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Abstract: The automotive sector is greatly contributing to pollutant emissions and recent regulations
introduced the need for a major control of, and reduction of, internal combustion engine emissions.
Artificial intelligence (AI) algorithms have proven to hold the potential to be the thrust in the
state-of-the-art for engine-out emission prediction, thus enabling tailored calibration modes and
control solutions. More specifically, the scientific literature has recently witnessed strong efforts in
AI applications for the development of nitrogen oxides (NOx) virtual sensors. These latter replace
physical sensors and exploit AI algorithms to estimate NOx concentrations in real-time. Still, the
calibration of the algorithms, together with the appropriate choice of the specific metric, strongly
affects the prediction capability. In the present paper, a machine learning-based virtual sensor for
NOx monitoring in diesel engines was developed, based on the Extreme Gradient Boosting (XGBoost)
machine learning algorithm. The latter is commonly used in the literature to deploy virtual sensors
due to its high performance, flexibility and robustness. An experimental campaign was carried out
to collect data from the engine test bench, as well as from the engine electronic control unit (ECU),
for the development and calibration of the virtual sensor at steady-state conditions. The virtual
sensor has, since then, been tested throughout on an on-road driving mission to assess its prediction
performance in dynamic conditions. In stationary conditions, its prediction accuracy was around 98%,
whereas it was 85% in transient conditions. The present study shows that AI-based virtual sensors
have the potential to significantly improve the accuracy and reliability of NOx monitoring in diesel
engines, and can, therefore, play a key role in reducing NOx emissions and improving air quality.

Keywords: compression ignition engine; experimental data processing and analysis; model validation;
machine learning; combustion modeling

1. Introduction

Air pollution caused by vehicle emissions, including nitrogen oxide (NOx), is a major
environmental and public health concern. Strict regulations have been implemented
globally to reduce NOx emissions from vehicles, and car manufacturers are actively seeking
ways to optimize the performance of their internal combustion engines (ICEs) to meet these
regulations [1].

The most well-known techniques for reducing and controlling engine-out NOx ba-
sically involve the following: the use of Exhaust Gas Recirculation (EGR) [2–6]; the de-
ployment of advanced combustion technology, such as homogeneous charge compression
ignition (HCCI) [7,8] and premixed charge compression ignition (PCCI) [9,10], which can
achieve low NOx emissions by carefully controlling the air–fuel mixture and the com-
bustion process; different injection strategies targeting pressure and timing [11,12]. As
far as the vehicle tailpipe emissions are concerned, the main NOx reduction techniques
involve the following: filters and catalysts, such as Selective Catalytic Reduction (SCR)
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[13], which uses a catalytic converter to reduce NOx emissions by injecting a reducing
agent, such as urea, into the exhaust stream; Lean NOx Trap (LNT) [14], which exploits
a catalytic converter to temporarily store NOx emissions for reduction at specific engine
operating conditions; Diesel Particulate Filter (DPF) [15], which uses a filter to capture
particulate matter from the exhaust stream and can also help in reducing NOx emissions.
Still, the target NOx reduction performance can only be accomplished by means of reliable
NOx sensing.

Several models can be used for NOx prediction in engines, and engine maps exploita-
tion is a well-established approach to calibrate the model, which can be tested on-road
during transient conditions [16–18]. Engine maps are the graphical representations of the
relationship between various engine operating parameters (e.g., load, speed, fuel flow rate)
and engine performance characteristics (e.g., power output, emissions). These maps can
be used to predict the NOx emissions of an engine under a given set of operating condi-
tions [19,20]. A method exploiting the engine maps for NOx prediction was developed
in [21]. An engine map was implemented in the electronic control unit (ECU) and repre-
sented by mathematical models to compute NOx emissions as a function of the observed
operating conditions of the engine. The model was calibrated using engine test bench
data, and tested on-road to determine its prediction capability under real-world conditions.
Applications related to the virtual NOx sensing, exploiting the engine map operating points
at steady-state conditions [22], can be found in the literature, together with applications
derived from experimental test bench acquisition [23]. However, little research has been
conducted on the virtual sensing and prediction of NOx during on-road real-world driving
conditions, accounting for the effects of transient phenomena.

