
Citation: Zhou, Y.; Ma, L.; Ni, W.; Yu,

C. Data Enrichment as a Method of

Data Preprocessing to Enhance

Short-Term Wind Power Forecasting.

Energies 2023, 16, 2094. https://

doi.org/10.3390/en16052094

Academic Editor: Davide Astolfi

Received: 22 January 2023

Revised: 18 February 2023

Accepted: 20 February 2023

Published: 21 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Data Enrichment as a Method of Data Preprocessing to Enhance
Short-Term Wind Power Forecasting
Yingya Zhou 1 , Linwei Ma 1,* , Weidou Ni 1 and Colin Yu 2

1 State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua-BP Clean
Energy Research and Education Centre, Tsinghua University, Beijing 100084, China

2 Chenqiao Smart Technology, Inc., Shanghai 201306, China
* Correspondence: malinwei@tsinghua.edu.cn; Tel.: +86-10-62795734-8023

Abstract: Wind power forecasting involves data preprocessing and modeling. In pursuit of better
forecasting performance, most previous studies focused on creating various wind power forecasting
models, but few studies have been published with an emphasis on new types of data preprocessing
methods. Effective data preprocessing techniques and the fusion with the physical nature of the wind
have been called upon as potential future research directions in recent reviews in this area. Data
enrichment as a method of data preprocessing has been widely applied to forecasting problems in the
consumer data universe but has not seen application in the wind power forecasting area. This study
proposes data enrichment as a new addition to the existing library of data preprocessing methods
to improve wind power forecasting performance. A methodological framework of data enrichment
is developed with four executable steps: add error features of weather prediction sources, add
features of weather prediction at neighboring nodes, add time series features of weather prediction
sources, and add complementary weather prediction sources. The proposed data enrichment method
takes full advantage of multiple commercially available weather prediction sources and the physical
continuity nature of wind. It can cooperate with any existing forecasting models that have weather
prediction data as inputs. The controlled experiments on three actual individual wind farms have
verified the effectiveness of the proposed data enrichment method: The normalized root mean square
error (NRMSE) of the day-ahead wind power forecast of XGBoost and LSTM with data enrichment is
11% to 27% lower than that of XGBoost and LSTM without data enrichment. In the future, variations
on the data enrichment methods can be further explored as a promising direction of enhancing
short-term wind power forecasting performance.

Keywords: wind power forecasting; data enrichment; data preprocessing; weather prediction

1. Introduction

Wind energy is one of the world’s most promising renewable energy resources. Never-
theless, wind energy is inherently intermittent, uncontrollable, and random. Short-term
wind power forecasting is of significant interest for unit commitment and scheduling.
Wind power forecasting involves data preprocessing and modeling. Many studies have
been conducted on short-term wind power forecasting models, especially on models using
artificial intelligence and hybrid techniques [1–6]. Meanwhile, data preprocessing is widely
used, but few studies have focused on developing improved data preprocessing methods
for wind power forecasting [7]. Instead, data preprocessing has often been mentioned as an
auxiliary part of each wind power forecasting model, and has been very limited to either
simple data cleaning and organization or individualized data preparation steps for specific
wind power forecasting algorithms. A detailed literature review on the data preprocessing
methods used in wind power forecasting are referred to Section 2.1.

While the authors kept trying different wind power forecasting algorithms from the
literature to seek higher forecasting performance during the operation of actual wind
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farms, it was observed that the forecast accuracy for some wind farms was influenced
more significantly by inputting weather prediction data rather than the use of various
forecasting models. Recent studies in the field have also called for more attention to be
paid to data preprocessing [7,8]. It has been suggested that approaches to fully utilize the
original datasets are worthy of future study. Moreover, insights from general earth system
science highlighted that combining machine learning with relationships derived from the
natural sciences should be a promising way to improve forecasting accuracy [9]. These
phenomena and insights prompted the authors to explore new ways of data preprocessing
to introduce more useful weather prediction information for better forecast accuracy.

Data enrichment refers to the process of appending or otherwise enhancing collected
data, with the relevant context being obtained from additional sources [10]. Originating
in the realm of processing consumer data [11], data enrichment is an increasingly popular
approach to data preprocessing to substantially enhance the performance of various fore-
casting problems in business [12], industrial network security [10], and commodity price
forecasting [13]. However, data enrichment has not been carried out in previous research
on short-term wind power forecasting, as revealed by the literature search in Section 2.1.
Inspired by the application of data enrichment in other areas, the authors were motivated
to apply the principles of data enrichment to wind power forecasting.

This research aimed to develop a data enrichment method as a novel data preprocess-
ing method to improve the short-term wind power forecasting performance of various
forecast models. The proposed data enrichment method is physically interpretable, easy to
execute in the day-to-day operation of engineering, and has demonstrated effectiveness
in elevating the accuracy of wind power forecasting. The method has the following two
characteristics:

• It can be combined with other data preprocessing methods and is also applicable to
various modeling algorithms;

• It serves the purpose of adding as much valuable weather prediction information as
possible into the inputs of the wind power forecasting models.

