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Abstract: Considering the excellent environmental properties and heating capability under wide
running conditions of the natural fluid CO2, the transcritical CO2 heat pump system has widely been
used in the application of water heaters, commercial heating and cooling, electric vehicle thermal
management, etc. Since the performance was highly affected by the discharge pressure and heat
recovery rate in a transcritical CO2 system, the collaborative optimization of these two parameters
was analyzed in detail in this study. The results showed that the optimal value of the system heating
COP, which was the ration of heating capacity to power consumption, was better under a higher
heat recovery rate and relatively lower discharge pressure, which is why these kinds of operating
conditions are highly recommended from the perspective of collaborative optimization. Additionally,
the heat recovery rate had a positive effect on the system performance when the discharge pressure
was lower than its optimal value, while the heat recovery rate would present a passive effect on the
system performance when the discharge pressure was higher than its optimal value. The relevant
conclusions of this study provide a good theoretical basis for the efficient and stable operation of the
transcritical CO2 heat pump technology under the conditions of a wide ambient temperature range.

Keywords: transcritical CO2 heat pump; collaborative optimization; optimal discharge pressure;
optimal heat recovery rate

1. Introduction

Energy security and environmental protection are important factors that affect eco-
nomic development and daily life. The current global energy structure relies heavily on
fossil energy, the increasing consumption of which will not only affect energy security, but
also cause huge pollution to the environment. As a major component of energy consump-
tion, the improvement in the structure of industrial, commercial, and residential heating is
crucial to energy reform and environmental improvement; thus, heat pump technology has
been considered as one of the most promising methods.

Compared with other commonly used refrigerants, CO2 has a GWP of 1 and an ODP
of 0, which is beneficial to the environment and can solve the problem of excess global
carbon emissions to a large extent. In addition, under extreme operating conditions, carbon
dioxide can take advantage of benefits not available in other refrigerants. From the current
research and use of CO2 as a working medium, a large number of research findings have
proven the superiority of CO2. Xu et al. found that CO2 also has good potential in more
extremely cold environments [1]. J. Stene et al. studied a CO2 residential heat pump and
further explored the advantages and potential of CO2 in a residential heat pump [2]. Song
et al. also studied the optimal temperature and pressure in a CO2 heating system, and
their research on CO2 reached below—20 ◦C, verifying the good performance of CO2 at
ultra-low temperature, which is not available in other general refrigerants [3,4]. Due to
the great environmentally friendly characteristics as a natural refrigerant and its superior
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heating capacity under low-temperature, carbon dioxide has become the best choice for the
working medium in heat pump technology [5]. CO2 has many advantages to be explored,
but it does have some inevitable disadvantages. Rhoy et al. studied the refrigeration
performance of a CO2 working medium and believe that its refrigeration capacity needs to
be improved [6].

As one of the important branches of refrigeration technology, researchers have car-
ried out a lot of investigations into trans-critical CO2 technology. Mamdouh et al. found
that geothermal energy and CO2 combined power plant produced more power and had
better efficiencies [7]. The development of a trans-critical CO2 heat pump water heater
technology is relatively mature, with more and more studies being published. As early
as when the transcritical CO2 unit was proposed by Lorentzen et al. [8], the existence of
the optimal discharge pressure was determined, which had a major impact on both the
capacity and efficiency. Correlations based on theoretical analysis for the determination of
the optimal discharge pressure in terms of several system parameters were then proposed
for the efficient control of transcritical CO2 units [9–12]. Apart from the gas-cooler outlet
temperature, the evaporating temperature is another common decisive parameter. The
optimal discharge pressure increases with the augmentation of the evaporating temperature
and the gas-cooler outlet temperature in all correlations. However, significant deviations
higher than 10% were found to exist between the correlation results and the actual experi-
mental optimal discharge pressure [13,14], indicating that more detailed investigation of
the optimal discharge pressure should be carried out based on the specific structure of the
transcritical CO2 plant.

