A Novel Pressure-Controlled Molecular Dynamics Simulation Method for Nanoscale Boiling Heat Transfer
Abstract
:1. Introduction
2. Computational Methods
2.1. MD Simulation System
2.2. Simulation Method and Procedure
2.3. Pressure Control Method
2.4. Quantitative Description of Bubble Dynamic Behavior
3. Results and Discussion
3.1. Visualization of the System Equilibrium Stage
3.2. Bubble Dynamic Behaviors of the Phase-Change Stage
3.3. Quantitative Study of Bubble Dynamics Behavior
3.4. Mechanisms of Nucleate Boiling with Pressure-Control
3.4.1. Illustrations of Nucleate Boiling from the Perspective of Energy
3.4.2. Separate Energy Analyses in the Near-Wall Region
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Ar | Argon atom |
Cu | Copper atom |
ε | The energy units, eV |
σ | The distance units, Å |
r | Inter-atomic distance, Å |
rc | The cut-off radius, Å |
α | Energy parameter, eV |
q | Heat flux, W·m−2·K−1 |
V | The volume of liquid computation domain, Å3 |
N | The number of liquid argon atoms |
vi | The thermal velocity, Å/ps |
ei | The total energy of single atom, eV |
F | The force acting on atom, eV/Å |
Ftotal | The total force applied on the pressure-control wall, eV/Å |
Nup | The number of atoms on the pressure-control wall |
p | The pressure set in the simulation, bars |
Sxy | The cross-sectional area in the x-y plane, Å2 |
H | The height of the simulation box, Å |
tin | The inflection point of the bubble growth curve |
Ek | The kinetic energy, eV |
Ep | The potential energy, eV |
E | The total energy, eV |
References
- Ma, L.; Zhang, T.; Zhang, X.L.; Wang, B.; Mei, S.W.; Wang, Z.F.; Xue, X.D. Optimization of parabolic though solar power plant operations with nonuniform and degraded collectors. Sol. Energy 2021, 214, 551–564. [Google Scholar] [CrossRef]
- Manesh, M.H.K.; Aghdam, M.H.; Modabber, H.V.; Ghasemi, A.; Talkhoncheh, M.K. Techno-economic, environmental and energy analysis and optimization of integrated solar parabolic trough collector and multi effect distillation systems with a combined cycle power plant. Energy 2022, 240, 122499. [Google Scholar] [CrossRef]
- Sonawane, C.R.; Panchal, H.N.; Hoseinzadeh, S.; Ghasemi, M.H.; Alrubaie, A.J.; Sohani, A. Bibliometric analysis of solar desalination systems powered by solar energy and CFD modelled. Energies 2022, 15, 5279. [Google Scholar] [CrossRef]
- Sonawane, C.R.; Alrubaie, A.J.; Panchal, H.; Chamkha, A.J.; Jaber, M.M.; Oza, A.D.; Zahmatkesh, S.; Burduhos-Nergis, D.D.; Burduhos-Nergis, D.P. Investigation on the impact of different absorber materials in solar still using CFD simulations-Economic and environmental analysis. Water 2022, 14, 3031. [Google Scholar] [CrossRef]
- Raul, A.; Jain, M.; Gaikwad, S.; Saha, S.K. Modelling and experimental study of latent heat thermal energy storage with encapsulated PCMs for solar thermal applications. Appl. Therm. Eng. 2018, 143, 415–428. [Google Scholar] [CrossRef]
- Aftab, W.; Usman, A.; Shi, J.M.; Yuan, K.J.; Qin, M.L.; Zou, R.Q. Phase change material-integrated latent heat storage systems for sustainable energy solutions. Energy Environ. Sci. 2021, 14, 4268–4291. [Google Scholar] [CrossRef]
- Wahile, G.S.; Malwe, P.D.; Aswalekar, U. Latent heat storage system by using phase change materials and their application. Mater. Proc. 2022, 52, 513–517. [Google Scholar] [CrossRef]
- Chen, Y.J.; Zou, Y.; Wang, Y.; Han, D.X.; Yu, B. Bubble nucleation on various surfaces with inhomogeneous interface wettability based on molecular dynamics simulation. Int. J. Heat Mass Transf. 2018, 98, 135–142. [Google Scholar] [CrossRef]