The main contributions of this study are as follows:

• To propose the concept and a methodological framework of data enrichment to im-
prove short-term wind power forecasting performance;

• To put forward a set of executable data enrichment steps and validate the effectiveness
of each step in improving wind power forecasting performance;

• To verify the general applicability of the proposed data enrichment method by co-
operating with one machine learning and one deep learning short-term wind power
forecasting models for three different actual wind farms.

Based on these contributions, other researchers in wind power forecasting can incorpo-
rate the proposed data enrichment method as a way of data preprocessing before applying
their forecasting models or develop other ways of data enrichment for enhanced wind
power forecasting performance.

The rest of the paper is organized as follows: Section 2 reviews the data preprocessing
methods employed in previous research on wind power forecasting and the application
of data enrichment in other areas. Section 3 introduces the concept and the step-by-
step guidance of the proposed data enrichment method. Section 4 describes in detail
the experimental setting and data. Section 5 presents the results and discussion of the
verification of the proposed method’s general effectiveness and the effectiveness of each
step in the method. Section 6 reviews the limitations of the proposed method. Finally,
Section 7 concludes the paper.

2. Literature Review
2.1. Data Preprocessing Methods Used in Wind Power Forecasting

In wind power forecasting, the preprocessing of raw data is necessary before the
data can be utilized to train forecasting models. The terminology of data preprocessing,
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however, means that different scopes have been applied in different studies and there
have been ambiguous boundaries regarding the terms ‘data preparation’ and ‘feature
engineering’. Liu and Chen [7] summarized the data preprocessing methods applied in
wind power forecasting into five categories: data decomposition, feature selection, feature
extraction, denoising, and outlier detection. Lipu et al. [8] provided a list of various
data preparation techniques during the review of the 140 most recent papers on wind
power forecasting using artificial intelligence. In their review paper, data preparation
was categorized into data preprocessing, data filtering, data sampling, downscaling, and
outlier detection. Data preprocessing was then further categorized into data division,
decomposition, standardization, and normalization. In another recent review on wind
power forecasting with deep neural networks [6], data preparation was divided into
signal processing and outlier detection approaches, with the sole objective of addressing
uncertainty in wind data.

Table 1 provides a summary of the occasions of use and recent applications of various
data preprocessing methods in wind power forecasting. Despite the diverse library of de-
tailed data preprocessing methods, all methods can be divided into three groups according
to their purpose:

• Data organization methods reorganize raw datasets into datasets of different sizes,
scales, and sampling frequencies;

• Data cleaning methods correct abnormal data and errors;
• Dimensionality reduction methods reduce the number of features or transform the

original features to shrink the feature space and prevent overfitting.

Table 1. Summary on data preprocessing methods and their recent research applications in wind
power forecasting from the literature.

Purpose Data Preprocessing Method Occasion of Use and Recent Research Applications

Data organization

Data sampling

• Unifies the data sampling rates according to the forecast
horizon [14,15]

• Re-samples the continuous data after signal processing [16]
• Mitigates the class imbalance problem [17]

Data division/Data splitting
• Separates datasets into two sets: training and testing [18]
• Divides datasets for individual model building [19]

Data standardization/Data normalization
• Converts variables in the input dataset in different scales into

those of the same scale [20,21]

Data clustering
• Clusters similar input datasets into one group to reduce

computational burden in modeling while maintaining
characteristics of the datasets [22,23]

Data decomposition
• Breaks down non-stationary original time series into several

relatively stationary subseries, and then builds a forecasting
model on each subseries [20,24,25]

Data augmentation
• Enlarges training data in case of lacking input data for

machine learning models [26,27]

Data cleaning Data correction/denoising

• Deletes or substitutes abnormal data, noise, and missing
values [16,28]

• Corrects systematic errors in numerical weather prediction
data [26,29]
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Table 1. Cont.

Purpose Data Preprocessing Method Occasion of Use and Recent Research Applications

Data filtering • Eliminates any possible systematic and random errors [30–33]

Dimensionality reduction Feature selection
• Selects useful features from feature candidates to reduce the

complexity of forecasting models and prevents overfitting
[28,34–36]

Feature extraction • Maps the original feature set into a new one to reduce
dimensionality and prevent overfitting [37,38]

In all of the studies introduced in Table 1, data preprocessing was either mentioned
incidentally as an auxiliary part of the wind power forecasting models or as part of a newly
proposed specialized forecasting algorithm. It can also be observed from Table 1 that the
data preprocessing methods used in previous studies took data only as pure time series
signals without unfolding the physics behind the data.