The optimization of NOx emissions remains a challenge in the present and virtual
sensing techniques are widely used [24,25] to avoid the disadvantages of physical solid-
state sensors to retrieve engine-out NOx information in diesel engine applications. Recently,
several works have aimed at designing virtual sensors exploiting machine learning algo-
rithms [26,27] in order to predict the engine-out NOx levels, based on the engine operating
conditions, as from the ECU. Machine learning algorithms appear to be very promising as
virtual measurement tools due to their ability to detect strongly non-linear behavior in the
analyzed physical system [28,29]. Several machine learning algorithms have been applied
to the prediction of engine NOx for virtual sensor applications, including linear regres-
sion [30], support vector machines (SVM) [31], and artificial neural networks (ANNs) [32].
Among these machine learning models, the XGBoost has proved to be particularly effec-
tive, outperforming other machine learning models, such as gradient boosting (GBT) and
random forest (RF) [33]. This is due to the XGBoost’s ability to handle large datasets and to
cope with ’missing values’, thus making it well-suited for virtual sensor applications where
data may be incomplete or noisy. Moreover, the XGBoost was found to be a powerful and
efficient machine learning tool for a variety of applications, including the prediction of
engine-out NOx levels [34]. Recent studies also explored the use of ensemble models, such
as random forest and adaptive boosting, in addition to the XGBoost [35,36]. These mod-
els combine the predictions of multiple individual models to achieve improved accuracy,
whilst attaining a robustness equivalent to the that of the single models. Moreover, the
ensemble methods mainly rely on randomization techniques, thus creating many different
solutions to the considered problem. In this framework, the XGBoost algorithm has exhib-
ited great prediction performance when compared to other ensemble models, such as GBT
and RF, [37] causing to be selected for real-time applications. Moreover, some Extreme
Gradient Boosting Regression Tree (XGBoost) models have been created to investigate
the accuracy in estimating physical parameters, such as tailpipe NOx emissions [38,39].
However, the literature has limited research on the control and monitoring of engine-out
NOx emissions under transient conditions.

The present paper, hence, focused on the use of the gradient boosting algorithm
known as extreme gradient boosting (XGBoost) for real-time engine-out NOx sensing in
real-world driving conditions. The XGBoost-based virtual sensor was calibrated in steady-
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state conditions and then validated in transient on-road traces following an experimental
campaign conducted on the test bench and on the road.

2. Materials and Methods

Virtual sensing techniques were exploited as valid alternatives to physical measure-
ment instruments, due to economic or application limits of the latter. The present study
focused on the machine learning-based virtual sensor development for nitrogen oxides
prediction in a diesel engine application. At the very beginning, a robustness analysis
was conducted on the acquired steady-state data for the performance evaluation of the
machine learning algorithms. Then, XGBoost prediction capabilities were verified and
validated over a real-world driving mission through an experimental campaign conducted
on-road. The case study and the involved datasets, as well as the proposed method for
model training and validation, were investigated.

In this section, the proposed method, composed of sequential steps, is discussed and
shown in Figure 1.

Figure 1. The proposed method for the model’s performance evaluation.

In the preprocessing phase, the engine data values acquired from the experimental
campaigns were analyzed, handled and ’cleaned’. In the following steps, related to the
XGBoost models training phase, the data were normalized and split into training, validation
and test sets when necessary, and then employed to perform the learning process of several
XGBoost architectures. The grid search algorithm was used as a powerful hyperparameters
tuning technique to find the most accurate architecture for each specific case study. Given
that the performance of an AI model is heavily dependent on the hyperparameter values, a
combination of grid search and cross validation approaches [40] was used to identify the
optimal values for a specific model. As with any machine learning model, the XGBoost was
defined by a set of hyperparameters that had to be specified in order to tailor the model for
the specific application. In the final step, the performance of the best XGBoost architecture
was evaluated by considering a test dataset according to different metrics, i.e., RMSE and
coefficient of determination R2.

2.1. Preprocessing Phase

The case study for the deployed AI-based virtual sensor was an 11 L diesel engine for
heavy-duty application, tested both at steady state and under transient conditions. The
details of the experimental campaign, together with a deep insight into the experimental
set-up, as well as the engine behavior, can be found in [41]. The main engine parameters
at steady-state conditions were acquired by means of an engine test bench equipped with
physical sensors mounted on the acquisition system and through the variable acquired
by the electronic control unit (ECU) sensors and maps, whereas in the transient case a
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prototype heavy-duty (HD) vehicle was tested on-road and the main engine parameters
were acquired by the on-board system. The main characteristics of the case study are shown
in Table 1.

Table 1. Main engine parameters and test characteristics.

