of a wall system, its layers, and
locations of interest are shown in Figure 5. The simulations were run for five years using
the same single-year weather file. The moisture design reference year (second most severe
year) per the ASHRAE Research Project 1325 [25] was used in each climate location. Three
key values are taken from each simulation: (1) temperature and relative humidity on the
exterior side of the insulated cavity (Point 1), (2) temperature and relative humidity on the
interior side of the cavity (Point 2), and (3) average moisture content of the exterior sheath-
ing (Point 3). The hourly temperature and relative humidity were used in postprocessing
to calculate the predicted mold index for Points 1 and 2.
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Figure 5. Wall assembly used in simulations with points of interest to develop post-processed results
for ML.

The maximum mold index and moisture content values over the five years were then
recorded for each case as the performance value and inputs for ML analyses. Figure 6
shows the hourly temperature and relative humidity on the exterior side of the insulated
cavity. Figure 7 shows the post-processed mold index and the average moisture content of
the exterior sheathing. The maximum values of the mold index and the moisture content
over the simulated period are selected as the final values. The mold index is calculated
both for the exterior and the interior side of the insulated wall cavity. The highest mold
index of the two is selected as the final performance value.
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are pointing to the maximum value over the period.

The data for performance analysis based on the results in Figure 7 would be a mold
index slightly above 4 and a maximum moisture content of about 28% by weight.
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4.4. Creating Inputs from Simulation Cases for Machine Learning Analysis

This paper focuses on the analysis of wood-framed walls. These cases form 87% of the
cases in the database.

Named materials and thicknesses describe a wall in each functional layer of the
wall, such as cladding, continuous insulation, and water-resistive barrier. In this study,
we converted the named layers in the simulated wall assemblies into numeric values
describing each layer with relevant material properties for heat and moisture transport.
Using regression analysis with ML, these numeric values allow for a correlation between
the performance values and the inputs (material properties and weather parameters).

Cladding materials are exposed to rain and ambient air temperature and humidity.
Therefore, the cladding materials were characterized by the liquid uptake value (A-value,
kg/m2·s05), water vapor permeance (1 U.S. Perm = 57 ng/s·Pa ·m2) for so-called dry-cup
and wet-cup conditions (0%RH-50%RH and 50%RH-100%RH, respectively), moisture
storage (sorption at 80%RH, W80, kg/m3), and thermal resistance R (m2·K/W). The exterior
sheathing materials were characterized with the same parameters but without the liquid
uptake value. The water-resistive barriers (WRBs) and vapor retarders had only the
water vapor resistance values for dry- and wet-cup conditions. Instead of giving the
permeance values of layers as inputs for the model, we used the water vapor resistance,
Z = 1/permeance. Finally, the insulation layers were characterized by the water vapor
permeance (given in input as water vapor resistance, Z) and thermal resistance values. The
properties of materials used in the simulations are shown in Table 3.

Table 3. Materials and properties.

Materials k-Dry (W/m·K) A-Value,
kg/m2·s0.5

Permeance, Dry
Cup, Perm

Permeance, Wet
Cup, Perm W80, kg/m3 Thickness (m) R-Value

(m2·K/W)

Exterior sheathing
OSB 0.092 0.62 5.56 83.4 0.0125 0.136
Plywood (USA) 0.084 0.58 8.77 64.4 0.0150 0.179
Southern yellow pine 0.119 0.38 8.33 62.2 0.0200 0.168
Wood fiberboard 0.052 16.67 20.00 35.4 0.0125 0.240
Exterior gypsum 0.218 45.45 58.82 6.2 0.0127 0.058
Claddings
Buff matt clay brick 0.43 0.00013 1.19 4.54 2.4 0.1040 0.242
Brick old 0.4 0.2083 2.56 4.35 3.3 0.1040 0.260
Vinyl siding 0 0.10 0.10 0 0.018
Stucco 0.399 0.0033 1.02 2.08 106.6 0.0200 0.050
Western red cedar 0.084 0.0011 0.21 1.02 33.7 0.0200 0.238
Fiber cement siding 0.245 0.03 2.08 20.00 185.8 0.0080 0.033
Vapor retarders
PA membrane 0.88 16.67
VB: 0.1 perm 0.1 0.10
VR: 0.5 perm 0.5 0.50
VR: 1.0 perm 1 1.00
VR: 5.0 perm 5 5.00
WRBs
WRB: 0.5 perm 0.50 0.50
WRB: 5.0 perm 5.00 5.00
WRB: 10 perm 10.00 10.00
WRB: 50 perm 50.00 50.00