Few studies have focused on developing a new kind of data preprocessing method.
The results of the literature search with the keywords ‘data preprocessing wind forecasting’
or ‘data processing wind forecasting’ in ScienceDirect and MDPI revealed the gap. As is
shown in Table 2, only eight journal articles fulfilled the search criteria, but none of these
focused on developing new types of data preprocessing methods.

Table 2. Literature search results by relevant keywords in ScienceDirect and MDPI conducted on 15
December 2022.

Keywords Number of Results 1 Topic

Data preprocessing wind forecast
or data processing wind forecast

7

All of the seven studies proposed a specific combination of hybrid
algorithms. In the data preprocessing part, the authors in [39] proposed
singular spectrum analysis (SSA) for data denoising and variational
mode decomposition (VMD) as the data decomposition method. The
authors in [40] proposed VMD as the data decomposition method and
PSR as the feature extraction method. The authors in [41] proposed
complete ensemble empirical mode decomposition (CEEMD) as the
data decomposition method. The authors in [42] proposed a complete
ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) as the data decomposition method. The authors in [43]
proposed empirical wavelet transform (EWT) as the data decomposition
method. The authors in [44] proposed combining CEEMD and VMD as
the data decomposition method. The authors in [45] proposed
combining ICEEMDAN and fuzzy time series as the data
decomposition and feature extraction methods.

1 A review paper of the data processing methods used in wind energy
forecasting models [7].

1 The number of results is the number of the search results where the article title or article keywords contains the
search keywords.

Meanwhile, researchers have also recently observed the gap and called for attention to
be paid to future research on data preprocessing methods in wind power forecasting. Liu
and Chen [7] stressed that data preprocessing methods have not drawn much attention
and the approaches to fully explore the original high-resolution dataset are worthy of
future study. Lipu et al. [8] suggested that further studies were also required concerning
effective data preparation strategies. However, how to utilize data more effectively was not
clearly stated.

2.2. Data Enrichment

Within the internet and consumer data universe the concept of data enrichment has
been extensively applied in practice. As D. Needham described in [46], data enrichment is to
make data powerful by showing more context about the meaning of the data. Operationally,
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data enrichment is the process of enhancing existing information by supplementing relevant
context. Typically, data enrichment is achieved by using external data sources, but that is
not always the case [47]. For example, a customer relationship management (CRM) system
may store two data series: the customers’ names and identification card numbers. Before
customer recommendation algorithms are trained, the input customer data can be enriched
by decoding birthday information from the identification card numbers or relating other
information such as the addresses and hobbies of the customers to the customer names
from external systems.

It is uncommon to see the concept of data enrichment applied to engineering problems.
The literature search conducted on 15 December 2022 with the search keywords ‘data
enrichment forecast’ in ScienceDirect and MDPI revealed only one entry: The authors
in [13] published an approach in 2022 on enriching time series using domain-specific terms
for forecasting agricultural commodity prices. The results indicated that data enrichment
is promising in reducing the forecast uncertainty of agricultural commodity prices. Data
enrichment has not been found in previous studies regarding wind power forecasting.

On the other hand, the rough direction of enriching valuable information and knowl-
edge in inputs to enhance forecast accuracy was indicated by Markus Reichstein et al. in
Nature in 2019 [9]. They pointed out that classical machine learning approaches rarely
exploit spatial–temporal dependencies exhaustively when dealing with data-driven earth
system science. For example, previous time steps and neighboring grid cells contain hidden
information on the state of the system, i.e., the ‘memory effect’. It was proposed to tackle
the critical challenges in earth system science by extracting knowledge from the data deluge
and combining machine learning research with physically based relationships derived from
the natural sciences.

Therefore, it is of value to introduce data enrichment to wind power forecasting.

2.3. Summary

Data preprocessing is an important step for wind power forecasting. The data prepro-
cessing methods applied in previous wind power forecasting studies can be clustered into
three categories by their purpose: data organization, data cleaning, and dimensionality
reduction. All of these categories take data only as pure time series signals. Few studies
have focused on developing new types of data preprocessing methods.

Data enrichment has been widely applied in the consumer data area to enhance forecast
performance by enriching the valuable information content of the input data. However,
data enrichment was not discovered in earlier studies on wind power forecasting. The
authors were motivated by the current lack of consideration of the physical traits of wind in
the current data preprocessing methods and the idea of data enrichment. Consequently, this
study’s emphasis was on bringing data enrichment to the field of wind power forecasting
with consideration given to the physical features of wind before that data was put into
forecasting models.