Segment of Application Displacement Turbocharger
Heavy-duty vehicles & trucks 11 L VGT type

Fuel Injection System Engine Params n° Engine Points
High pressure common rail 14 4711 1

1 The operating engine points are related to the steady state tests over the engine map.

The main engine parameters acquired for the different operating conditions follow:

• ωeng: engine speed in rpm;
• Qtot: total amount of injected fuel inside the cylinders in mm3/(cycle × cylinder);
• Prail : pressure in the rail system in bar;
• Qmain: amount of injected fuel during the main injection in mm3/(cycle × cylinder);
• Qpil : amount of injected fuel during the pilot injection in mm3/(cycle × cylinder);
• SOImain: start of the injection of the main injection in degree;
• SOIpil : start of the injection of the pilot injection in degree;
• IMAP: pressure value in the intake manifold in bar;
• IMAT: temperature value in the intake manifold in K;
• O2: oxygen concentration in the chamber in %
• Qair: amount of air introduced in the chamber in Kg/(cycle × cylinder);
• λ: ratio between air and fuel quantities.
• EGR: amount of exhaust gas recirculated in Kg/(cycle × cylinder);
• NOx: amount of nitrogen oxides emitted in ppm

The experimental campaign was carried out at Politecnico di Torino on an engine test
bench equipped with an ELIN APA 100 AC dynamometer. The raw engine-out gaseous
emissions were measured by means of an AVL AMAi60- endowed with two complete trains
for the simultaneous measurement of the gaseous concentrations of the main species, both
at the intake and exhaust manifolds. The test engine was equipped with thermocouples
and piezoresistive pressure transducers to gather temperature and pressure at many points,
including upstream and downstream from the turbine, compressor, and intercooler, as well
as in the intake manifold and EGR circuit. [17] The experimental acquisitions were con-
ducted according to different engine strategies that are not presented, due to confidentiality
issues. The data are, hence, consistently reported in a normalized form. The data from the
engine experiment were exploited for the machine learning model and the real-time virtual
NOx sensor development. The engine steady state operating points are presented in terms
of total injected fuel quantity versus engine speed in Figure 2.

Figure 2. Engine operating points in stationary conditions through (a) test bench and (b) ECU
acquisition systems.
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The common engine map shape and the full load (FL) curve can be recognized in the
graphs, as well as the presence of different strategies adopted during the experimental
campaign bringing an unusual grouping phenomena. Given that the experimental acqui-
sition occurred at steady-state testing conditions, the characteristic time associated with
transient events was basically extinguished for each individual engine point depicted on
the map. The road tests, on the other hand, were dominated by transient events with a
large variation rate. Therefore, the sampling frequency which the engine variables were
acquired at was set to 100 Hz.

2.2. XGBoost Models’ Training

The development and assessment of the NOx predictor were based on the XGBoost
algorithm and moved the steady state analysis, where the ML models were defined and
trained on the engine operating points detected with the two different acquisition systems,
i.e., test bench and ECU. A sensitivity analysis was carried out over the size of datasets
exploited for the models’ learning processes. Specifically, among the whole available data,
the size of training and test datasets were changed in order to assess for the robustness of
the selected models through a physical data fitting procedure. Considering that machine
learning algorithms are data-driven models, the more data supplied to the training phase,
the better the learning performance. Still, increasing the number of points during the
training might lead to overfitting. As a result, reducing the training dataset dimension in
favor of an increased number of test datasets allows for assessing the models’ robustness,
despite a loss in accuracy. Furthermore, in the creation of the predictors, a feature extraction
approach was employed to identify the most influential and weighted variables. This
approach, also known as feature importance, is regarded as a critical preprocessing step in
the creation of the ML models [42].

In the processing phase, all datasets employed over the different analysis were split
into train, validation and test sets in order to ensure a reliable learning process for the
models and to evaluate the prediction performance. This particular mathematical problem
belongs to the class of supervised learning, due to the presence of desired output exploited
in the learning process [43]. The logic for the developed ML model, together with the
XGBoost architectures and the hyperparameters involved, are shown in Figure 3.

Figure 3. The workflow of XGBoost learning process. The involved Hperparameters in the XG-
Boost model are the following: the n_estimators, which specifies the number of decision trees to be
boosted; the max_depth, which limits the depth in each tree’s growth; the Learning_rate, which is a
regularization parameter that shrinks feature weights in each boosting step; the min_child_weight,
which corresponds to the minimum number of instances needed to be in each node of the tree;
the columns_subsample_ratio, which is the subsample ratio of columns when constructing each
tree [44,45].
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Grid search and k-fold cross-validation techniques were combined to perform hy-
perparameter tuning in order to determine optimal values for the given model [40]. All
different parameters were fed into a parameter grid, and based on a scoring metric (ac-
curacy), the best combination was identified. The k-fold cross-validation process was
allowed to perform the models’ learning, evaluating each parameter combination over
different datasets, i.e., validation set. The procedure involves partitioning the original
training data into k subsets, where k is a positive integer, typically 5 or 10. The model is
then trained on k-1 folds before being evaluated on the remaining fold. This procedure is
repeated k times, with each test set fold being utilized once. The model’s performance is
measured by its average performance throughout all k iterations. In this investigation, the
k parameter was assigned a value of 10. This strategy prevents overfitting, a typical issue
that arises in machine learning when a model performs well on training data but fails to
generalize to new, unknown data. Using k-fold cross-validation, the model is trained and
assessed on multiple different subsets of data, thus yielding a more accurate performance
estimation [46].