Despite the simple structure and low cost, the implementation of an internal heat ex-
changer (IHX) is widely acknowledged and has been proven to be efficient. Nguyen et al. [15]
carried out a 4-month long-term simulation to verify the advantages of a direct expansion
CO2 ground source heat pump using an IHX. The simulation considered changes in the
ground surface temperature and proved that the IHX could alleviate thermal short circuits,
resulting in a 22% higher COP than a system without an IHX. Apera et al. [16] analyzed the
CO2 and R134a refrigeration system based on experimental data according to the second
law of thermodynamics, and the results showed that the exergy efficiency of the CO2 cycle
could be improved by using an IHX. Wang et al. [17] compared four different transcritical
CO2 refrigeration cycles through the simulation method, and the simulation results showed
that the IHX is beneficial to the improvement in the energy efficiency of the CO2 cycle,
especially when the discharge pressure is lower than the optimal pressure. Chen et al. [9]
studied the influence of the IHX on the optimal discharge pressure, and the results indicate
that the optimal discharge pressure would decrease.

The disadvantages brought by the IHX to the transcritical CO2 system were also inves-
tigated. Ituna et al. [18] established a CFD model to study the thermophysical properties of
CO2 in the IHX in detail, and analyzed the influence of different boundary conditions on
the heat transfer, mainly the mass flow rate of the hot and cold side fluids. It was found
that the system COP was inversely proportional to the heat recovery rate and the COP
increased from 2 to 2.55 as the heat recovery rate decreased from 0.85 to 0.35. Cao et al. [19]
theoretically studied the effect of the IHX size on a transcritical CO2 heat pump at different
ambient temperatures. The authors adopted a tube-in-tube heat exchanger as the IHX, and
the results showed that the increase in length of the regenerator was always beneficial to
the increase in COP. However, the exorbitant discharge temperature and the decreasing
capacity would limit the length of the IHX. Luger et al. [20] proposed a multi-objective
design optimization for a transcritical CO2 cycle, and the IHX was included as one of the
optimization objectives.

It can be concluded from the literature available that the application of an IHX should
also be optimized under realistic conditions. As the most common implementation of
improving the transcritical CO2 cycle, the optimization of an IHX under different conditions
would be of great benefit. In addition, the co-optimization of the discharge pressure
should also be taken into consideration. However, few studies have been found available
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concerning this co-optimization of both the heat recovery rate and the discharge pressure.
In this paper, we established a co-optimization model of a transcritical CO2 heat pump
water heater in AMESim. A bypass-valve was adopted to regulate the heat recovery rate
and an EEV was used to control the discharge pressure. The co-optimization of the heat
recovery rate and the discharge pressure was conducted under various conditions.

2. The Establishment of the Simulation Model
2.1. The Transcritical CO2 Thermal Management System

Figure 1a shows a schematic of a transcritical CO2 thermal management system. The
transcritical CO2 unit mainly consists of a compressor, a tube-in-tube gas-cooler, a tube-in-
tube IHX, an EEV, and a fin-and-tube evaporator. The refrigerant absorbs heat from the air
in the evaporator and releases heat to the return water in the gas-cooler.
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Figure 1. (a) The schematic of the transcritical CO2 thermal management system. (b) The P-h diagram
of the transcritical CO2 thermal management system under common running condition.

The detailed change in the thermodynamic properties of the refrigerant can be ex-
plained in the following process:

1–2: Adiabatic and non-isentropic compression process in the compressor;
2–3: Heat rejection process to water in the gas-cooler;
3–4 and 6–1: Heat exchange process in the IHX;
4–5: Isenthalpic throttling process in the expansion valve;
5–6: Heat absorption process from the air in the evaporator.

