Impact of Terrigenous Organic Matter Input on Organic Matter Enrichment of Paleocene Source Rocks, Lishui Sag, East China Sea
Abstract
:1. Introduction
2. Geological Setting and Stratigraphy
3. Materials and Methods
4. Results
4.1. Abundance of Organic Matter
4.2. Type of Organic Matter
4.3. Molecular Biomarkers
4.3.1. Normal Alkanes and Isoprenoids
4.3.2. Terpanes
4.3.3. Steranes
5. Discussion
5.1. Distribution of Effective Source Rocks
5.2. Sedimentary Environments
5.3. Organic Matter Sources
5.4. Organic Matter Accumulation
5.4.1. Influence of Organic Matter Input
5.4.2. Influence of Organic Matter Preservation
5.4.3. Models for Effective Source Rock Formation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sun, R.; Li, Z.; Zhao, Z.; Yang, H.; Wang, X.; Zhao, Z. Characteristics and origin of the Lower Oligocene marine source rocks controlled by terrigenous organic matter supply in the Baiyun Sag, northern South China Sea. J. Pet. Sci. Eng. 2020, 187, 106821. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun YChen, J. Geochemical evidence of lake environments favorable for the formation of excellent source rocks: A case study from the third member of the Eocene Shahejie Formation in the Qikou Sag, Bohai Bay Basin, eastern China. Mar. Pet. Geol. 2022, 136, 105435. [Google Scholar] [CrossRef]
- Zhu, G.-Y.; Li, T.-T.; Zhao, K.; Zhang, Z.-Y.; Chen, W.-Y.; Yan, H.-H.; Zhang, K.-J.; Chi, L.-X. Excellent source rocks discovered in the Cryogenian interglacial deposits in South China: Geology, geochemistry, and hydrocarbon potential. Precambrian Res. 2019, 333, 105455. [Google Scholar] [CrossRef]
- Adegoke, A.K.; Abdullah, W.H.; Hakimi, M.H.; Yandoka, B.M.S. Geochemical characterisation and organic matter enrichment of Upper Cretaceous Gongila shales from Chad (Bornu) Basin, northeastern Nigeria: Bioproductivity versus anoxia conditions. J. Pet. Sci. Eng. 2015, 135, 73–87. [Google Scholar] [CrossRef]
- Tyson, R.K. Chapter 1—History and Background. In Principles of Adaptive Optics; Tyson, R.K., Ed.; Academic Press: Cambridge, MA, USA, 1991; pp. 1–24. [Google Scholar]
- Sageman, B.B.; Murphy, A.E.; Werne, J.P.; Straeten, C.A.V.; Hollander, D.J.; Lyons, T.W. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle–Upper Devonian, Appalachian basin. Chem. Geol. 2003, 195, 229–273. [Google Scholar] [CrossRef]
- Algeo, T.J.; Kuwahara, K.; Sano, H.; Bates, S.; Lyons, T.; Elswick, E.; Hinnov, L.; Ellwood, B.; Moser, J.; Maynard, J.B. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian–Triassic Panthalassic Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 308, 65–83. [Google Scholar] [CrossRef]
- Ding, X.; Qu, J.; Imin, A.; Zha, M.; Su, Y.; Jiang, Z.; Jiang, H. Organic matter origin and accumulation in tuffaceous shale of the lower Permian Lucaogou Formation, Jimsar Sag. J. Pet. Sci. Eng. 2019, 179, 696–706. [Google Scholar] [CrossRef]
- Li, Y.; Sun, P.; Liu, Z.; Xu, Y.; Liu, R.; Ma, L. Factors controlling the distribution of oil shale layers in the Eocene Fushun Basin, NE China. Mar. Pet. Geol. 2021, 134, 105350. [Google Scholar] [CrossRef]
- Hakimi, M.H.; Abdullah, W.H.; Alqudah, M.; Makeen, Y.M.; Mustapha, K.A. Organic geochemical and petrographic characteristics of the oil shales in the Lajjun area, Central Jordan: Origin of organic matter input and preservation conditions. Fuel 2016, 181, 34–45. [Google Scholar] [CrossRef]