The XGBoost (eXtreme Gradient Boosting) is a popular and powerful machine learning
algorithm that has been widely used for classification and regression tasks. The XGBoost is
an optimized gradient-boosting decision tree algorithm, specifically designed to handle
large datasets and to perform well with a high number of features. The algorithm is an
ensemble method that combines decision trees to build a more powerful model. At its
core, the XGBoost predicts the target variable by generating decision trees and optimizing
the predictions by modifying the weights applied to each decision tree. Gradient descent
is used in the optimization process to minimize the loss function, which assesses the
difference between the anticipated and actual target values. During each iteration of
the gradient descent optimization procedure, the XGBoost updates the weights of each
decision tree, based on the gradient of the loss function. The technique employs a special
algorithm for creating trees that divides the data into subsets, and the tree is built in a
recursive fashion until a stopping criterion is reached [47]. There are a variety of loss
functions that can be used, depending on the mathematical problem task. In the present
study, the XGBoost-based predictor was laid on a regression task. Therefore, common
loss functions included the mean squared error (MSE) and mean absolute error (MAE).
These loss functions measure the difference between the predicted and the actual values
and penalize large errors more heavily than small ones. In the present study, the MSE loss
function was employed for the optimization process of the XGBoost parameters.

Feature selection was exploited as a machine learning approach that helps to determine
which features in the experimental data are most significant in delivering the predictions.
This is particularly useful if the number of variables is large and finding the most relevant
ones is an objective of the analysis, or if is important to know which features are driving
the model predictions. In the case of the XGBoost algorithm, feature importance is relevant
for several reasons:

• Model interpretability: by identifying the most important features, a better under-
standing of how the model is producing the predictions, and how different features
are interacting with each other, can be gained. This can be helpful to interpret the
results of the models and to make more informed decisions based on its predictions.

• Feature selection: identifying the most important features can also be useful for feature
selection, which is the process of selecting a subset of features to use in the models. By
selecting the most important features, the performance of the models can be potentially
improved by eliminating less important features that may be adding noise or reducing
the model’s ability to generalize.

• Model debugging: if poor model performance is experienced, identifying the most
important features can be helpful to debug the model and identify potential issues. For
example, if a particular feature is not statistically very important, it can be removed
from the model.
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Basically, the feature importance algorithm identifies, for each feature, a corresponding
weight that represents the total gain of splitting data along the feature. It is calculated as
the sum of the improvement in the loss function for all splits that use the selected feature.
Features with higher weights are generally considered to be more important. The feature
extraction technique was applied to the engine parameters listed in Section 2.1. The output
of the algorithm was the computation of the relative importance of each parameter for NOx
formation, and the results are presented in the Result section.

2.3. Prediction Performance Evaluation

Each selected model was exploited as a virtual predictor of NOx pollutant and the
prediction performance investigated through different metrics. Together with the test data,
the performance of all trained XGBoost architectures for each case study was analyzed,
based on the following:

• the coefficent of determination R2;

R2 = 1 − ∑n
i=1(xi − x̂i)

2

∑n
i=1(xi − x̄i)2 (1)

• the normalized RMSE considering the test dataset;

RMSEnorm =

√
∑n

i=1(xn,i − ˆxn,i)2

n
(2)

• the real RMSE in ppm considering the test dataset;

RMSE =

√
∑n

i=1(xi − x̂i)2

n
(3)

where xi is the experimental data, x̂i is the model estimated value, x̄i is the mean of experi-
mental measured data, xn,i are the normalized experimental data, ˆxn,i are the normalized
estimated value and n is dataset sample size. The performance evaluation of the machine
learning models and the selection of the best hyperparamenter values are widely discussed
and analysed in the Results and Discussion section.

Using the high-level Python programming language and a PC with an Intel(R) Core(TM)
i7-8700 processor at 3.20 GHz and 64GB RAM architecture, the virtual sensor was designed
and the complete data processing phase was executed.

2.4. Virtual NOx Sensing in Steady-State Conditions

Virtual sensing is a frequently adopted approach to ensure sensorless solutions in
the automotive field capable of properly calibrating the main engine parameter, thus
allowing for consumption and emissions reduction. Still, considering the transient dynamic
conditions that an engine encounters during regular on-road driving missions, the virtual
NOx prediction sensor should be calibrated in stationary conditions throughout the entire
engine operating range. Such operations require a considerable amount of experimental
readings but would, in turn, enable the electronic control unit (ECU) to properly control
the engine during real driving missions. The present paper, hence, moved from the
development and calibration of an AI-based virtual sensor through the steady-state data
set. It is worth remembering that two different sets of acquisition were available from the
experimental campaign, namely, a set of data collected at the test bench (Bench) and a
set of data directly acquired from the engine control unit (ECU). The ML virtual sensor
was, hence, developed considering different combinations of the available data sets for
the training and testing phase, to better investigate the algorithm response to the use of
specific inputs. Moreover, a sensitivity analysis was carried out on the train and test sub-set
sizes (test dataset size) in order to prove the robustness of the methodology. The different
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cases analyzed are reported in Table 2, whereas the XGBoost model performance results
are widely discussed in the Results and Discussion section.