Cavity insulation Permeance per
inch R-value per inch

Fiberglass 118 0.652
Closed-cell spray foam 1.46 1.057

Additionally, to evaluate the performance in a more refined location and weather
conditions, the climatic information was converted to annual weather parameters to assess
the ability of ML to correlate the hygrothermal performance to the weather parameters.
In the ASHRAE Research Project 1325, “Environmental weather loads for hygrothermal
analysis and design of buildings,” [25] annual weather parameters were found to correlate
with the durability performance of wall assemblies, and the method to select moisture
reference years was created using annual average weather parameters. Therefore, it is
reasonable to assume that the weather parameters could be used in the ML analyses instead
of named weather locations as categorical inputs. Table 4 lists the weather locations and
the annual average weather parameters for temperature (T, ºC), relative humidity (RH, %),
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water vapor pressure (Pv, Pa), cloud index (Cloud, -), solar radiation on a wall facing north
(RadN, W/m2), solar radiation on a wall facing the orientation with the most wind-driven
rain (RadWDR, W/m2), rain on a wall facing north (RainN, mm/h), rain on a wall facing
the orientation with the most wind-driven rain (RainWDR, mm/h), average daily minimum
temperature (Av.Tmin, ºC), and average daily maximum temperature (Av.Tmax, ºC).

Table 4. Average annual weather parameters for weather locations. Solar radiation and wind-driven
rain are shown for two orientations: north (N) and the orientation of the wall that receives most of
the wind-driven rain (WDR). The locations in italics were used as testing locations and were not part
of the training set.

City, State T
(ºC)

RH
(%)

Pv
(Pa)

Cloud
-

RadN
(W/m2)

RadWDR
(W/m2)

RainN
(mm/h)

RainWDR
(mm/h)

Av.Tmin
(ºC)

Av.Tmax
(ºC)

Miami, FL 24.5 73.3 2031 3.8 70 88 0.0651 0.0799 20.7 28.5
Houston, TX 18.7 78.9 1762 4.2 62 78 0.0651 0.0713 13.4 24.8
Mobile, AL 18.7 74.6 1663 4.2 62 116 0.0734 0.0982 14.2 24.2
Phoenix, AZ 23.3 43.2 1113 2.6 59 116 0.0080 0.0171 17.3 29.4
Tucson, AZ 18.9 37.0 987 2.5 59 158 0.0135 0.0227 12.0 25.9
Atlanta, GA 14.7 71.4 1357 4.4 63 104 0.0386 0.0713 10.1 20.0
Los Angeles, CA 17 75.8 1478 3.6 64 126 0.0070 0.0435 13.7 21.2
San Francisco, CA 13.9 78.0 1261 3.7 56 133 0.0034 0.0775 10.4 18.6
Baltimore, MD 12.4 68.7 1218 4.2 56 70 0.0599 0.0720 7.1 17.7
Knoxville, TN 14.9 76.2 1439 4.8 61 96 0.0360 0.0426 9.5 20.4
Albuquerque, NM 13.4 44.5 912 3.2 57 146 0.0121 0.0143 6.8 20.6
Seattle, WA 11.1 77.3 1086 5.5 48 99 0.0049 0.0812 7.4 15.3
Chicago, IL 9.7 70.0 1062 5.0 58 80 0.0612 0.0974 4.6 14.5
Madison, WI 7.7 76.3 1012 5.3 60 68 0.0461 0.0489 2.2 12.6
Syracuse, NY 8.5 75.9 1038 5.3 56 88 0.0244 0.0449 3.0 13.5
Grand Island, NE 11.1 70.1 1114 4.2 55 55 0.0381 0.0381 5.7 17.7
Flagstaff, AZ 6.9 52.8 765 3.0 56 56 0.0435 0.0435 −1.1 14.6
Minneapolis, MN 7.8 74.0 1010 4.9 55 94 0.0332 0.0630 3.2 12.3
Burlington, VT 6.5 74.3 1006 5.4 56 113 0.0248 0.0317 1.7 17.7
Boise, ID 11.1 60.2 859 4.5 54 72 0.0135 0.0154 4.8 17.4
Anchorage, AK 2 74.5 747 5.7 40 93 0.0090 0.0188 −2.6 6.1
Fairbanks, AK −1.8 68.9 624 4.8 42 80 0.0029 0.0148 −6.9 3.3

4.5. Examples of Inputs for Machine Learning

The material properties for each layer in the wall assemblies and the annual average
weather parameters were used as inputs for ML (Table 5).