- Hakimi, M.H.; Abdullah, W.H.; Makeen, Y.M.; Saeed, S.A.; Al-Hakame, H.; Al-Moliki, T.; Al-Sharabi, K.Q.; Hatem, B.A. Geochemical characterization of the Jurassic Amran deposits from Sharab area (SW Yemen): Origin of organic matter, paleoenvironmental and paleoclimate conditions during deposition. J. Afr. Earth Sci. 2017, 129, 579–595. [Google Scholar] [CrossRef]
- Fathy, D.; Abart, R.; Wagreich, M.; Gier, S.; Ahmed, M.S.; Sami, M. Late Campanian Climatic-Continental Weathering Assessment and Its Influence on Source Rocks Deposition in Southern Tethys, Egypt. Minerals 2023, 13, 160. [Google Scholar] [CrossRef]
- Schubert, C.; Stein, R. Deposition of organic carbon in Arctic Ocean sediments: Terrigenous supply vs marine productivity. Org. Geochem. 1996, 24, 421–436. [Google Scholar] [CrossRef]
- Rimmer, S.M.; Thompson, J.A.; Goodnight, S.A.; Robl, T.L. Multiple controls on the preservation of organic matter in Devonian–Mississippian marine black shales: Geochemical and petrographic evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 215, 125–154. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Z.; Li, Y.; Fu, N. The effect of river-delta system on the formation of the source rocks in the Baiyun Sag, Pearl River Mouth Basin. Mar. Pet. Geol. 2016, 76, 279–289. [Google Scholar] [CrossRef]
- Demaison, G. Anoxia vs. Productivity: What Controls the Formation of Organic-Carbon-Rich Sediments and Sedimentary Rocks?: Discussion (1). AAPG Bull. 1991, 75, 499. [Google Scholar]
- Arthur, M.A.; Dean, W.E. Organic-matter production and preservation and evolution of anoxia in the Holocene Black Sea. Paleoceanography 1998, 13, 395–411. [Google Scholar] [CrossRef]
- Zeng, S.; Wang, J.; Fu, X.; Chen, W.; Feng, X.; Wang, D.; Song, C.; Wang, Z. Geochemical characteristics, redox conditions, and organic matter accumulation of marine oil shale from the Changliang Mountain area, northern Tibet, China. Mar. Pet. Geol. 2015, 64, 203–221. [Google Scholar] [CrossRef]
- Wu, J.; Liang, C.; Hu, Z.; Yang, R.; Xie, J.; Wang, R.; Zhao, J. Sedimentation mechanisms and enrichment of organic matter in the Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin. Mar. Pet. Geol. 2019, 101, 556–565. [Google Scholar] [CrossRef]
- Hu, J.; Peng, P.; Jia, G.; Mai, B.; Zhang, G. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River estuary and adjacent shelf, Southern China. Mar. Chem. 2006, 98, 274–285. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, J.; Xu, F.; Li, J.; Liu, J.; Hou, G.; Zhang, P. Paleocene sequence stratigraphy and depositional systems in the Lishui Sag, East China Sea Shelf Basin. Mar. Pet. Geol. 2015, 59, 390–405. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Shen, W.; Chang, X.; Sun, Z.; Xu, G. Organic geochemistry, distribution and hydrocarbon potential of source rocks in the Paleocene, Lishui Sag, East China Sea Shelf Basin. Mar. Pet. Geol. 2019, 107, 382–396. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Xu, Y.; Chen, T.; Liu, J. Improved understanding of the origin and accumulation of hydrocarbons from multiple source rocks in the Lishui Sag: Insights from statistical methods, gold tube pyrolysis and basin modeling. Mar. Pet. Geol. 2021, 134, 105361. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, Y.; Du, H.; Zhang, Y. The Cenozoic structural evolution and its influences on gas accumulation in the Lishui Sag, East China Sea Shelf Basin. J. Nat. Gas Sci. Eng. 2015, 22, 107–118. [Google Scholar] [CrossRef]
- Su, A.; Chen, H.; Cao, L.; Lei, M.; Wang, C.; Liu, Y.; Li, P. Genesis, source and charging of oil and gas in Lishui sag, East China Sea Basin. Pet. Explor. Dev. 2014, 41, 574–584. [Google Scholar] [CrossRef]