2.2. The Simulation Model

The simulation model of the transcritical CO2 thermal management system was built
via AMESim. As shown in Figure 2, the main components including the compressor, the
gas-cooler, the expansion valve, the evaporator, and the separator are connected as per the
schematic in Figure 1a.
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Figure 2. The AMESim model of the transcritical CO2 heat pump system.

2.2.1. Compressor Model

Under the given conditions of the high pressure and inlet thermodynamic state, the
compressor model calculates the mass flow rate and the outlet thermodynamic state,
according to the following equations:

.
m = ρsNVdisηv (1)

hd = hs +
hdis − hs

ηis
(2)

P =

.
m(hd − hs)

ηm
(3)

ηv = 1.19379 − 0.13635
Pd
Ps

(4)

ηm = 0.64107 + 0.07487
Pd
Ps

(5)

ηs = 0.8014 − 0.04842
Pd
Ps

(6)

where N and Vdis are the speed and displacement of the compressor; ρs and hs are the
density and enthalpy of the suction state; hdis is the enthalpy value of discharge port after
isentropic compression; P is the power consumption of the compressor; ηv, ηis, and ηm are
the volume efficiency, isentropic efficiency, and mechanical efficiency of the compressor,
respectively, which are commonly the functions of the pressure ratio.

2.2.2. Gas-Cooler Model and IHX Model

The tube-and-tube heat exchanger model was adopted for both the gas-cooler and the
IHX. The heat exchange in each element of the tube-and-tube heat exchanger are calculated
according to the following equations:

.
Qhx = ∑N

j=1 Kj Ai,j(Thot − Tcold) (7)

Kj = (
1

∝inside,j
+

Ai,j

∝outside,j Ao.j
+ RW,j)

−1

(8)
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where ∝inside,j and ∝outside,j are the local heat transfer coefficients of the inner and outer
sides of the tube-and-tube heat exchanger. The local heat transfer coefficient of CO2 can be
calculated using the correlations proposed by Dang and Hihara [21,22]:

∝r=
Nurλb

di.i
(9)

Nur =
( fr/8)(Reb − 1000)Pr

1.07 + 12.7
√

fr/8(Pr2/3 − 1)
(10)

where Nur is the Nusselt number of CO2 in the heat exchanger tube; λb is the thermal
coefficient of CO2 in the temperature inside the tube; di.i is the diameter of the inner tube of
the heat exchanger tube; fr is the friction coefficient of CO2 in the heat exchange tube; Reb
is the Reynolds number of the temperature inside the tube; Pr is the Prandtl number in the
heat exchanger tube. The equations of fr, Reb, and Pr are detailed in the reference.

The water side heat transfer coefficient is calculated by the Dittus–Boelter equation:

∝w=
Nuwλw

Deq
(11)

Nuw = 0.023Rew
0.8Prw

0.4 (12)

Rew =
uwDeq

νw
(13)

Prw =
Cpwµw

λw
(14)

where Nuw is the Nusselt number of water; λw is the thermal coefficient of water; Rew
is the Reynolds number of water; Prw is the Prandtl number of water; uw is the speed of
water; Deq is the equivalent diameter of the outer tube of the tube heat exchanger; νw is the
kinematic viscosity of water; Cpw is the specific heat capacity at constant pressure of water;
µw is the dynamic viscosity of water.

2.2.3. Evaporator Model

The fin-and-tube heat exchanger was adopted for the evaporator. The energy balance
equations for the CO2 and air sides are expressed by:

.
Qeva =

.
mCO2(hCO2,out − hCO2,in) =

.
mair(hair,in − hair,out) (15)

.
Qeva = ∑N

j=1 Kj Ai,j(TCO2,j − Tair,j) (16)

Kj = (
1

∝CO2,j
+ Rj +

Ai,j

∝air,j εη0 Ao,j
)
−1

(17)

where
.