Table 2. Steady-state case analysis based on datasets and train–test split sensitivity.

Case Study Train–Test Test Dataset Size [%]

#1 Bench–Bench [10; 50; 95]

#2 ECU–ECU [10; 50; 95]

#3 Bench–ECU NO 1

1 The datasets involved in the training and test phases were derived from two different acquisition systems.
Hence, a train–test split technique was not adopted.

In the Bench–Bench and ECU–ECU examples, the datasets used for the model learning
were distinct and derived from the same experiments, i.e., the Bench–Bench case was based
on the engine bench test data, whereas the ECU–ECU case was based on engine data
collected from the ECU. In the last scenario examined, Bench–ECU, the training dataset and
the test dataset were derived from the two applications. Therefore, there was no train–test
split and all dataset samples were utilized for the different learning phases. Given that the
bench acquisition system detects real events with very accurate physical sensors, whereas
the engine map implements data tables, the model performance evaluation in Case Study
3 was dependent on the extent to which the physical phenomena were detected by the
virtual sensor, as a potential real-time estimator to be implemented on ECU.

2.5. On-Road NOx Prediction

After calibrating and testing the virtual sensor in steady-state conditions to assess
for the model robustness and NOx prediction performance, validation under dynamic
conditions was carried out. In order for the virtual sensor to accurately predict NOx
emissions under a range of operating conditions, it was important to train the model
using engine map data and to test it on real-driving missions. Engine map data, which
comprises engine speed and load information, replicates a variety of steady-state scenarios
the engine may experience. However, these conditions may not precisely represent the
dynamic, real-world operating conditions that the engine would face when driving on a
road. By testing the sensor during an on-road driving mission, it is, in turn, possible to
identify how well the virtual sensor performs under actual driving scenarios and to assess
its ability to properly predict real-time emissions. As for integrating the virtual sensor in a
control system, any potential issues or limitations that need to be addressed can, hence,
be identified.

Therefore, for this investigation, stationary experimental data on the ECU and on the
bench were utilized to train the algorithm, whilst on-road-based measurements were used
to validate the algorithm and examine the accuracy of NOx prediction during real-world
driving missions. During experimental road tests, the vehicle powered by a compression ig-
nition engine was equipped with a physical measuring system for engine-out management
and monitoring. The development and assessment of a virtual NOx sensor for real-time
applications would enable the replacement of real sensors, possibly resulting in cost and
reliability improvements. The real driving mission performed by the vehicle during the
experimental campaign occurred in Piedmont and accounted for a variety of operating
conditions and maneuvers related to the constraints and requirements of realistic urban
and extra-urban scenarios. The cases under investigation are summarized in Table 3.
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Table 3. Dynamic on-road case analysis based on training phase over different acquisition systems.

Case Study Train–Test

#1 Bench–On-road mission

#2 ECU–On-road mission

The Bench–Onroad case is related to the training conducted on the engine test bench at
steady state conditions and ECU–Onraod studies the learning process on stationary engine
ECU data and validation on transient conditions. Since the development of the virtual sen-
sor was oriented toward a future real-time implementation and could, thus, be implemented
in the ECU, it was crucial to examine the two data collection systems independently, given
the heterogeneous nature of the variables. Thus, the engine map-based model’s prediction
of performance may be compared to the real collection of physical sensors.

3. Results and Discussion

In this work, an XGBoost-based NOx virtual sensor was developed considering an
engine steady-state calibration for real-time NOx monitoring during on-road driving
missions. A preliminary study was conducted under stationary conditions to assess the
model’s capability to capture NOx phenomena under various operating conditions. In
addition, a robustness study was conducted by progressively lowering the training data
size and reversely increasing the test data one. In this way, the magnitude of noise could
be varied and the quality of the model performance inferred. Consequently, the XGBoost
model for the real-time estimation of NOx in on-road applications was built by training the
model under steady-state conditions, from which the entire engine map domain might be
completely covered during experiments, and testing it on real-world driving data.

3.1. NOx Prediction in Steady-State Conditions

The case study results concerning the training and test phases on bench test conditions
(Bench–Bench), and taking into account the sensitivity analysis conducted on the train–test
split, are summarized in Table 4 and the regression results are shown in Figure 4.