- Weilin, Z.; Kai, Z.; Xiaowei, F.; Chunfeng, C.; Minqiang, Z.; Shunli, G. The formation and evolution of the East China Sea Shelf Basin: A new view. Earth-Sci. Rev. 2019, 190, 89–111. [Google Scholar] [CrossRef]
- Huang, Y.; Tarantola, A.; Wang, W.; Caumon, M.-C.; Pironon, J.; Lu, W.; Yan, D.; Zhuang, X. Charge history of CO2 in Lishui sag, East China Sea basin: Evidence from quantitative Raman analysis of CO2-bearing fluid inclusions. Mar. Pet. Geol. 2018, 98, 50–65. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, L.; Liu, N. Petrographic and stable isotopic evidences of CO2-induced alterations in sandstones in the Lishui sag, East China Sea Basin, China. Appl. Geochem. 2018, 90, 115–128. [Google Scholar] [CrossRef]
- Huang, Y.; Tarantola, A.; Lu, W.; Caumon, M.-C.; He, S.; Zhuang, X.; Yan, D.; Pironon, J.; Wang, W. CH4 accumulation characteristics and relationship with deep CO2 fluid in Lishui sag, East China Sea Basin. Appl. Geochem. 2020, 115, 104563. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Dong, H.; Sun, Z. Diagenesis and reservoir quality of Paleocene tight sandstones, Lishui Sag, East China Sea Shelf Basin. J. Pet. Sci. Eng. 2020, 195, 107615. [Google Scholar] [CrossRef]
- Lei, C.; Yin, S.; Ye, J.; Wu, J.; Wang, Z.; Gao, B. Characteristics and deposition models of the paleocene source rocks in the Lishui Sag, east China sea shelf basin: Evidences from organic and inorganic geochemistry. J. Pet. Sci. Eng. 2021, 200, 108342. [Google Scholar] [CrossRef]
- Liang, J.; Wang, H. Cenozoic tectonic evolution of the East China Sea Shelf Basin and its coupling relationships with the Pacific Plate subduction. J. Asian Earth Sci. 2019, 171, 376–387. [Google Scholar] [CrossRef]
- Yang, C.S.; Yang, C.Q.; Shang, L.N.; Yan, Z.H.; Yang, Y.Q. Discovery of Late Cretaceous-Paleocene faulted basins developed on the Yandang Low Uplift, East China Sea Shelf Basin. China Geol. 2019, 2, 243–244. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, L.; Zhou, X. Structural features of the Jiangshao Fault Zone inferred from aeromagnetic data for South China and the East China Sea. Tectonophysics 2022, 826, 229252. [Google Scholar] [CrossRef]
- Fu, C.; Li, S.; Li, S.; Xu, J.; Huang, Y. Genetic types of mudstone in a closed-lacustrine to open-marine transition and their organic matter accumulation patterns: A case study of the paleocene source rocks in the east China sea basin. J. Pet. Sci. Eng. 2022, 208, 109343. [Google Scholar] [CrossRef]
- Peters, K.E. Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. AAPG Bull. 1986, 70, 318–329. [Google Scholar]
- Tang, Y.; Zhang, J.; Li, M.; Liu, Y.; Li, M.; Sun, P. Origin of crude oils from the paleogene Xingouzui formation in the Jiangling depression of Jianghan basin, central China. J. Pet. Sci. Eng. 2020, 195, 107976. [Google Scholar] [CrossRef]
- Xu, M.; Hou, D.; Lin, X.; Liu, J.; Ding, W.; Xie, R. Organic geochemical signatures of source rocks and oil-source correlation in the Papuan Basin, Papua New Guinea. J. Pet. Sci. Eng. 2022, 210, 109972. [Google Scholar] [CrossRef]
- Hu, G.; He, F.; Mi, J.; Yuan, Y.; Guo, J. The geochemical characteristics, distribution of marine source rocks and gas exploration potential in the northwestern Sichuan Basin, China. J. Nat. Gas Geosci. 2021, 6, 199–213. [Google Scholar] [CrossRef]