Qeva is the heat exchange capacity in the evaporator;
.

mCO2 and
.

mair are the mass
flow rate of CO2 and air, respectively; hCO2,out, hCO2,in, hair,in, hair,out are the outlet enthalpy
of CO2, inlet enthalpy of CO2, inlet enthalpy of air, outlet enthalpy of air, respectively;
TCO2,j and Tair,j are the temperature of CO2 and air in a section of the evaporator; η0 is
the total efficiency of rib surface; Ao,j is the sum of fin and root area; ε is the moisture
separation coefficient; Kj is the overall heat transfer coefficient, where the local transfer
coefficient ∝CO2,j during the evaporating process was calculated by the correlation proposed
by Cheng et al. [23]:

∝IorA=∝wet= [(S ∝nb)
3 + ∝cb

3]
1/3

(18)

∝nb= 131pr
−0.0063(− log10 pr)

−0.55M−0.5q0.58 (19)
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S =

{
1, when x < xIA, intermittent f low

1 − 1.14( Deq
0.00753 )

2
(1 − δ

δIA
), when x ≥ xIA, annual f low

(20)

∝cb= 0.0133Reδ
0.69PrL

0.4 λL
δ

(21)

where ∝IorA is the heat transfer coefficient of CO2 in annular or intermittent flow regimes;
∝wet is the heat transfer of the wet circumference of the heat exchanger tube; S is the limiting
factor of the nucleate boiling heat transfer coefficient; ∝nb is the heat transfer coefficient of
nucleate boiling; ∝cb is the heat transfer coefficient of convection boiling; pr is the contrast
pressure; M is the molecular weight of CO2; Reδ is the Reynolds number of liquid film; PrL
is the Prandt number of liquid film; λL is the thermal coefficient of liquid CO2; δ is the
liquid film thickness. The equations of Reδ, δ and pr are detailed in the reference.

2.2.4. Design Specifications

Apart from the model information clarified above regarding the compressor and heat
exchangers, more detailed information of the design specifications of the gas-cooler, the
evaporator, the IHX, and the separator are provided in Table 1.

Table 1. Design specifications of major components of the transcritical CO2 thermal management system.

Components Name Design Parameters

Gas-cooler

Tube and tube heat exchanger; counter flow; three units in parallel; tube
length: 38.703 m;
refrigerant tube: copper; Φ9.52/Φ8.77 mm;
water tube: stainless steel; Φ19/Φ15 mm;
heat transfer area: 2.24 m2.

Evaporator

Fin and tube heat exchanger; cross flow;
copper tubes; tube diameter: 9.52 mm; wall thickness: 0.75 mm; tube
length: 2.2 m;
fin pitch: 2.4 mm; thickness: 0.2 mm; number of serial tubes: 4; number
of parallel tubes per row: 36; Number of circuits: 9.

IHX

Tube and tube heat exchanger; counter flow;
Outer tube: copper; Φ28/Φ27 mm;
inner tube: copper; Φ13/Φ12 mm;
heat transfer area: 0.327 m2.

Separator Volume: 9.4 l;
height: 300 mm.

2.2.5. Parameters Used in the Analysis

The refrigerant circuit was cycled in the order shown in Table 2, and the parameters
were input and output in the order accordingly.

Table 2. Parameters used in the analysis.

Components Name Input Parameter Output Parameter

Compressor
Pressure (barA)
Density (kg/m3)

Rotary speed (rev/min)

Enthalpy flow rate (W)
Mass flow rate (kg/s)

Torque (Nm)

Gas-cooler Enthalpy flow rate (W)
Mass flow rate (kg/s)

Pressure (barA)
Density (kg/m3)

IHX
(High pressure side)

Pressure (barA)
Density (kg/m3)

Pressure (barA)
Density(kg/m3)

EEV Pressure (barA)
Density (kg/m3)

Enthalpy flow rate (W)
Mass flow rate (kg/s)
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Table 2. Cont.