3. Wind Data Enrichment Method
3.1. Concept

Data enrichment aims to introduce more valuable information into the input dataset.
Wind power forecasting has a strong correlation with weather prediction. In this study,
weather prediction data were enriched by taking advantage of multiple commercial weather
prediction sources such as IBM and the European Centre for Medium-Range Weather
Forecasts (ECMWF), as well as the intrinsic characteristics of wind and wind prediction. The
method made available the inherent forecast error feature of different weather prediction
sources as well as the spatial and temporal continuity of the atmosphere. This allowed
the wind power forecasting models to learn, hence improving the accuracy of wind power
forecasting. This method is easy to execute and of broad applicability, so that it can be
deployed with various existing wind power forecasting models using weather prediction
data as inputs.
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Figure 1 shows how the proposed method differs from the data preprocessing strate-
gies summarized in Table 1. In fact, the proposed method may well position itself as a
step before the original data preprocessing and forecasting models. The effectiveness of
the proposed data enrichment method was verified by three different wind farms and two
different types of classical wind power forecasting models in the following sections of
this paper.
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Figure 1. Illustration 1 of the relationship between the proposed data enrichment method, other
incumbent data preprocessing methods, and wind power forecasting models. (1 The black lines
represent the data flow without data enrichment; The blue lines represent the data flow with the
proposed data enrichment method).

3.2. Overall Framework

The proposed data enrichment method, as illustrated in Figure 2, can be broken down
into four steps:

• Add error features of the weather prediction sources;
• Add features of neighboring weather prediction data nodes to take advantage of the

spatial continuity of the atmosphere;
• Add time series features of the weather prediction sources to take advantage of the

temporal continuity of the atmosphere;
• Add multiple complementary weather prediction sources.
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The detailed concept for each of the four steps is introduced in Sections 3.3–3.6, with
exemplary equations to realize the steps proposed.

3.3. Add Error Features of Weather Prediction Sources

“The error is the feature”, Schön et al. from the German weather forecast agencies
shared in their publication [48]. They successfully forecasted lightning by taking the
historical error between the results given by two-dimensional optical flow algorithms and
the truth value measured from meteorological satellites as a feature fed into the machine
learning forecast model. Similarly, the historical prediction error indicates an important
feature of each weather prediction source relative to the weather truth value. For example,
some weather prediction sources have better accuracy for rainy days, while others are good
at predicting calm weather. Therefore, for each weather prediction source, new features
representing the historical weather prediction error can be built as additional inputs for
wind power forecasting models. The simplest way to represent the error feature is the
historical difference between weather prediction and weather true value (WTV) according
to Equation (1):

δy(t) = ŷ(t)− y(t) (1)

where y and ŷ represent the true value and prediction value of each physical quantity
included in weather prediction data, such as wind speed, air temperature, air pressure, and
air density.

3.4. Add Features of Weather Prediction at Neighboring Nodes

Commercial weather prediction data divides the real atmosphere into a grid and
performs the prediction at each grid node. Since the atmosphere is a continuous physical
body, the physical quantities at neighboring nodes interact with each other. For example,
the wind speed at an adjacent node in the opposite direction of the wind speed may
largely influence the wind speed at the current node for the next moment. Accordingly,
the weather prediction data at neighboring nodes contain valuable information for the
weather prediction of the present nodes. Recent studies have also shown the importance
of the meteorological information of adjacent areas to the forecast of a target area by a
data-driven approach [49,50]. However, for two reasons the weather prediction at adjacent
nodes cannot be directly added as the inputs of wind power forecasting models. On the
one hand, sole weather prediction data of neighboring nodes miss the information on the
relative position of adjacent nodes to the present nodes. On the other hand, excessive inputs
could lead to overfitting. A simple way to combine information on the relative location and
the weather prediction values of neighboring nodes into new features can be conducted in
the following procedures:

• Determine the adjacent nodes: As Figure 3 shows, for models forecasting at the wind
turbine level the adjacent nodes are the eight nodes surrounding the box where the
turbine is located. For models forecasting at the wind farm level, the adjacent nodes
can be the eight areas surrounding the wind farm area. Each adjacent node is as large
as the wind farm area. Neighboring nodes are selected based on physical proximity to
reflect the physical continuity of the atmosphere;

• Calculate the combined weather prediction feature of each adjacent node: If the
weather variable is a vector, such as wind speed, the new feature can be formulated
by projecting the vector in the direction from the center of the wind farm node to the
center of the adjacent node, as Equation (2) shows. If the weather variable is a scalar,
the new feature can be formulated by calculating the gradient of the scalar first and
then transforming the gradient as the other vector variables.

ŷproject,i = |
→
ŷ adjacent,i|· cos θproject,i (2)
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Here, ŷproject,i is the new feature representing the influence from the weather condition

at the ith neighboring node,
→
ŷ adjacent,i is the weather variable vector or the gradient vector of

scalar weather variable of the ith adjacent node, and θproject,i is the angle between
→
ŷ adjacent,i

and the vector from the center of the wind farm node to the center of the ith adjacent node.

3.5. Add Time Series Features of Weather Prediction Sources

Since the atmosphere is also continuous over time, the historical and future weather
data have a strong relationship with the current weather data. The addition of time
series features into the inputs of wind power forecasting models can extract valuable
upstream and downstream information regarding the weather along the time into the
models. Typical time series features include lag features, difference features, and rolling
window features [51,52].