- Yang, M.-H.; Zuo, Y.-H.; Yan, K.-N.; Zhou, Y.-S.; Zhang, Y.-X.; Zhang, C.-F. Hydrocarbon generation history constrained by thermal history and hydrocarbon generation kinetics: A case study of the Dongpu Depression, Bohai Bay Basin, China. Pet. Sci. 2021, 19, 472–485. [Google Scholar] [CrossRef]
- Inan, S.; Yalçin, M.N.; Mann, U. Expulsion of oil from petroleum source rocks: Inferences from pyrolysis of samples of unconventional grain size. Org. Geochem. 1998, 29, 45–61. [Google Scholar] [CrossRef]
- Cota, L.; Baric, G. Petroleum potential of the Adriatic offshore, Croatia. Org. Geochem. 1998, 29, 559–570. [Google Scholar] [CrossRef]
- Altunsoy, M.; Özçelik, O. Organic facies characteristics of the Sivas Tertiary Basin (Turkey). J. Pet. Sci. Eng. 1998, 20, 73–85. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, Y.; Wang, Y.; Zheng, Y.; Chen, F.; Wu, S.; Fu, D. Kinetics of shale oil generation from kerogen in saline basin and its exploration significance: An example from the Eocene Qianjiang Formation, Jianghan Basin, China. J. Anal. Appl. Pyrolysis 2020, 150, 104885. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Gao, Y.; Li, S.; Yu, B.; Gong, X.; Bai, Z.; Miao, M.; Zhang, Y.; Sun, Z.; et al. Geochemistry and source of crude oils in the Wensu uplift, Tarim Basin, NW China. J. Pet. Sci. Eng. 2022, 208, 109448. [Google Scholar] [CrossRef]
- Chen, J.; Qin, Y.; Huff, B.G.; Wang, D.; Han, D.; Huang, D. Geochemical evidence for mudstone as the possible major oil source rock in the Jurassic Turpan Basin, Northwest China. Org. Geochem. 2001, 32, 1103–1125. [Google Scholar] [CrossRef]
- Escobar, M.; Márquez, G.; Suárez-Ruiz, I.; Juliao, T.; Carruyo, G.; Martínez, M. Source-rock potential of the lowest coal seams of the Marcelina Formation at the Paso Diablo mine in the Venezuelan Guasare Basin: Evidence for the correlation of Amana oils with these Paleocene coals. Int. J. Coal Geol. 2016, 163, 149–165. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.; Goodarzi, F.; Kruge, M.; Alimi, M. Comparison of source rock geochemistry of selected rocks from the Schei Point group and Ringnes formation, Sverdrup basin, arctic Canada. Int. J. Coal Geol. 1997, 34, 225–260. [Google Scholar] [CrossRef]
- Song, D.; Chen, Y.; Wang, T.; Li, M.; Li, P. Organic geochemical compositions of Mesoproterozoic source rocks in the Yanliao Rift, Northern China. Mar. Pet. Geol. 2020, 123, 104740. [Google Scholar] [CrossRef]
- Chen, J. A comparative study of free and bound bitumens from different maturesource rocks with Type III kerogens. Org. Geochem. 2017, 112, 1–15. [Google Scholar] [CrossRef]
- Abdullah, W.H. Organic facies variations in the Triassic shallow marine and deep marine shales of central Spitsbergen, Svalbard. Mar. Pet. Geol. 1999, 16, 467–481. [Google Scholar] [CrossRef]
- Bechtel, A.; Jia, J.; Strobl, S.A.; Sachsenhofer, R.F.; Liu, Z.; Gratzer, R.; Püttmann, W. Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao Basin (NE China): Implications from geochemical analysis. Org. Geochem. 2012, 46, 76–95. [Google Scholar] [CrossRef]
- Gao, G.; Titi, A.; Yang, S.; Tang, Y.; Kong, Y.; He, W. Geochemistry and depositional environment of fresh lacustrine source rock: A case study from the Triassic Baijiantan Formation shales in Junggar Basin, northwest China. Org. Geochem. 2017, 113, 75–89. [Google Scholar] [CrossRef]
- Quan, Y.; Chen, Z.; Jiang, Y.; Diao, H.; Xie, X.; Lu, Y.; Du, X.; Liu, X. Hydrocarbon generation potential, geochemical characteristics, and accumulation contribution of coal-bearing source rocks in the Xihu Sag, East China Sea Shelf Basin. Mar. Pet. Geol. 2022, 136, 105465. [Google Scholar] [CrossRef]