Table 4. Summary of performance prediction results for test case Bench–Bench. The test size is here
reported for the sensitivity analysis, considering the different percentage values 10%, 50% and 95%.

Test Size [%] 10 50 95

R2 0.98 0.97 0.85
RMSEnorm 0.017 0.022 0.052
RMSE[ppm] 60.0 77.4 186.5

q 0.0034 0.0062 0.0224
m 0.985 0.976 0.912

Figure 4. Regression prediction results on test dataset for bench test conditions. Sensitivity analysis
on the three different sizes of test dataset: (a) 10%, (b) 50% and (c) 95%.

The considerable reduction in the engine points ascribed to the model learning phase,
as the test dataset increased from 0.1 to 0.95, caused the prediction performance to decrease.
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When 95% of the data was used for the testing, significant errors were attained, despite
the moderate increase in rmse as the split switched from 10% of test size (60.0 ppm) to
50% of test size (77.4 ppm). It is, in fact, worth underlining that the model prediction
performance remained high, despite the halving of the training data set, thus, indicating
a remarkable capacity to properly capture the physical phenomena. Additionally, the
regression line in Figure 4 demonstrates the rise in noise brought on by the test size-
appropriate sensitivity analysis.

The case study results concerning the training and test phases on ECU test conditions
(ECU–ECU) are summarized in Table 5 and the regression results are shown in Figure 5.

Table 5. Summary of performance prediction results for test case ECU–ECU. The test size is here
reported for the sensitivity analysis, considering the different percentage values 10%, 50% and 95%.

Test Size [%] 10 50 95

R2 0.98 0.97 0.76
RMSEnorm 0.021 0.024 0.067
RMSE[ppm] 73.3 84.9 237.7

q 0.0038 0.0047 0.0309
m 0.985 0.9802 0.862

Figure 5. Regression prediction results test dataset for ECU test conditions. Sensitivity analysis on
the three different size of test dataset: (a) 10%, (b) 50% and (c) 95%.

As for the previous case, the accuracy of NOx prediction tended to decline (and the
error to grow) as the test size increased and the training size decreased. The surprisingly
slight decrease in R2, 0.98 for 90% and 0.97 for 50% of the full dataset, as a result of nearly
half the amount of data available for model training, is noteworthy. This was due to the
high predictive power of these machine learning methods, especially considering that the
data in this particular application were collected under stationary conditions. Therefore,
it was more efficient to capture NOx generation phenomena beginning with steady-state
engine operating conditions.

Finally, the case study results concerning the training conducted on Bench test condi-
tions and test conducted on ECU test conditions (Bench–ECU) are summarized in Table 6
and the regression results are shown in Figure 6.

Table 6. Summary of performance prediction results for test case Bench–ECU.

R2 0.97
RMSEnorm 0.024
RMSE[ppm] 86.7

q 0.0037
m 0.972
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Figure 6. Regression prediction results of training conducted on bench test conditions and test carried
out under ECU test conditions.

In terms of the robustness of the virtual sensor, the findings obtained in this example
were consistent with those obtained in the previous cases, as can be observed. In addition,
the Bench–ECU example demonstrates how the formation phenomenology of nitrogen
oxides was accurately estimated (R2 of about 98%) by the developed virtual sensor which
was tested on ECU engine data.

The more features a model contains, the more complex it is (and the sparser the data),
and, therefore, the more susceptible it is to variance-induced errors. For this reason, the
feature importance approaches belong to the feature engineering process which entails
selecting the minimum required features to generate a feasible model [48]. Given that
the formation of nitrogen oxides in diesel engines is strongly influenced by the specific
engine operating conditions, the feature extraction approach simplifies the models and can
provide an assessment of the model performance. Indeed, the robustness of the predictions
can also be verified by comparing the statistically most relevant engine variables for the
models to the empirical knowledge of the physical phenomenon. Considering the full
availability of data during the training phase of the models, i.e., a test size equal to 10%
for both Bench–Bench and ECU–ECU case studies, the feature extraction approach outputs
are shown in Table 7. For the same train–test split value, the hyperparameters of the best
XGBoost architecture for each considered analysis are reported in Table 8.

Table 7. The feature importance outputs for the three steady-state cases study which highlight the
relative importance of each variable. The green labeling identifies the most influencial engine variables
up to reaching 90% of the threshold in the feature importance algorithm for the XGBoost application.