Table 5. Descriptions of the inputs for training the ML models. The italicized parameters are not
used as inputs in training the model but only to help identify the results afterward.

Parameter Description Parameter Description
Assembly Inputs Weather Inputs Annual Average of

Od_weather Weather location index T Outdoor air temperature
Exterior_cladding_id Exterior cladding index RH Outdoor air relative humidity

Air_gap_id Air gap index indicating existence
of air gap behind siding Pv Outdoor air vapor pressure

Ext_sheathing_id Exterior sheathing index Cloud Cloud index
Wall_structure_category_id Wall structure type index Rad Solar radiation on wall
A_clad Liquid uptake of cladding Rain Wind-driven rain on wall
R_clad R-value of cladding Av_Tmin Daily minimum temperature

Z_clad_dry/wet Water vapor resistance of cladding,
dry and wet cup test Av_Tmax Daily maximum temperature

R_exsh R-value of exterior sheathing

Z_exsh_dry/wet Water vapor resistance of exterior
sheathing, dry and wet cup test

R_ci_ext R-value of exterior
continuous insulation Outputs
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Table 5. Cont.

Parameter Description Parameter Description
Assembly Inputs Weather Inputs Annual Average of

Z_ci_ext Water vapor resistance of exterior
continuous insulation Mold_index Mold index

R_ci_int R-value of interior
continuous insulation MaxMC Maximum moisture content of

the exterior sheathing

Z_ci_int Water vapor resistance of interior
continuous insulation

R_cav R-value of cavity insulation

Z_cav Water vapor resistance of
cavity insulation

Z_wrb Water vapor resistance of
water-resistive barrier

Z_vb_dry/wet Water vapor resistance of vapor
barrier, dry and wet cup test

S_clad Moisture storage capacity
of cladding

S_exsh Moisture storage capacity of
exterior sheathing

Airgap_Z Water vapor resistance of air gap

4.6. Preprocessing and Visualizing the Data

Figure 8 shows the histogram of different input features used for the ML model to
predict the mold index. Most weather inputs are widely scattered between the minimum
and the maximum values. Some of the inputs are concentrated on several values, such
as the vapor resistance of the vapor barrier (Z_vb_wet) and the thermal resistance of the
continuous insulation on the interior side of the wall (R_ci_int). The histograms help
identify which inputs would require refinements to improve the ML predictions. Ideally,
we would want the distribution of values to be evenly scattered across the range of the
property values.
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4.7. Machine Learning Analyses for Mold Index and Maximum Moisture Content

A commercially available ML analysis tool (Google AutoML for Tables [26]) was used
to evaluate the tabular data. Google Vertex AI and its AutoML require little effort and can
be used to create a benchmark case for a data scientist’s development [27]. The caveat is
that the system is not free, which makes a case for testing and developing a local model if
cost is an issue. Additionally, the system does many tasks without the user’s knowledge,
and the methods used in the specific model are not disclosed. The benefit of using AutoML
is its ease of use, without setting up any local hardware or software environment. However,
the user can evaluate the goodness of the performance with several parameters. Therefore,
one can achieve good results by using a plug-and-play setup for the data. The authors will
present their local model development in a follow-up paper. The AutoML tool conducts
several ML tasks behind the scenes:

• Preprocessing the data;
• Performing automatic feature engineering;
• Model architecture searching;
• Model tuning;
• Cross-validating;
• Automatic model selection and ensembling.

Four steps were followed to train and test the ML models. First, the tool trained the
ML models to predict the mold index and the maximum moisture content using a data set
of simulated results. Second, we tested the performance of the models using the model
to predict the performance of new materials that were not part of the training set. Third,
the predictions for new climates were tested with materials that were already part of the
training set. Fourth, the performance of the ML models was tested with both the new
climates and the new materials.

4.7.1. Training the Machine Learning Model

A data set of 48,855 lines of simulated values was used to train the ML tool. The
default 80%/10%/10% random split was used (training/validation/test). The prediction
was optimized for residual mean squared error (RMSE) with mold index as the target.
Table 6 lists the mean absolute error (MAE), RMSE, and coefficient of determination (R2)
for predicting the maximum mold index and the maximum moisture content.

Table 6. Calculated accuracies for the mold index and maximum moisture content prediction.