- Cheng, B.; Wang, T.-G.; Huang, H.; Wang, G. Application of the monoterpane ratio (MTR) to distinguish marine oils from terrigenous oils and infer depositional environment in northern Tarim Basin, China. Org. Geochem. 2015, 85, 1–10. [Google Scholar] [CrossRef]
- Fathy, D.; Wagreich, M.; Sami, M. Geochemical Evidence for Photic Zone Euxinia During Greenhouse Climate in the Tethys Sea, Egypt. In Advances in Geophysics, Tectonics and Petroleum Geosciences; Meghraoui, M., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 373–374. [Google Scholar]
- Didyk, B.M.; Simoneit, B.R.T.; Brassell, S.C.; Eglinton, G. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 1978, 272, 216–222. [Google Scholar] [CrossRef]
- Adedosu, T.A.; Sonibare, O.O.; Tuo, J.; Ekundayo, O. Biomarkers, carbon isotopic composition and source rock potentials of Awgu coals, middle Benue trough, Nigeria. J. Afr. Earth Sci. 2012, 66–67, 13–21. [Google Scholar] [CrossRef]
- Ayinla, H.A.; Abdullah, W.H.; Makeen, Y.M.; Abubakar, M.; Jauro, A.; Yandoka, B.M.S.; Mustapha, K.A.; Abidin, N.S.Z. Source rock characteristics, depositional setting and hydrocarbon generation potential of Cretaceous coals and organic rich mudstones from Gombe Formation, Gongola Sub-basin, Northern Benue Trough, NE Nigeria. Int. J. Coal Geol. 2017, 173, 212–226. [Google Scholar] [CrossRef]
- Asi, M.O.; Adamu, C.I.; Okon, E.E.; Neji, P.A.; Nganje, T.N.; Oli, O.O.; Eneogwe, C. Hydrocarbon potentials of sediments of the Ikom-Mamfe embayment, Southeastern Nigeria and Western Cameroon. J. Afr. Earth Sci. 2021, 185, 104411. [Google Scholar] [CrossRef]
- Damsté, J.S.S.; Kenig, F.; Koopmans, M.P.; Köster, J.; Schouten, S.; Hayes, J.; de Leeuw, J.W. Evidence for gammacerane as an indicator of water column stratification. Geochim. Cosmochim. Acta 1995, 59, 1895–1900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pancost, R.D.; Freeman, K.H.; E Patzkowsky, M.; A Wavrek, D.; Collister, J.W. Molecular indicators of redox and marine photoautotroph composition in the late Middle Ordovician of Iowa, USA. Org. Geochem. 1998, 29, 1649–1662. [Google Scholar] [CrossRef]
- Cheng, B.; Chen, Z.; Chen, T.; Yang, C.; Wang, T.G. Biomarker signatures of the Ediacaran–Early Cambrian origin petroleum from the central Sichuan Basin, South China: Implications for source rock characteristics. Mar. Pet. Geol. 2018, 96, 577–590. [Google Scholar] [CrossRef]
- Li, W.; Lu, S.; Xue, H.; Zhang, P.; Wu, S. The formation environment and developmental models of argillaceous dolomite in the Xingouzui Formation, the Jianghan Basin. Mar. Pet. Geol. 2015, 67, 692–700. [Google Scholar] [CrossRef]
- Hackley, P.C.; SanFilipo, J.R. Organic petrology and geochemistry of Eocene Suzak bituminous marl, north-central Afghanistan: Depositional environment and source rock potential. Mar. Pet. Geol. 2016, 73, 572–589. [Google Scholar] [CrossRef]
- Li, Q.; Xu, S.; Hao, F.; Shu, Z.; Chen, F.; Lu, Y.; Wu, S.; Zhang, L. Geochemical characteristics and organic matter accumulation of argillaceous dolomite in a saline lacustrine basin: A case study from the paleogene xingouzui formation, Jianghan Basin, China. Mar. Pet. Geol. 2021, 128, 105041. [Google Scholar] [CrossRef]