A lag feature is a variable that contains data from previous time steps. The past values
are called lags, so t-1 is lag 1, and t-2 is lag 2. A lag N feature can be made according to
Equation (3) [52]:

ylagN(t) = y(t−N) (3)

where ylagN is the lag N feature of y, N means N times the time stamp.
A difference feature is a variable that contains the difference between the present and

historical data points. A difference N feature can be calculated according to Equation (4) [52]:

ydiffN(t) = y(t)− y(t−N) (4)

where ydiffN is the difference N feature of y.
Rolling means creating a rolling window with a specified size and performing calcula-

tions on the data in this window which rolls through the data. The rolling mean feature
can be calculated according to Equation (5) [52]:

yrollN,mean(t) = [y(t) + y(t− 1) . . . + y(t−N + 1)]/N (5)

where yrollN,mean is the rolling mean of y with a rolling window size of N.

3.6. Add Complementary Weather Prediction Sources

Multiple worldwide weather prediction sources are available for commercial use;
some of these are listed in Table 3. They differ in a variety of settings, such as model princi-
ple, whether they are deterministic or probabilistic, their spatial and temporal resolutions,
and other parameters. For different locations at different times, different weather predic-
tion sources perform differently. Dabernig [53] compared the weather prediction of the
ECMWF (European Centre for Medium-Range Weather Forecasts), ZAMG (Zentralanstalt
für Meteorologie und Geodynamik—the Austrian national weather service), and GEFS
(North American Global Ensemble Forecast System) as inputs for the statistical wind power
forecasts of seven turbines located in Austria, Germany, and the Czech Republic. The
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comparison showed that while the wind power forecast with GEFS as the input was always
worse for all turbines, the wind power forecast with ECMWF as the input had a better
performance than that with ZAMG for some turbines; however, this was worse for the
other turbines.

Table 3. Examples of commercial weather prediction sources.

Abbreviation Description of the Weather Prediction Sources

IBM Global high-resolution atmospheric forecasting by IBM Weather Operations Center
GFS Global forecast system operated by the United States’ National Weather Service

ECMWF European Centre for Medium-Range Weather Forecasts
CMC Canadian Meteorological Centre
DWD Deutscher Wetterdienst

Accordingly, multiple weather prediction sources can be utilized to improve the
accuracy of wind power forecasting. However, the added weather prediction sources must
be complementary to the current weather prediction source(s) as inputs to wind forecast
models. Otherwise, adding a new weather prediction source could only result in more
inaccurate information in the input, leading to a lower accuracy of wind power forecasting.

The detailed process to add complementary weather prediction sources is as follows:

• Calculate the average forecast accuracy and forecast data availability for the problem
period. The problem period can be all the historical periods when the weather pre-
diction and WTV for the problem location are available, or for artificial intelligence
algorithms, the time covering the training and test dataset. The average forecast
accuracy can be measured by its root mean square error (RMSE):

RMSE =

√
∑T

t=1 (ŷ(t)− y(t))2

T
(6)

where ŷ(t) and y(t) are the prediction and true values of weather variables, and T is
the number of the data points;

• Select weather prediction source(s) that the wind power forecasting model used to
set as inputs, or one weather prediction source with the lowest RMSE and highest
data availability, as the first weather prediction source in the weather prediction base.
Calculate the accuracy of the wind power forecasting model as RMSEbefore;

• Add one more weather prediction source to the wind power forecasting model as
a new input. Calculate the accuracy of the wind power forecasting model with the
new weather prediction base as RMSEafter. If RMSEafter < RMSEbefore, the newly
added weather prediction source is then set as one of the sources in the weather
prediction base;

• Repeat the previous step until all of the available weather prediction sources have
been tried. An optimal weather prediction base is then set in which all the available
complementary weather prediction sources are contained.

4. Experimental Setting
4.1. Baseline Wind Power Forecasting Models

For the sake of proving the efficacy of the data enrichment method presented in
Section 3, the accuracy of wind power forecasting with and without the data enrichment
method in the step of data preprocessing had to be compared to see whether the data
enrichment had brought any ‘added value’ to the incumbent wind power forecasting
models. To make the comparison of broad applicability and show the effect of the data
enrichment method, two different types of classical and established wind power forecasting
models were selected as benchmarks instead of distinctive derivatives: extreme gradient
boosting (XGBoost) was chosen to represent machine learning algorithms for wind power
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forecasting. Long short-term memory (LSTM) served as the representative of deep learning
wind power forecasting models.

XGBoost, proposed in 2016 [54], is one of the most efficient and popular implemen-
tations of gradient boosting algorithms. It has been widely applied in wind speed fore-
casting [55] as well as wind power forecasting at the wind turbine level [56], wind farm
level [57] and country level [58], all with demonstratable outstanding model performance.

LSTM was proposed in 1997 [59]. As one of the improved variants of the recurrent
neural network, LSTM can capture the dynamic behavior of time series and has proven
performance in forecasting various time series [60–62], wind speed forecasting [63] and
wind power forecasting [64,65].