Prediction Target MAE RMSE R2

Maximum mold index 0.024 0.058 0.997
Maximum moisture content 0.154 0.568 0.995

The features in the input data are shown in the order of importance in Figure 9 as
determined by the ML tool. The definitions of the parameters are listed in Table 5. The
most important features in determining the mold index in the walls are the water vapor
resistance (1/permeance) of the vapor barrier (Z_vb_wet and Z_vb_dry) and the thermal
resistance of the continuous insulation (R_ci_ext), which are in the top three for predicting
the maximum moisture content. However, the thermal resistance of the exterior sheathing
is now the most important feature for determining maximum moisture content. Otherwise,
the features are in a similar order for the mold index and maximum moisture content
predictions, with slight changes in the order of importance.

The predicted values from ML models for the mold index and moisture content are
depicted vs. the simulated values from hygrothermal simulation tools in Figure 10a,b, respec-
tively. In contrast to the mold index, the moisture content has sections where some of the sim-
ulated and predicted values diverge at moisture contents greater than 15%. Despite the diver-
gence, the correlation seems strong, as reflected by R2 values of 0.997 and 0.995, respectively.
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4.7.2. Predicting the Performance Parameters with New Materials

Two new materials, chipboard exterior sheathing and wood fiber exterior insulation,
were introduced, and simulation cases with those materials were carried out. Figure 11
shows the correlation between the ML-predicted and simulated mold index and maximum
moisture content for the new materials. Table 7 lists the performance indicators. The
method predicts these new materials well with no outliers. The results are well correlated
with the input data with R-squared over 0.97 both for the mold index and maximum
moisture content predictions and the MAE and RMSE representing less than 5% error
from the maximum values. However, at high moisture contents >20% by weight, the
predictions show consistently higher than simulated moisture contents, and the errors
in the predictions are concentrated in this range. This is possibly due to fewer input
data being available in ML training with high moisture contents and the highly nonlinear
nature of sorption isotherms. The 20% by weight moisture content or higher for wooden
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materials is considered unacceptable, so both the simulations and the ML predictions
predict unacceptable performance.
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perfect fit.

Table 7. Calculated accuracies for the mold index and maximum moisture content prediction for new
materials with existing climates in training.

Prediction Target MAE RMSE R2

Mold index 0.134 0.210 0.974
Maximum moisture content 1.940 2.716 0.977

4.7.3. Predicting the Performance with New Climates

Three new climates—Mobile, Alabama, Burlington, Vermont, and Grand Island,
Nebraska—were introduced into the simulations with materials that were included in
the training set for ML. Figure 12 shows the correlations for the predicted mold index
and maximum moisture content as a function of the simulated values. Table 8 shows the
performance indicators. The quality of the predictions is worse for the mold index, with
both the MAE and RMSE higher and the R2 lower for the new climate prediction than for
testing with the new materials. The three climates also have different trends: the predictions
for Mobile, Alabama, are generally on the high mold index and moisture content side,
whereas in Burlington, Vermont, the results are mostly on the low side. Burlington is one of
the coldest climates in the data set, and small changes in material and weather parameters
can cause large differences in performance. Therefore, more focus should be placed on the
extreme climates in the simulations that provide the input data. The ML model predicts
maximum moisture content better than the mold index with the new climates.

The performance with weather parameters for Mobile, Alabama, and Grand Island,
Nebraska, is conservative and provides safe guidance regarding mold growth by mainly
predicting a higher mold index than simulated. However, for Burlington, Vermont, the
predictions for the mold index are lower than those simulated, giving a false sense of
moisture safety for the wall design. The predictions for the maximum moisture content are
similarly low for Burlington, Vermont, but align much better with the simulated data. The
poor performance in predicting the mold index in one of the climates indicates that more
work is needed to improve the accuracy with new climate locations by adding new different
climates into the training set and investigating potential additional weather parameters
and their impact on predictions, although the general trend is acceptable.
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Table 8. Calculated accuracies for the mold index and maximum moisture content prediction for new
climates with existing materials in training.

Prediction Target MAE RMSE R2

Mold index 0.238 0.420 0.901
Maximum moisture content 0.697 1.270 0.960

4.7.4. Predicting Performance with New Materials and New Climates

Finally, both the new materials and new climates were introduced together into the
simulations, and the performance was predicted with the ML tool. Figure 13 shows the
results for wall assemblies, including the two new materials in the three new climates, and
Table 9 shows the performance indicators of the predictions. As expected, the predictions
are now worse for MAE and RMSE. On the other hand, R2 slightly improved for the mold
index prediction compared with the predictions with new climates only. Most of the errors
in the predictions are caused by the new climates, and closer investigations of weather
parameters are needed.
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Figure 13. Predicted vs. simulated mold index and maximum moisture content for new materials
(i.e., chipboard exterior sheathing and wood fiber exterior insulation) and new climates (i.e., Mobile,
AL, Burlington, VT, Grand Island, NE). (a) Mold index prediction. (b) Maximum moisture content
prediction. The line indicates perfect fit.
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Table 9. Calculated accuracy for the mold index and maximum moisture content prediction for new
climates and materials.