- Wang, C.; Hren, M.T.; Hoke, G.D.; Liu-Zeng, J.; Garzione, C.N. Soil n-alkane δD and glycerol dialkyl glycerol tetraether (GDGT) distributions along an altitudinal transect from southwest China: Evaluating organic molecular proxies for paleoclimate and paleoelevation. Org. Geochem. 2017, 107, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, H.; Zhang, J.; Gao, W.; Huang, C.; Xie, B. Characterization of n-alkanes and their carbon isotopic composition in sediments from a small catchment of the Dianchi watershed. Chemosphere 2015, 119, 1346–1352. [Google Scholar] [CrossRef]
- El Nemr, A.; Moneer, A.A.; Ragab, S.; El Sikaily, A. Distribution and sources of n-alkanes and polycyclic aromatic hydrocarbons in shellfish of the Egyptian Red Sea coast. Egypt. J. Aquat. Res. 2016, 42, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zheng, Z.; Gao, Q.; Zong, Y.; Huang, K.; Shi, S. The environmental conditions of MIS5 in the northern South China Sea, revealed by n-alkanes indices and alkenones from a 39 m-long sediment sequence. Quat. Int. 2018, 479, 70–78. [Google Scholar] [CrossRef]
- Seki, O.; Okazaki, Y.; Harada, N. Assessment of long-chain n-alkanes as a paleoclimate proxy in the Bering Sea sediments. Prog. Oceanogr. 2021, 198, 102687. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, J.; Su, Y.; Du, Y.; Liu, Z. A comparison of n-alkane contents in sediments of five lakes from contrasting environments. Org. Geochem. 2020, 139, 103943. [Google Scholar] [CrossRef]
- Boreddy, S.K.; Haque, M.; Kawamura, K.; Fu, P.; Kim, Y. Homologous series of n-alkanes (C19-C35), fatty acids (C12-C32) and n-alcohols (C8–C30) in atmospheric aerosols from central Alaska: Molecular distributions, seasonality and source indices. Atmos. Environ. 2018, 184, 87–97. [Google Scholar] [CrossRef]
- Disnar, J.; Harouna, M. Biological origin of tetracyclic diterpanes, n-alkanes and other biomarkers found in lower carboniferous Gondwana coals (Niger). Org. Geochem. 1994, 21, 143–152. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Y.; Jiang, S.; Fang, C.; Liu, L.; Wu, K.; Luo, Q.; Li, X.; Chen, Y. Impact of input, preservation and dilution on organic matter enrichment in lacustrine rift basin: A case study of lacustrine shale in Dehui Depression of Songliao Basin, NE China. Mar. Pet. Geol. 2022, 135, 105386. [Google Scholar] [CrossRef]
- Hakimi, M.H.; Ahmed, A.F. Petroleum source rock characterisation and hydrocarbon generation modeling of the Cretaceous sediments in the Jiza sub-basin, eastern Yemen. Mar. Pet. Geol. 2016, 75, 356–373. [Google Scholar] [CrossRef]
- Furmann, A.; Mastalerz, M.; Brassell, S.C.; Pedersen, P.K.; Zajac, N.A.; Schimmelmann, A. Organic matter geochemistry and petrography of Late Cretaceous (Cenomanian-Turonian) organic-rich shales from the Belle Fourche and Second White Specks formations, west-central Alberta, Canada. Org. Geochem. 2015, 85, 102–120. [Google Scholar] [CrossRef] [Green Version]
- Bouloubassi, I.; Rullkötter, J.; Meyers, P.A. Origin and transformation of organic matter in Pliocene–Pleistocene Mediterranean sapropels: Organic geochemical evidence reviewed. Mar. Geol. 1999, 153, 177–197. [Google Scholar] [CrossRef]
- Grice, K.; Schouten, S.; Peters, K.E.; Damsté, J.S.S. Molecular isotopic characterisation of hydrocarbon biomarkers in Palaeocene–Eocene evaporitic, lacustrine source rocks from the Jianghan Basin, China. Org. Geochem. 1998, 29, 1745–1764. [Google Scholar] [CrossRef]
- Ramanampisoa, L.; Disnar, J.R. Primary control of paleoproduction on organic matter preservation and accumulation in the Kimmeridge rocks of Yorkshire (UK). Org. Geochem. 1994, 21, 1153–1167. [Google Scholar] [CrossRef]