Variable Bench–Bench ECU–ECU Bench–ECU
1 SOImain(13.9%) SOImain(13.5%) SOImain(14.2%)
2 Prail(13.4%) Prail(13.4%) ωeng(13.3%)
3 ωeng(13.3%) ωeng(13.0%) Prail(13.3%)
4 λ(9.5%) λ(10.7%) λ(9.7%)
5 O2(9.3%) IMAT(7.9%) O2(9.6%)
6 IMAT(7.5%) Qtot(7.9%) IMAT(7.7%)
7 Qtot(7.4%) O2(6.3%) EGR(7.4%)
8 EGR(6.8%) Qmain(6.3%) Qtot(6.5%)
9 IMAP(5.6%) IMAP(6.1%) Qair(5.9%)
10 Qair(5.5%) SOIpil(5.4%) IMAP(5.1%)

11 SOIpil(4.5%) Qair(4.6%) SOIpil(3.8%)

12 Qmain(2.6%) EGR(4.1%) Qmain(2.7%)
13 Qpil(0.7%) Qpil(0.8%) Qpil(0.8%)
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According to the feature importance definition, the variables SOIpil , Qmain and Qpil
were discarded as they proved not to be significantly affected by large variations. The
algorithm, therefore, did not consider SOIpil and Qpil to be particularly significant in the
evolution of NOx emissions. Furthermore, since the Qmain was strictly proportional to Qtot,
only one of them was taken into account.

Table 8. Best XGBoost architectures and grid values setup for the three case studies under investiga-
tion. The mean squared error (MSE) evaluation metric was used to obtain the optimal value by the
GridsearchCV algorithm.

Hyperparameters Grid Values Bench–Bench ECU–ECU Bench–ECU

learning rate [0.1, 0.05, 0.08, 0.1, 0.15] 0.08 0.08 0.08
max_depth [3, 4, 5] 4 4 4

n◦ estimators [500, 1000, 1200, 1500] 1500 1500 1500
min_child_weight [3, 5, 7] 3 7 7
colsample_bytree [0.5, 0.7, 1.0] 1 1 1

As can be seen, the most relevant engine variables identified by the feature extraction
process were approximately the same in the three cases analyzed. First, the variables most
relevant for predicting NOx emissions are likely to be consistent across different types of
data sources and testing environments. For instance, variables such as engine load, fuel
flow, and exhaust gas temperature are likely to be important for predicting NOx emissions,
regardless of whether the data are collected from a test bench or from the vehicle’s engine
control unit. Moreover, the most relevant engine variables selected by XGBoost were similar
across the three different cases because the data used to train and test the model were
similar. For instance, the dataset used to train the model on the test bench was similar
to the dataset used to test the model on the vehicle ECU. Therefore, the most relevant
variables were similar in both cases. For the same reasons, the descriptive patterns of the
data detected by the algorithm would be very similar. Therefore, the architectures of the
XGBoost in the three cases were very similar to one another.

3.2. On-Road NOx Prediction

Once the model was assessed in terms of its high predictive performance and its
robustness in capturing phenomenological events under steady-state conditions, a virtual
NOx sensor was built for real-time applications taking advantage of the experimental data
collected on-road. As opposed to the bench tests, where data wre collected while the engine
was running under controlled conditions to allow for consistent and repeatable testing
conditions, on-road data were acquired while the vehicle was being driven on actual roads
under realistic scenarios. This data reflected the real working conditions of the engine,
including environmental parameters, such as temperature, humidity, and altitude, as well
as the dynamic load variations that occurred during the driving mission. The on-road
measurements also included the vehicle’s speed and acceleration, which might impact
engine performance. Consequently, the design of the virtual NOx sensor was based on
its calibration in stationary conditions (either bench or ECU) and validated by means of
real-world experimental tests. The considered engine parameters were identified by the
feature importance process during the previous steps of the analysis. Therefore, the learning
phase was covered by the feature importance output from the steady-state conditions. The
predictive performance results for the two case studies are listed in Table 9 outlining the
same statistical metrics.
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Table 9. Performance prediction results over on-road test driving mission.

Case Study #1 Bench—On-Road Mission #2 ECU—On-Road Mission

R2 0.76 0.75
RMSEnorm 0.054 0.055
RMSE[ppm] 192.0 194.9

m 0.92 0.97
q −0.007 −0.017

From the values of the metrics, a noticeable reduction in predictive performance, of
up to 75% accuracy, and a major shift in the regression line could be observed (q was
significantly higher than the stationary cases), as well as a large increment in the error.
This was mostly due to the fact that the operating conditions encountered by the engine
during a road driving mission are significantly different from those encountered during
the model learning phase described by stationary conditions. The predicted NOx in both
case studies are shown alongside the experimental traces in Figure 7, where three different
time windows [50 s 250 s], [500 s 700 s], [850 s 1050 s] of the missions, with a length equal
to 200 s, are highlighted. Three fairly large time windows that corresponded to different
operating conditions are shown so that the forecasting ability of the model could be tested
in almost all real-world conditions the vehicle would face.