- Cui, Y.F.; Yu, H.Y.; Wang, H.J.; Wang, Z.Y.; Yan, X.L. The numerical modeling of the vapor bubble growth on the silicon substrate inside the flat plate heat pipe. J. Heat Transfer. 2020, 147, 118945. [Google Scholar] [CrossRef]
- Datta, S.; Pillai, R.; Borg, M.K.; Sefiane, K. Acoustothermal nucleation of surface nanobubbles. Nano Lett. 2021, 21, 1267–1273. [Google Scholar] [CrossRef]
- Dhillon, N.S.; Buongiorno, J.; Varanasi, K.K. Critical heat flux maxima during boiling crisis on textured surfaces. Nat. Commun. 2015, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Han, H.X.; Merabia, S.; Muller-Plathe, F. Thermal transport at a solid-nanofluid interface: From increase of thermal resistance towards a shift of rapid boiling. Nanoscale 2017, 9, 8314–8320. [Google Scholar] [CrossRef]
- Haramura, Y.; Katto, Y. A new hydrodynamic model of critical heat flux, applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids. Int. J. Heat Mass Transf. 1983, 26, 389–399. [Google Scholar] [CrossRef]
- Jaikumar, A.; Kandlikar, S.G. Enhanced pool boiling heat transfer mechanisms for selectively sintered open microchannels. Int. J. Heat Mass Transf. 2015, 88, 652–661. [Google Scholar] [CrossRef]
- Jaikumar, A.; Kandlikar, S.G. Ultra-high pool boiling performance and effect of channel width with selectively coated open microchannels. Int. J. Heat Mass Transf. 2016, 95, 795–805. [Google Scholar] [CrossRef] [Green Version]
- Katto, Y.; Yokoya, S. Principal mechanism of boiling crisis in pool boiling. Int. J. Heat Mass Transf. 1968, 11, 993–1002. [Google Scholar] [CrossRef]
- Kong, X.; Zhang, Y.H.; Wei, J.J. Experimental study of pool boiling heat transfer on novel bistructured surfaces based on micro-pin-finned structure. Exp. Therm. Fluid Sci. 2018, 91, 9–19. [Google Scholar] [CrossRef]
- Kumar, G.U.; Suresh, S.; Thansekhar, M.R.; Babu, P.D. Effect of diameter of metal nanowires on pool boiling heat transfer with FC-72. Appl. Surf. Sci. 2017, 423, 509–520. [Google Scholar] [CrossRef]
- Li, D.H.; Jiang, C.Y.; Cao, X.; Li, H.; Hekmatifar, M.; Sabetvand, R. Effect of cross-sectional area and number of Fe nanoparticles on the thermal behavior of pool boiling heat transfer of the water-based nanofluid: A molecular dynamics study. Case Stud. Therm. Eng. 2022, 36, 102242. [Google Scholar] [CrossRef]
- Liang, G.T.; Mudawar, I. Review of pool boiling enhancement by surface modification. Int. J. Heat Mass Transf. 2019, 128, 892–933. [Google Scholar] [CrossRef]
- Liu, B.; Yang, X.; Li, Q.; Chang, H.Z.; Qiu, Y. Enhanced pool boiling on composite microstructured surfaces with microcavities on micro-pin-fins. Int. Commun. Heat Mass 2022, 138, 106350. [Google Scholar] [CrossRef]
- Liu, H.Q.; Ahmad, S.; Chen, J.T.; Zhao, J.Y. Molecular dynamics study of the nanoscale boiling heat transfer process on nanostructured surfaces. Int. Commun. Heat Mass 2020, 119, 104963. [Google Scholar] [CrossRef]
- Lu, Y.W.; Kandlikar, S.G. Nanoscale surface modification techniques for pool boiling enhancement a critical review and future directions. Heat Transf. Eng. 2011, 32, 827–842. [Google Scholar] [CrossRef]
- Nukiyama, S. Maximum and minimum values of heat q transmitted from metal to water under atmospheric pressure. Int. J. Heat Mass Transf. 1934, 37, 354–367. [Google Scholar] [CrossRef]
- Patil, C.M.; Kandlikar, S.G. Pool boiling enhancement through microporous coatings selectively electrodeposited on fin tops of open microchannels. Int. J. Heat Mass Transf. 2014, 79, 816–828. [Google Scholar] [CrossRef]
- Pham, Q.N.; Zhang, S.W.; Hao, S.; Montazeri, K.; Lin, C.H.; Lee, J.; Mohraz, A.; Won, Y. Boiling heat transfer with a well-ordered microporous architecture. ACS Appl. Mater. Interfaces 2020, 12, 19174–19183. [Google Scholar] [CrossRef]