- Tong, X.; Hu, J.; Xi, D.; Zhu, M.; Song, J.; Peng, P. Depositional environment of the Late Santonian lacustrine source rocks in the Songliao Basin (NE China): Implications from organic geochemical analyses. Org. Geochem. 2018, 124, 215–227. [Google Scholar] [CrossRef]
- Li, D.Y.; Jiang, X.D.; Xu, F.; Liu, J.S.; Hou, G.W. Geochemistry of the Paleocene Clastic Rocks in Lishui Sag, East China Sea Shelf Basin: Implications for Tectonic Background and Provenance. Acta Geol. Sin.-Engl. Ed. 2016, 90, 166–181. [Google Scholar]
Well | Depth (m) | TOC (%) | C19/C23TT | C20/C23TT | C24TeT/C23TT | C27/C27–29 S | C29/C27–29 S | Pr/Ph | C35H/C34H | Tm/C30H | Gam/C30 H | Ts/Tm | Ole/C30 H | Paq | ACL | nC27+29/nC31+33 | nC15+17+19/nC27+29+31 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 2370 | 1.07 | 0.4 | 0.6 | 0.93 | 0.31 | 0.41 | 1.91 | / | 0.46 | 0.15 | 0.29 | 0.11 | 0.41 | 27.74 | 1.47 | 0.9 |
2880 | 1.32 | 0.64 | 0.84 | 1.27 | 0.33 | 0.47 | 4.77 | / | 0.69 | 0.06 | 0.06 | 0.07 | 0.95 | 24.58 | 1.28 | 5.91 | |
3000 | 1.28 | 0.2 | 0.43 | 1.22 | 0.35 | 0.45 | 3.99 | 0.48 | 0.6 | 0.08 | 0.07 | 0.17 | 0.33 | 28.04 | 1.25 | 0.18 | |
3010 | 1.51 | 0.39 | 0.72 | 1.24 | 0.31 | 0.49 | 4.52 | 0.51 | 0.7 | 0.08 | 0.06 | 0.11 | 0.27 | 28.35 | 1.21 | 0.13 | |
3135 | 2.42 | 0.33 | 0.39 | 1 | 0.25 | 0.56 | 3.93 | 0.21 | 0.68 | 0.09 | 0.07 | 0.11 | 0.31 | 28.13 | 1.39 | 0.14 | |
3192 | 1.76 | 0.17 | 0.32 | 0.26 | 0.27 | 0.53 | 2.78 | 0.34 | 0.54 | 0.08 | 0.08 | 0.1 | 0.33 | 28.02 | 1.42 | 0.13 | |
2850 | 1.5 | 0.12 | 0.63 | 0.97 | 0.38 | 0.37 | 1.27 | 0.52 | 0.2 | 0.21 | 0.74 | 0.08 | 0.46 | 27.3 | 2 | 1.11 | |
2945 | 1.25 | 0.08 | 0.39 | 0.83 | 0.37 | 0.38 | 1.21 | 0.63 | 0.23 | 0.17 | 0.73 | 0.09 | 0.54 | 27.06 | 2.15 | 2.01 | |
3040 | 1.06 | 0.15 | 0.24 | 0.87 | 0.35 | 0.39 | 1.32 | 0.52 | 0.22 | 0.22 | 0.54 | 0.08 | 0.54 | 27.04 | 2.25 | 1.9 | |
B | 3235.5 | 0.85 | 0.56 | 0.71 | 0.95 | 0.58 | 0.3 | 2.92 | 0.49 | 0.17 | 0.04 | 0.61 | 0.05 | 0.67 | 26.42 | 2.63 | 1.88 |
3333 | 1.04 | 1.12 | 1.21 | 1.51 | 0.45 | 0.35 | 3.18 | 0.41 | 0.14 | 0.03 | 0.71 | 0.08 | 0.7 | 26.23 | 3 | 1.96 | |
3347.8 | 1.03 | 0.83 | 1.06 | 1.18 | 0.46 | 0.34 | 2.42 | 0.46 | 0.09 | 0.04 | 1.15 | 0.07 | 0.74 | 26.23 | 2.64 | 2.57 | |
3520.5 | 1.02 | 0.41 | 0.98 | 0.64 | 0.59 | 0.29 | 2.28 | 0.61 | 0.33 | 0.11 | 0.24 | 0.01 | 0.63 | 26.75 | 2.26 | 0.71 | |
3616.5 | 1.21 | 0.59 | 0.97 | 0.72 | 0.42 | 0.39 | 2.52 | 0.5 | 0.12 | 0.08 | 1.05 | 0.03 | 0.67 | 26.32 | 2.98 | 1.07 | |
3757 | 1.14 | 0.58 | 0.85 | 0.64 | 0.41 | 0.34 | 2.75 | 0.5 | 0.14 | 0.11 | 0.89 | 0.04 | 0.69 | 26.3 | 2.92 | 1.47 | |
C | 2916.5 | 1.19 | 0.25 | 0.37 | 0.2 | 0.36 | 0.41 | 2.57 | 0.52 | 0.23 | 0.08 | 0.45 | 0.1 | 0.56 | 27.43 | 1.17 | 0.74 |
3337 | 2.31 | 0.31 | 0.59 | 0.19 | 0.48 | 0.36 | 3.26 | / | 0.31 | 0.12 | 0.42 | 0.13 | 0.63 | 26.74 | 2.18 | 1 | |
3580 | 1.42 | 0.56 | 0.9 | 0.17 | 0.44 | 0.36 | 2.01 | / | 0.43 | 0.16 | 0.53 | 0.11 | 0.72 | 26.37 | 2.44 | 1.65 | |
3605 | 1.51 | 0.82 | 0.94 | 0.17 | 0.41 | 0.39 | 1.07 | / | 0.74 | 0.15 | 0.22 | 0.09 | 0.7 | 27.01 | 1.15 | 1.54 | |
3365 | 1.64 | 0.39 | 3.44 | 0.58 | 0.41 | 0.38 | 0.63 | 0.48 | 0.27 | 0.15 | 0.55 | 0.13 | 0.51 | 27.05 | 2.29 | 0.55 | |
3575 | 1.43 | 0.35 | 0.5 | 0.35 | 0.36 | 0.39 | 1.81 | 0.33 | 0.31 | 0.2 | 0.45 | 0.08 | 0.58 | 26.95 | 1.98 | 0.83 | |
D | 2298 | 0.99 | 0.86 | 0.86 | 0.71 | 0.54 | 0.26 | 3.42 | 0.53 | 0.16 | 0.03 | 0.58 | 0.03 | 0.56 | 26.6 | 3.28 | 0.59 |