Prediction Target MAE RMSE R2

Mold index 0.264 0.449 0.916
Maximum moisture content 2.400 3.413 0.909

5. Discussion

The benefits of this ML tool are, first, in the early design stages, to guide proper systems
before running a detailed evaluation on many systems. Thereby, it can reduce the significant
efforts in running hygrothermal analyses. Second, the tool will be the basis for optimizing
the durability performance while assessing thermal performance and decarbonization
possibilities. The ability to create granularity by interpolating performance as a function of
material properties allows for guiding new material development and selections.

This study shows that ML can predict the hygrothermal performance of a building
envelope design with reasonable accuracy (R2 > 0.90). The results indicate that performance
is strongly correlated to the vapor permeance of the vapor barrier and thermal resistance of
the continuous insulation layer for the selected envelope design. The dependence of the
accuracy on weather data is not as strong, which could explain why the model’s predictive
capability was not strong when the ML model was used to predict performance in other
climate zones. Regardless, the model needs additional refinement in filling data gaps to
address the performance of different assemblies and exposure to different climate zones,
which will be the emphasis of future work.

ML is as good as the input data given in training. The current data set still includes large
gaps between the high and low values of the input parameters, and many input values have
only a few options. The ML methods cannot accurately learn the dependency of the output as
a function of the input values unless there are input values in the region where the change in
performance occurs. Finding these regions of input values is also part of future work.

The future development of the tool includes guiding the designer by helping to
optimize the material layers in the wall assemblies to meet the user’s requirements for
thermal, energy, carbon, and moisture performance. The tool would guide the user to
select materials and layers that result in a moisture-safe building envelope. Based on the
developed ML tool, which uses material properties as inputs for training, we can run
multi-objective optimization to select the optimal material that minimizes embodied carbon
of the assembly while meeting all the insulation and moisture durability requirements. The
tool would guide improving the assembly for better performance in terms of durability,
energy losses, and carbon content.

To develop our own ML model, future work may consider testing various regression
models to determine the most accurate algorithm instead of using a commercially available
automated ML tool. For model training, more aggressive feature extraction will be applied
to reduce the amount of redundant data in the input data set, which can help increase the
accuracy and generalization of the model. We will also try different weight initialization and
fine-tune the learning model, such as the activation function and a number of hidden layers.
Commercially available automated ML tools allow quick benchmarking of our ML model.
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Nomenclature

Abbreviation Meaning Unit
A water absorption coefficient kg/m2·s0.5

AI artificial intelligence —

ASHRAE
American Society of Heating, Refrigerating and
Air-Conditioning Engineers

—

Av.Tmax annual average daily maximum temperature ºC
Av.Tmin annual average daily minimum temperature ºC
BSA Building Science Advisor —
cav cavity —
ci continuous insulation —
clad cladding —
Cloud cloud cover index —
CMU concrete masonry unit —
dry dry cup test value —
EPD Environmental Product Declaration —
ext exterior side —
int interior side —
k-dry thermal conductivity, dry material W/m·K
MAE mean absolute error same as target
MaxMC maximum moisture content of layer wt %
ML machine learning —
Mold_index mold growth index —
OSB oriented strand board —
PA polyamide —

Permeance permeance of material layer
US perm
(1 US perm = 57 ng/s·Pa ·m2)

Pv annual average partial water vapor pressure Pa
R thermal resistance of layer m2·K/W
RadN annual average solar radiation on north facing wall W/m2

RadWDR
annual average solar radiation on wall with
highest wind-driven rain

W/m2

RainN annual average rain on north facing wall mm/h

RainWDR
annual average rain on wall with highest
wind-driven rain

mm/h

RH annual average relative humidity %
RMSE root mean square error unit of target squared
S moisture storage capacity of layer at 80% RH kg/m2

T annual average temperature ºC
Thickness thickness of material layer m
VB vapor barrier —
VR vapor retarder —
W80 material moisture content at 80% RH kg/m3

wet wet cup test value —
WRB water-resistive barrier —
XPS extruded polystyrene —
Z water vapor resistance (1/permeance) 1/US perm
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