4.2. Datasets

Datasets of three different wind farms located in totally different cities that fed into the
North China Power Grid were obtained to verify the general effectiveness of the proposed
method. The details of the datasets are listed in Table 4.

Table 4. Description of three wind farm datasets.

Wind Farm № 1 № 2 № 3

Number of turbines 45 51 23
Dataset start time 2019/4/26 00:00:00 2019/4/26 00:00:00 2019/4/26 00:00:00
Dataset end time 2020/5/28 23:00:00 2020/5/28 23:00:00 2020/5/28 23:00:00

The dataset of each wind farm included 24-h-ahead weather prediction data from GFS,
ECMWF, IBM, and CWC, the truth value of wind data measured by anemometer towers,
and the truth value of wind farm power output from the supervisory control and data
acquisition (SCADA) systems. The data were obtained at 1-h intervals. The variables from
each weather prediction source and anemometer data were wind speed, wind direction, air
temperature, air pressure, and air density. The data points from the previous 12 months
from each wind farm were used as the training dataset, and the remaining data points
from each wind farm were used as the test dataset. Consequently, for each wind farm, the
training dataset contained 8784 time points for 366 days, while the test dataset contained
792 time points for 33 days. The original data had at least five significant digits and saved
in double-precision floating-point format. All calculated data in the intermediate steps
were saved in full length of the double-precision format.

The variables in the datasets were normalized according to Equation (7) to eliminate
the influence of different scales:

y = (y− µ)/σ (7)

where y is the original variable in the dataset, y is the normalized variable, µ is the mean
of the original variable through the whole dataset, and σ is the standard deviation of the
original variable through the whole dataset.

4.3. Performance Evaluation Metric

To date, several performance metrics have been employed to evaluate forecast accuracy,
but no single performance metric has been recognized as the universal standard [66]. RMSE
was chosen as the performance evaluation metric of wind power forecasting in this study
due to its wide employment in academic research [67,68] and industry applications [69–71].
Since the three wind farms are of different installed capacities, the RMSE metric was
normalized by capacity into NRMSE and calculated by Equation (8) [72]. The NRMSE is
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also called root mean square relative error (RMSRE) in some literature [68]. Accuracy can
be calculated as the complement of NRMSE, as Equation (9) shows:

NRMSE =

√
∑n

i=1 (Pi −
_
P i)

2

Cap
√

n
× 100% (8)

ACC = 100%−NRMSE (9)

Here, n is the sample number, Pi is the generated power of the wind farm at the ith

time point,
_
P i is the wind power forecast of the wind farm at the ith time point, Cap is

the total installed capacity of the wind farm, and ACC is the accuracy of day-ahead wind
power forecast.

The relative reduction in NRMSE and the relative improvement in the accuracy,
according to Equations (10) and (11), were applied to show the relative performance
improvement by the incorporation of data enrichment.

NRMSE∆%= 100% − (NRMSE withDE/NRMSEwithoutDE) (10)

ACC∆% = ACCwithDE/ACCwithoutDE − 100% (11)

Here, the subscript ∆% denotes the relative change, the subscripts withoutDE and
withDE represent the metrics achieved without and with data enrichment, and ACC∆% is
the relative improvement.

In order to make the performance improvement more tangible, the penalty resulting
from the wind power forecast error that the grid operators in the North China Grid enforce
was also calculated as an evaluation metric. The penalty and absolute penalty reduction
achieved by the method were calculated according to Equations (12) [69] and (13):

Penalty = (85%−ACC)× 40% (12)

Penalty4 = PenaltywithDE − PenaltywithoutDE (13)

Here, Penalty is the penalized power production reduction compared to the installed
capacity of the wind farm.

5. Results and Discussion
5.1. General Effectiveness of the Data Enrichment Method

The baseline was to input the weather prediction data from GFS without adding the
data enrichment method proposed in Section 3 using XGBoost and LSTM for all three
wind farms. The comparison was to employ the data enrichment method proposed in
Section 3. First, the historical differences between the weather prediction and WTV of all
the weather variables calculated according to Equation (1) were added as error features
of weather prediction resources. Secondly, the projected wind speeds of eight adjacent
nodes calculated according to Equation (2) were added as features of neighboring weather
prediction. Thirdly, the lag 1 feature, difference 1 feature, and 3-h-rolling feature of all
the weather variables calculated according to Equations (3)–(5) were added as time series
features of the weather prediction sources. Lastly, three additional weather prediction
sources, i.e., ECMWF, IBM, and CWC, were added to the inputs according to the criteria
described in Section 3.6.