Components Name Input Parameter Output Parameter

Evaporator Enthalpy flow rate (W)
Mass flow rate (kg/s)

Pressure (barA)
Density (kg/m3)

Separator Pressure (barA)
Density (kg/m3)

Enthalpy flow rate (W)
Mass flow rate (kg/s)

IHX
(Low pressure side)

Pressure (barA)
Density (kg/m3)

Pressure (barA)
Density (kg/m3)

2.3. Methodology

The co-optimization of the discharge pressure and the heat recovery rate was con-
ducted based on the evaluation of the system COP:

COP =

.
Q
P

(22)

where P is the power consumption of the whole system;
.

Q is the heating capacity calculated
by the mass flow rate

.
mw, specific heat capacity at constant pressure Cp, the inlet water

temperature Tw,in, and outlet water temperature Tw,out:

.
Q =

.
mwCp(Tw,out − Tw,in) (23)

The heat recovery rate is defined by the ratio of the realistic temperature increase to
the theoretical maximum temperature increase of the low-pressure side:

ε =
T1 − T6

T1,m − T6
(24)

where T1 is the suction temperature; T6 is the evaporator outlet temperature; and T1,m is the
theoretical maximum suction temperature, which is the outlet temperature of the gas-cooler.

In the transcritical CO2 thermal management system, a bypass-valve was adopted to
adjust the heat recovery rate and the discharge pressure was regulated by the opening of
the expansion valve. The system performance was optimized in terms of both the discharge
pressure and the heat recovery rate. Although the water supply temperature highly affects
the optimal discharge pressure value of the transcritical CO2 system, we used a fixed water
supply temperature of 60 ◦C that could be heated by a gas-cooler.

3. Results and Discussion
3.1. The Thermodynamic Characteristics with the Discharge Pressure

As is well-known to all, the discharge pressure has always been one of the most
significant parameters in a transcritical CO2 system including the transcritical CO2 heat
pump discussed in this research. Based on the AMESim theoretical models presented in
Section 2.3, the operating parameters of the transcritical CO2 heat pump in any steady state
could be obtained under certain operating conditions. The most important macro indicator
of the transcritical CO2 heat pump cycle such as the heating capacity, power consumption,
and heating COP are clearly shown in Figure 3 with the increase in the discharge pressure.



Energies 2023, 16, 2059 8 of 16Energies 2022, 15, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 3. The sketch map of the optimal discharge pressure in the transcritical CO2 systems. 

It can be seen from Figure 3 that the heating capacity of the transcritical CO2 heat 
pump rose gradually as the discharge pressure increased, while the ascending gradient 
changed slightly. For instance, under 25 °C, 10 °C, and 0 °C in ambient temperature, the 
ascending gradients of the heating capacity were higher in the beginning, but became 
lower during the second half of the research range. However, the ascending gradients of 
the heating capacity were not that visible under lower ambient temperatures such as the 
situations under −10 °C and −30 °C in ambient temperature. That is, considering the iso-
therm trends of the CO2 P-h diagram as shown in Figure 1b, a higher heating enthalpy 
difference will always be caused because the state point of the gas-cooler outlet would 
definitely move left when the discharge pressure becomes higher. 

Figure 3. The sketch map of the optimal discharge pressure in the transcritical CO2 systems.

It can be seen from Figure 3 that the heating capacity of the transcritical CO2 heat
pump rose gradually as the discharge pressure increased, while the ascending gradient
changed slightly. For instance, under 25 ◦C, 10 ◦C, and 0 ◦C in ambient temperature, the
ascending gradients of the heating capacity were higher in the beginning, but became
lower during the second half of the research range. However, the ascending gradients
of the heating capacity were not that visible under lower ambient temperatures such as
the situations under −10 ◦C and −30 ◦C in ambient temperature. That is, considering the
isotherm trends of the CO2 P-h diagram as shown in Figure 1b, a higher heating enthalpy
difference will always be caused because the state point of the gas-cooler outlet would
definitely move left when the discharge pressure becomes higher.
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Additionally, in contrast to the heating capacity, the power consumption of the trans-
critical CO2 compressor increased slightly and gradually as the discharge pressure rose,
regardless of the ambient temperature. It can be seen from Figure 1b that the isotherm
trends were almost parallel in the superheated region, which was the reason for the linearly
ascending power consumption with the increase in the discharge pressure.