Observably, the anticipated NOx signals accurately represented the qualitative and
quantitative trend of the experimental unit, as well as its transient trend during the driving
mission. In the [50,250] time window, some mission points that overestimated or underesti-
mated the experimental results led to negative NOx values. This was likely to be ascribed to
the great occurrence of operating points where the lambda values reached extremely high
values beyond the definition domain of the learning phase, as well as the rapid spikes in
the fuel injected quantity values. Moreover, the signal was extremely spiky due to the fact
that the model was an instantaneous measurement sensor and each point of the mission
had operating conditions in terms of engine variables that were very different from those of
the subsequent instants. The latter, together with the fact that the NOx formation dynamics
with their characteristic times were not captured in the learning phase, connected to the
differences in the experimental and predicted signals.

Figure 7. The NOx predicted signals for cases study #1 and #2. (a–c) depict three distinct 200 s-length
windows of driving mission.
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As seen in Table 9 and Figure 7, the lower R2 values could be attributable to the antici-
pation of the predicted signals relative to the observed signal. In real-time virtual sensing
applications, the anticipation or delay in time of a predicted signal causes a drastic reduc-
tion in performance, leading, in this case, to incorrect emission control. Such behaviour is
connected to the line and the measurement system’s characteristic time delay. The latter is
produced by the time lag between the observed phenomenon, i.e., NOx measured level,
and the time frame such a level would refer to. As a matter of fact, the predicted NOx
were referred to the implemented engine parameters at the given time-step, whereas the
measured NOx would have been produced by the engine setting at a previous time frame.
The latter is connected to the time needed for the exhaust gases to travel from the engine
discharge to the acquisition probes, as well as to the characteristic sensor time lag. Under
steady-state conditions, such delay is basically erased by the stationary characteristic of the
test, whereas it stems from transient conditions. By delaying the NOx signal output by the
model by 1 s [49], the anticipated signal almost perfectly matched the experimental signal
(see Figure 8 referring to one time window).

Figure 8. The NOx predicted signals for cases studies #1 and #2, taking into account the line delay of
measurement system.

Taking this fact into account, the value of R2 changed to 85% for both case studies, thus
emphasizing the real-time capabilities of the virtual sensor at predicting NOx emissions
with a high level of accuracy [50].

4. Conclusions

The virtual sensor developed in the present study is based on the XGBoost algorithm
and proved to be highly accurate in predicting NOx emissions for real-time diesel engine
applications. The calibration of the virtual sensor was performed under steady-state
conditions and then tested on an on-road driving mission, resulting in an accuracy of
85%. The virtual sensor was also found to be highly accurate in stationary conditions,
with prediction results up to 98% in terms of accuracy when tested on the experimental
data acquired at the engine test bench and through the ECU maps. The results indicate
that the virtual sensor holds great potential to be a valuable tool for real-time emission
monitoring and control in diesel engine applications. The virtual sensor can, in fact, be
integrated into the Engine Control Unit (ECU), where it could be used, in conjunction
with the ECU control system, to adjust the engine parameters in real-time to minimize
NOx emissions. Future developments of the present paper may address different driving
conditions (e.g., high speed, high load, and low speed) to further assess the capabilities
of the virtual sensor in accurately predicting NOx emissions. The logic could also be
transferred to AI deep networks, which could further improve the prediction accuracy and
broaden the virtual sensor capabilities. For example, deep networks could be used to make
the virtual sensor more capable of predicting NOx emissions in real-time under a broader
range of conditions and to determine the characteristic time of NOx emissions phenomena
by analyzing time-dependent events. In conclusion, the virtual sensor developed in the
present study shows great promise as a tool for real-time emission monitoring and control
in diesel engine applications.
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Nomenclature

The following abbreviations were used in this manuscript:

AI Artificial Intelligence
NOx Nitrogen Oxides
XGBoost Extreme Gradient Boosting
ECU Electronic Control Unit
ICE Internal Combustion Engine
EGR Exhaust Gas Ricirculation
HCCI Homogeneous Charge Compression Ignition
PCCI Premixed Charge Compression Ignition
SCR Selective Catalytic Reduction
LNT Lean NOx Trap
ANN Artificial Neural Network
SVM Support Vector Machine
RMSE Root Mean Squared Error
R2 Coefficient of determination
HD Heavy Duty
ωeng Engine speed
Qtot Total injected fuel quantity
Prail Rail pressure
Qmain Fuel quantity of main injection
Qpil Fuel quantity of pilot injection
SOImain Start of injection of main injection
SOIpil Start of injection of pilot injection
IMAP Intake Manifold Air Pressure
IMAT Intake Manifold Air Temperature
O2 Oxygen concentration
Qair Air quantity
λ Air and fuel ratio
FL Full load
ML Machine Learning
MSE Mean Squared Error
MAE Mean Absolut Error
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