The results in Table 5 show that the forecast results using XGBoost and LSTM with data
enrichment are better than those using XGBoost and LSTM without data enrichment. For
the XGBoost model, the data enrichment method enabled a relative accuracy improvement
from 5.0% to 15.9% and a relative error reduction from 11.2% to 27.5% for the three wind
farms. For the LSTM model, the data enrichment method enabled a relative accuracy
improvement from 16.7% to 17.4% and a relative error reduction from 27.2% to 36.9%. It is
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indicated that the proposed data enrichment method can effectively enhance the accuracy
of wind power forecasting for different wind farms and forecasting models.

Table 5. Comparison of the forecast accuracy, accuracy improvement, and RMSE reduction in two
wind energy forecasting models with and without the proposed data enrichment method for three
wind farms.

Wind Farm

Model XGBoost LSTM

ACCwithoutDE
1 ACCwithDE ACC4% NRMSE4% ACCwithoutDE ACCwithDE ACC4% NRMSE4%

№ 1 69.1% 72.6% 5.0% 11.2% 62.0% 72.3% 16.7% 27.2%
№ 2 72.1% 77.2% 7.2% 18.5% 63.0% 76.7% 21.6% 36.9%
№ 3 63.4% 73.4% 15.9% 27.5% 61.0% 71.6% 17.55% 27.3%

1 DE stands for data enrichment.

It should be pointed out that this study aimed to validate the relative improvement
in accuracy made possible by applying the intended data enrichment method along with
each wind power forecasting model, rather than to compare the absolute values of the
accuracy achieved by wind power forecasting models. However, a comparison with the
model improvements in the literature and the savings created from avoided penalties may
become two approaches that can shed some light on the significance of the improvement
brought about by the proposed method:

• The review in [68] published in 2021 listed the percentage error reduction in 41 hybrid
wind power forecasting models compared to their benchmarks. There were 26 models
designed for short-term wind power or wind speed forecasting, from which eight
were evaluated by RMSE. The average RMSE reduction in the models proposed in the
eight studies was 24.0%, which is comparable to the error reduction achieved by the
proposed data enrichment method in this paper;

• The improvement brought by other published methods that also have XGBoost and
LSTM as benchmarks is also comparable to the improvement brought by the proposed
data enrichment method. Xiong et al. [73] proposed an improved XGBoost algorithm
via Bayesian hyperparameter optimization (BH-XGBoost) and verified the efficacy
of the improvement relative to XGBoost on a 200 MW wind farm. The verification
results showed that the BH-XGBoost achieved 10.2% to 21.4% of RMSE reduction.
Qin et al. proposed an improved LSTM algorithm that combines variational mode
decomposition (VMD), maximum relevance and minimum redundancy algorithm
(mRMR), long short-term memory neural network (LSTM), and firefly algorithm (FA)
together. Compared to LSTM, the combined method achieved an RMSE reduction
of 27.9%;

• Table 6 shows that the proposed data enrichment method can help wind farm operator
to avoid 1.4% to 5.5% of the penalized power. Assuming that a wind farm had an
installed capacity of 180 MW, 2000 annual full load hours, and 0.4 RMB/kWh of the
feed-in tariff for a wind farm, the annual savings could amount to CNY 2 to 7 million.

Table 6. Comparison of the penalized power resulting from wind power forecasting errors of two
wind energy forecasting models with and without the proposed data enrichment method for three
wind farms.

Wind Farm

Model XGBoost LSTM

PenaltywithoutDE PenaltywithDE Penalty4 PenaltywithoutDE PenaltywithDE Penalty4

№ 1 6.4% 5.0% 1.4% 9.2% 5.1% 4.1%
№ 2 5.2% 3.1% 2.1% 8.8% 3.3% 5.5%
№ 3 8.8% 4.6% 4.0% 9.6% 5.4% 4.3%

It can also be seen from Figure 4 that the accuracy improvement brought about by the
proposed data enrichment method varied from model to model and wind farm to wind
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farm. A definite accuracy improvement rate for other forecasting models and wind farms
is not assured. Moreover, three interesting trends were observed:

• XGBoost outperformed LSTM for all three wind farms, regardless of the application of
data enrichment or not;

• For all of the wind farms, the accuracy improvement brought by data enrichment with
LSTM through the proposed method was more than that with XGBoost;

• The accuracy of the two models was closer with the aid of the proposed data enrich-
ment method, as can be observed in Figure 4. For wind farms № 1 and № 2 the forecast
accuracy of LSTM caught up and became almost the same as that of XGBoost after the
introduction of the data enrichment step.
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Possible reasons for the three trends are as follows:

• The data enrichment enables the original information in the input data to be better
learned by LSTM; XGBoost has already learned this prior to data enrichment;

• LSTM can better learn the additional information brought by the data enrichment
than XGBoost.

5.2. Effectiveness of Each Step of the Data Enrichment Method

The four steps of the data enrichment method were applied incrementally to both
the XGBoost and LSTM models for wind farm № 1 to validate the efficacy of each step.
Consequently, the forecast accuracies with different numbers of data enrichment steps
applied were compared.