As the result of the heating capacity (which increased rapidly and then slowly) and
the power consumption (that increased linearly), the heating COP of the transcritical CO2
heat pump system always presented the same trend across the whole research range. That
is, the heating COP of the transcritical CO2 heat pump system increased first and then
decreased with the rising discharge pressure, and the absolute value of the change gradient
during the decreasing period was almost lower than that during the increasing period, as
shown in all the diagrams in Figure 3.

Additionally, it was obvious that the main performances of the transcritical CO2 heat
pump system were remarkably affected by the ambient temperature, for instance, the
heating COP, heating capacity, power consumption, and the optimal value of the discharge
pressure decreased significantly with the decline in ambient temperature. The maximum
value of the heating COP reduced from more than 5.0 to almost 2.35 and the maximum value
of the heating capacity reduced from almost 100 kW to 35 kW, with the ambient temperature
declining from 25 ◦C to −30 ◦C. Furthermore, the optimal values of the discharge pressure
would be observed at 9.7 MPa, 9.5 MPa, 9.2 MPa, 9 MPa, and 8.6 MPa under 25 ◦C, 10 ◦C,
0 ◦C, −10 ◦C, and −30 ◦C in the ambient temperatures, respectively. Because it would
be more and more difficult for the transcritical CO2 heat pump system to absorb heat
from the atmospheric environment with the decline in ambient temperature, a significant
deterioration of the system performance above-mentioned could finally be obtained.

3.2. The Thermodynamic Characteristics with the Heat Recovery Rate

Except for the optimal discharge pressure mentioned in Section 3.1, another significant
optimizable property in the transcritical CO2 heat pump system was the heat recovery rate
between the refrigerant in the gas-cooler outlet and the suction line. By recovering the
heat energy, the refrigerant temperature at the gas-cooler outlet could be further cooled
down by the refrigerant at the suction line with lower temperature, while the heating and
cooling enthalpy difference could also be visibly enhanced. However, since the refrigerant
temperature at the suction line was heated up to a higher value, the discharge temperature
of the compressor might exceed the limit (higher than 150 ◦C) under the operating condition
with high pressure ratio (that often occurs under the running condition with low ambient
temperature). Additionally, excessive suction superheating degree in the transcritical CO2
heat pump system would cause the decreasing suction density, thereafter the decreasing
mass flow rate in the heat pump system, thus, the heating capacity would generally decline,
even if the heating enthalpy difference increased.

To sum up, it must enhance the system performance (including the heating capacity
and COP) of the transcritical CO2 heat pump to provide an appropriate heat recovery rate,
while the performance might be attenuated when the heat recovery rate is too high. In
order to quantitatively judge the effect of the heat recovery rate on the system performance
of the transcritical CO2 heat pump discussed in this study, a detailed study with plentiful
results was carefully carried out, and the sketch map of the optimal heat recovery rate in
the transcritical CO2 system is clearly shown in Figure 4.
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First, it was observed that the effects of the heat recovery rate on the system perfor-
mance were slight, where the impact was generally less than 10%. The heating COP of the
transcritical CO2 heat pump system was dramatically affected by the ambient temperature,
which was already analyzed in Section 3.1, and the exact value of the heating COP was
reduced from more than 5.0 (under 25 ◦C in ambient temperature) to less than 2.5 (under
−30 ◦C in ambient temperature).