3152.5 | 0.88 | 0.44 | 0.81 | 0.69 | 0.57 | 0.22 | 2.97 | 0.5 | 0.15 | 0.06 | 0.75 | 0.05 | 0.67 | 26.21 | 3.52 | 1.04 | |
3257.5 | 0.85 | 0.47 | 0.59 | 0.91 | 0.4 | 0.33 | 2.47 | 0.61 | 0.13 | 0.05 | 1.55 | 0.15 | 0.7 | 26.23 | 2.81 | 1.36 | |
E | 3055 | 0.86 | 0.11 | 0.33 | 0.29 | 0.42 | 0.33 | 1.27 | 0.15 | 0.28 | 0.21 | 0.59 | 0.08 | 0.68 | 26.42 | 2.09 | 0.91 |
3136 | 0.67 | 0.19 | 0.33 | 0.16 | 0.51 | 0.29 | 1.12 | / | 0.39 | 0.16 | 0.83 | 0.08 | 0.81 | 25.49 | 3.56 | 0.63 | |
3337.6 | 1.51 | 0.62 | 0.68 | 0.23 | 0.57 | 0.3 | 3.39 | / | 0.17 | 0.11 | 1.25 | 0.25 | 0.55 | 27.05 | 1.89 | 0.64 | |
3339.6 | 1.29 | 0.81 | 0.95 | 0.2 | 0.58 | 0.31 | 3.78 | / | 0.15 | 0.12 | 1.5 | 0.41 | 0.57 | 27 | 1.93 | 0.84 | |
3349.4 | 0.86 | 1.09 | 0.82 | 0.18 | 0.62 | 0.28 | 3.69 | / | 0.16 | 0.13 | 1.38 | 0.31 | 0.6 | 26.84 | 1.9 | 0.78 | |
3388 | 0.84 | 0.22 | 0.29 | 0.29 | 0.42 | 0.35 | 1.76 | 0.62 | 0.23 | 0.21 | 0.91 | 0.07 | 0.58 | 26.74 | 2.3 | 0.87 | |
F | 2610 | 0.81 | 0.43 | 0.63 | 1.35 | 0.28 | 0.5 | 3.35 | / | 0.49 | 0.12 | 0.09 | 0.06 | 0.39 | 27.42 | 1.75 | 0.2 |
2645 | 1.19 | 0.84 | 1.06 | 1.68 | 0.32 | 0.47 | 4.61 | 0.36 | 0.42 | 0.15 | 0.17 | 0.09 | 0.4 | 27.52 | 1.72 | 0.27 | |
2665 | 1.33 | 0.49 | 0.66 | 1.91 | 0.36 | 0.43 | 4.81 | 0 | 0.61 | 0.08 | 0.1 | 0.05 | 0.38 | 27.39 | 1.99 | 0.22 | |
2675 | 1.06 | 0.68 | 0.66 | 1.2 | 0.36 | 0.41 | 4.63 | 0.39 | 0.39 | 0.13 | 0.12 | 0.08 | 0.41 | 27.66 | 1.54 | 0.39 | |
2635 | 1.1 | 0.8 | 0.65 | 0.27 | 0.33 | 0.45 | 2.18 | 0.33 | 0.49 | 0.11 | 0.1 | 0.07 | 0.45 | 27.47 | 1.6 | 0.42 | |
2670 | 1.17 | 1.05 | 0.8 | 1.74 | 0.33 | 0.44 | 2.45 | 0.31 | 0.59 | 0.1 | 0.1 | 0.06 | 0.48 | 27.41 | 1.64 | 0.34 | |
2705 | 1.24 | 0.98 | 0.75 | 1.99 | 0.33 | 0.45 | 2.34 | 0.33 | 0.53 | 0.11 | 0.12 | 0.07 | 0.49 | 27.35 | 1.47 | 0.48 | |
2734 | 1.23 | 0.83 | 0.53 | 1.51 | 0.32 | 0.45 | 2.41 | 0.34 | 0.43 | 0.12 | 0.16 | 0.08 | 0.41 | 27.25 | 2.12 | 0.33 | |
G | 3075 | 0.79 | 0.71 | 0.86 | 1.11 | 0.49 | 0.32 | 3.55 | 0.43 | 0.24 | 0.03 | 0.39 | 0.06 | 0.67 | 26.46 | 2.39 | 1.79 |
3181.5 | 0.65 | 0.92 | 1.19 | 1.21 | 0.6 | 0.31 | 3.41 | 0.7 | 0.24 | 0.03 | 0.42 | 0.07 | 0.72 | 26.04 | 2.86 | 1.56 | |
3588 | 0.55 | 0.53 | 0.75 | 0.67 | 0.54 | 0.28 | 2.62 | 0.5 | 0.09 | 0.04 | 2.71 | 0.14 | 0.74 | 25.98 | 2.62 | 1.97 | |
3372.5 | 0.76 | 1.2 | 1.5 | 1.21 | 0.57 | 0.22 | 3.57 | 0.31 | 0.51 | 0.05 | 0.29 | 0.13 | 0.77 | 25.72 | 3.22 | 2.49 | |
3489 | 0.87 | 1.02 | 1.26 | 1.02 | 0.58 | 0.24 | 3.27 | 0.3 | 0.66 | 0.04 | 0.13 | 0.07 | 0.71 | 26.15 | 2.95 | 1.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Hou, D.; Cheng, X.; Li, Y. Impact of Terrigenous Organic Matter Input on Organic Matter Enrichment of Paleocene Source Rocks, Lishui Sag, East China Sea. Energies 2023, 16, 2046. https://doi.org/10.3390/en16042046
Han X, Hou D, Cheng X, Li Y. Impact of Terrigenous Organic Matter Input on Organic Matter Enrichment of Paleocene Source Rocks, Lishui Sag, East China Sea. Energies. 2023; 16(4):2046. https://doi.org/10.3390/en16042046
Chicago/Turabian StyleHan, Xu, Dujie Hou, Xiong Cheng, and Yan Li. 2023. "Impact of Terrigenous Organic Matter Input on Organic Matter Enrichment of Paleocene Source Rocks, Lishui Sag, East China Sea" Energies 16, no. 4: 2046. https://doi.org/10.3390/en16042046
APA StyleHan, X., Hou, D., Cheng, X., & Li, Y. (2023). Impact of Terrigenous Organic Matter Input on Organic Matter Enrichment of Paleocene Source Rocks, Lishui Sag, East China Sea. Energies, 16(4), 2046. https://doi.org/10.3390/en16042046