The baseline was to use the NWP data of GFS as the input and without adding any
steps in the data enrichment method on both models for wind farm № 1. The four steps
of the data enrichment were executed in the same way as in Section 5.1. The results in
Table 7 and Figure 5 show clear evidence that all four steps of the data enrichment method
contributed to the accuracy improvement in both wind power forecasting models. Figure 5
also illustrates an interesting phenomenon that the enhancement in accuracy differed from
model to model and from step to step:

• While the addition of error features of weather prediction sources did little to improve
the forecast accuracy of XGBoost, it resulted in a significant increase in the forecast
accuracy of LSTM. On the contrary, the addition of time series features of weather
prediction sources led to a considerable increase in the forecast accuracy of XGBoost,
but it hardly improved the accuracy of LSTM. The contrast might well reflect the
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merits and demerits of the two models: XGBoost is good at analyzing the relationship
between different variables simultaneously, while the advantage of LSTM lies in
learning the relationship between the historical values and future values of time
series. That being the case, XGBoost might already infer the error features of different
weather prediction sources from the historical weather prediction and wind power
production, but LSTM does not. The step of adding error features explicitly expresses
the error characteristics of weather prediction for LSTM to learn. Similarly, it might
be easy for LSTM to learn the temporal continuity of wind from time series prior
to data enrichment, making the step of adding time series features of NWP almost
redundant to LSTM. However, the addition of the time series features of NWP is a
helpful complement to XGBoost to allow it to learn the time series characteristics.
Similar phenomena have also appeared and been discussed in studies on forecasting
models in other areas [2,74,75];

• Adding features of neighboring weather prediction nodes only slightly improved the
accuracy for both models;

• Adding complementary weather prediction sources could be instrumental in im-
proving the forecast accuracy of both models since the step supplied more weather
prediction information to the model.

Table 7. Forecast accuracy of the wind power forecasting models with the addition of each step in
the data enrichment method for wind farm № 1.

Steps

Models
XGBoost for Wind Farm № 1 LSTM for Wind Farm № 1

Without data enrichment (baseline) 69.1% 62.0%

With data enrichment

Add error features of weather
prediction sources 69.1% 68.9%

Add features of neighboring nodes 69.3% 69.0%
Add time series features of weather

prediction sources 71.2% 69.1%

Add complimentary weather
prediction sources 72.6% 72.3%
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6. Limitations

The experiment with two different types of wind power forecasting models and
three different actual wind farms can only provide preliminary results for the added
value brought by the proposed data enrichment method. More models and wind farms
are required for subsequent testing to further validate the method’s effectiveness and to
explore the degree of accuracy improvement that the method can achieve. Based on more
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data, further analysis can be conducted to discover the relationship between the degree of
performance brought by the proposed data enrichment method and its influencing factors.

Although the findings in Section 5.2 demonstrate the effectiveness of each proposed
step in the data enrichment method, more forecasting models and wind farms should be
tested to provide further verification in the future. It is also necessary to note that the
presented equations for each step are not compulsory in realizing the data enrichment
method, but they are rather proposed as examples. Other calculation equations reflecting
the concepts of each data enrichment step can be tried in the future in search of the best
calculation method for each data enrichment step. Researchers could omit some steps or
design new steps depending on their problems and models, as long as each step enriches
the data according to the concept proposed in this paper.

7. Conclusions and Recommendations

Wind power is one of the fast-growing renewable energy sources in the world. Ac-
curate short-term wind power forecasting is of great significance to power dispatching
and grid security, as well as the profitability of wind farms in terms of power trading and
imbalance penalty. To pursue better forecast performance, extensive research has been
carried out on different wind power forecasting models. However, there is a paucity of
research on data preprocessing methods that aim to add more valuable information to
forecasting models.

Based on substantial engineering experience and inspiration from other areas, a data
enrichment method was proposed to enhance the performance of wind power forecasting.
The method effectively involved multiple complementary commercial weather prediction
sources and extracted valuable wind intrinsic physical features as additional inputs to
the wind power forecasting models. Experimental results showed that the addition of
the proposed data enrichment method could effectively reduce the NRMSE produced by
XGBoost and LSTM by 11% to 25% for three different actual wind farms. Moreover, all
four steps in the proposed data enrichment method were verified to contribute to the
improvement in forecast accuracy.

This paper is, however, only a preliminary study that demonstrates the idea of im-
proving the accuracy of wind power forecasting by data enrichment. Further research can
be carried out on the following aspects:

• Application of the data enrichment method to more types of wind power forecasting
models to further identify the adaptability and performance of the method;

• Extension of the data enrichment method to long-term and very-short-term wind
power forecasting models or other forecasting problems related to weather data;

• Exploration of the relationship between the intrinsic strength and weakness of fore-
casting models and the data enrichment method;

• In-depth study into the optimized calculation of each data enrichment step;
• Design of other possible methods of data enrichment.
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