Then, under every certain ambient temperature, all of the effects of the heat recovery
rate on the system performance of the transcritical CO2 heat pump presented obvious
differences, as shown in Figure 4. It can be concluded that under every running condition
with different ambient temperatures, the system heating COP would gradually increase
with the rise in the heat recovery rate when the discharge pressure was relatively low.
However, the system heating COP decreased obviously with the rising heat recovery rate
when the discharge pressure was relatively high. Furthermore, as a compromise, the system
heating COP increased first and then declined with the rising heat recovery rate when the
discharge pressure was taken to an intermediate value.

To sum up, it can be concluded that even the heat recovery rate had a significant
influence on the system performance of a transcritical CO2 heat pump. This effect was also
highly influenced by the discharge pressure. That is, considering the joint effects on the
system performance, the discharge pressure and the heat recovery rate can be treated as a
pair of interrelated parameters coupled with each other.

Additionally, it can be inferred that the heat recovery rate had a positive effect on the
system performance (that is, the system performance will increase with the rising heat
recovery rate) when the discharge pressure was lower than its optimal value while the
heat recovery rate would present a passive effect on the system performance (that is, the
system performance will decrease with the rising heat recovery rate) when the discharge
pressure was higher than its optimal value. Therefore, the global maximum performance
of the transcritical CO2 heat pump system must be obtained under the situation when
the discharge pressure and heat recovery rate have achieved their optimal values at the
same time.

3.3. The Collaborative Optimization of the Discharge Pressure and Heat Recovery Rate

As above-mentioned, the discharge pressure and the heat recovery rate should be
treated as a pair of interrelated parameters coupled to each other, thus, the quantitative
analysis of the collaborative optimization of the discharge pressure and heat recovery rate
is presented in this section.
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The system heating COP trends of the transcritical CO2 heat pump are clearly shown
in Figures 5–9 based on the varying discharge pressure and heat recovery rate under
different ambient temperatures. Compared with the heat recovery rate, it can be seen from
Figures 5–9 that the effects of the discharge pressure on the heat pump system performance
were much more visible, however, the deterioration in the heat pump system performance
was also significant under the running condition with a very low heat recovery rate. That
is, it was quite necessary to set an appropriate heat recovery rate in the transcritical CO2
heat pump system, while the optimal value of the heat recovery rate in the transcritical CO2
heat pump system was relatively vague. Furthermore, it was noticed that the general trend
in the optimal heat recovery rate is that the higher the heat recovery rate in the transcritical
CO2 heat pump, the better the system performance.
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Additionally, it was remarkable that there must be a strong coupling relationship
between the heat recovery rate and the discharge pressure. For instance, the optimal
discharge pressure of the system varied with the changing heat recovery rate under the
same running condition; it can be observed from Figures 5–9 that the optimal value of the
discharge pressure will decrease with the rising heat recovery rate, that is, by increasing
the heat recovery rate at a certain cost, the discharge pressure can be reduced from another
aspect to ensure the safe and stable operation of the transcritical CO2 heat pump system.
On the other hand, it could be noted from the general trends that the optimal value
of the system heating COP was better under a higher heat recovery rate and relatively
lower discharge pressure, which is why these kinds of operating conditions are highly
recommended from the perspective of the collaborative optimization of the discharge
pressure and heat recovery rate.

Although the effects of the discharge pressure and heat recovery rate on the system
performance of the transcritical CO2 heat pump were significant, the degree of the influ-
ence was also highly affected by the ambient temperature. For instance, it can be drawn
from Figures 5–9 that the optimization effect of the collaborative adjustment with the
discharge pressure and heat recovery rate was more than 20% among the research range
under 25 ◦C in the ambient temperature, however, the optimization effect has strongly
deteriorated to 14%, 17.4%, 9.2%, and 9.7% with 10 ◦C, 0 ◦C, −10 ◦C, −30 ◦C in the ambient
temperature, respectively.

Additionally, it can be seen from Figures 5–9 that the effect of the heat recovery rate
on the system performance also deteriorated with the gradual decline in the ambient
temperature. For instance, under the worst running condition with −30 ◦C in the ambient
temperature, the optimization effects of the heat recovery rate almost disappeared, which
indicates that the IHX was no longer that helpful under ultra-low ambient temperature,
while different heat recovery rates would not continuously affect the optimal performance
of the transcritical CO2 heat pump system, and only slightly affected the value of the
optimal discharge pressure. In detail, as usual, the optimal discharge pressure will decrease
with the rising heat recovery rate under an ultra-low ambient condition.

Additionally, it can be drawn from Figures 5–9 that the worst system heating COP of
the transcritical CO2 heat pump was always found under the condition with the lowest
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discharge pressure and lowest heat recovery rate, which indicated that the decreasing
gradient of the system performance after exceeding the optimal values (of both heat
recovery rate and discharge pressure) was visibly less than the increasing gradient before
reaching the optimal values (of both the heat recovery rate and discharge pressure).

Furthermore, among the simulation domain, it can be seen from Figures 5–9 that the
sub-low point of the system heating COP could be found under the running condition
with the highest discharge pressure and highest heat recovery rate, which demonstrated
that blindly increasing the discharge pressure as well as the heat recovery rate was usually
adverse to the system performance, and that this attenuation was also very obvious.
Furthermore, this phenomenon also indicated the conclusion of Section 3.2, that the heat
recovery rate had a positive effect on the system performance when the discharge pressure
was lower than its optimal value, while the heat recovery rate would present a passive effect
on the system performance when the discharge pressure was higher than its optimal value.

4. Conclusions

Considering the excellent environmental properties and heating capability under wide
running conditions of the natural fluid CO2, the transcritical CO2 heat pump water heater
system was comprehensively studied with regard to the collaborative optimization of the
discharge pressure and heat recovery rate. Based on many theoretical studies, the main
conclusions can be drawn as follows:

1. In a typical transcritical CO2 heat pump system, there are two optimizable parameters
that affect the system performance significantly, which are the heat recovery rate and
the discharge pressure, where higher or lower values of these two parameters will
definitely cause a deterioration in the system performance.

2. There is a very complicated coupling relationship between the heat recovery rate and
the discharge pressure. The actual values of these two parameters would significantly
affect the optimal values of each other, thus, these two optimizable parameters should
be optimized collaboratively.

3. The optimal value of the system heating COP was better under a higher heat recovery
rate and a relatively lower discharge pressure, which is why these kinds of operat-
ing conditions are highly recommended from the perspective of the collaborative
optimization of the discharge pressure and heat recovery rate.

4. The heat recovery rate had a positive effect on the system performance when the
discharge pressure was lower than its optimal value, while the heat recovery rate
presented a passive effect on the system performance when the discharge pressure
was higher than its optimal value.
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Nomenclature

A Heat transfer area (m2) v Volumetric
V Volume (m3) dis Displacement
N Rotary speed (rev·min−1) s Suction
h Enthalpy (kJ·kg−1) is Isentropic
K Heat transfer coefficient (W·K−1·m−2) m Mechanical
.

m Mass flow rate (kg·s−1) d Discharge
P Power consumption (J) hx Heat exchanger
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∝ Heat transfer coefficients (W·K−1·m−2) eva Evaporate
T Temperature (◦C) w Water
.

Q Quantity of heat (W) i Inside
ρ Density (kg·m−3) j Parameter at cell level
η Efficiency W Wall
Re Reynolds number p Pressure
Nu Nusselt number r Refrigerant
Pr Prandtl number eq Equivalent
M Molecular weight (kg·kmol−1) L Liquid
ε Moisture separation coefficient///Heat recovery rate nb Nucleate boiling
S limiting factor of nucleate boiling heat transfer coefficient cb Convection boiling
λ Thermal coefficient (kW·(K·m)−1) δ Liquid film thickness
D/d Diameter(m) o Outside
δ Liquid film thickness (m)
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