- Shi, L.; Hu, C.Z.; Yi, C.L.; Lyu, J.Z.; Bai, M.L.; Tang, D.W. A study of interface evolution-triggering different nucleate boiling heat transfer phenomenon on the structured surfaces. Int. J. Heat Mass Transf. 2022, 190, 122754. [Google Scholar] [CrossRef]
- Shin, S.; Choi, G.; Rallabandi, B.; Lee, D.; Il Shim, D.; Kim, B.S.; Kim, K.M.; Cho, H.H. Enhanced boiling heat transfer using self-actuated nanobimorphs. Nano Lett. 2018, 18, 6392–6396. [Google Scholar] [CrossRef]
- Song, Y.; Gong, S.; Vaartstra, G.; Wang, E.N. Microtube surfaces for the simultaneous enhancement of efficiency and critical heat flux during pool boiling. ACS Appl. Mater. Interfaces 2021, 13, 12629–12635. [Google Scholar] [CrossRef]
- Van Erp, R.; Soleimanzadeh, R.; Nela, L.; Kampitsis, G.; Matioli, E. Co-designing electronics with microfluidics for more sustainable cooling. Nature 2020, 585, 211–216. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Chen, R.K. Ultrahigh flux thin film boiling heat transfer through nanoporous membranes. Nano Lett. 2018, 18, 3096–3103. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Lyu, S.S.; Luo, J.L.; Luo, Z.Y.; Fu, Y.X.; Heng, Y.; Zhang, J.H.; Mo, D.C. Copper vertical micro dendrite fin arrays and their superior boiling heat transfer capability. Appl. Surf. Sci. 2017, 422, 388–393. [Google Scholar] [CrossRef]
- Wen, R.F.; Li, Q.; Wang, W.; Latour, B.; Li, C.H.; Li, C.; Lee, Y.C.; Yang, R.G. Enhanced bubble nucleation and liquid rewetting for highly efficient boiling heat transfer on two-level hierarchical surfaces with patterned copper nanowire arrays. Nano Energy 2017, 38, 59–65. [Google Scholar] [CrossRef]
- Yi, C.L.; Hu, C.Z.; Shi, L.; Bai, M.L.; Lv, J.Z. Wettability of complex Long-Chain alkanes droplets on Pillar-type surfaces. Appl. Surf. Sci. 2021, 566, 150752. [Google Scholar] [CrossRef]
- Yin, X.Y.; Hu, C.Z.; Bai, M.L.; Lv, J.Z. Effects of depositional nanoparticle wettability on explosive boiling heat transfer: A molecular dynamics study. Int. Commun. Heat Mass 2019, 109, 104390. [Google Scholar] [CrossRef]
- Yin, X.Y.; Hu, C.Z.; Bai, M.L.; Lv, J.Z. Molecular dynamic simulation of rapid boiling of nanofluids on different wetting surfaces with depositional nanoparticles. Int. J. Multiph. Flow 2019, 115, 9–18. [Google Scholar] [CrossRef]
- Yuan, B.; Liu, L.; Cui, C.Y.; Fang, J.B.; Zhang, Y.H.; Wei, J.J. Micro-pin-finned surfaces with fractal treelike hydrophilic networks for flow boiling enhancement. ACS Appl. Mater. Interfaces 2021, 13, 48189–48195. [Google Scholar] [CrossRef]
- Zhang, S.W.; Chen, G.; Jiang, X.C.; Li, Y.J.; Shah, S.W.; Tang, Y.; Wang, Z.K.; Pan, C. Hierarchical gradient mesh surfaces for superior boiling heat transfer. Appl. Therm. Eng. 2023, 219, 119513. [Google Scholar] [CrossRef]
- Zhou, W.B.; Fan, Q.X.; Zhang, Q.; Cai, L.; Li, K.W.; Gu, X.G.; Yang, F.; Zhang, N.; Wang, Y.C.; Liu, H.P.; et al. High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture. Nat. Commun. 2017, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.B.; Han, D.M.; Ma, H.L.; Hu, Y.K.; Xia, G.D. Molecular dynamics study on enhanced nucleate boiling heat transfer on nanostructured surfaces with rectangular cavities. Int. J. Heat Mass Transf. 2022, 191, 122814. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with Ovito-The open visualization tool. Model Simul. Mater. Sci. Eng. 2010, 18, 2154–2162. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Xu, J.L.; Liu, G.L.; Lei, J.P. Nucleate boiling on nanostructured surfaces using molecular dynamics simulations. Int. J. Therm. Sci. 2020, 152, 106325. [Google Scholar] [CrossRef]
Inter–Particle Interaction | Potential Energy Parameter | |
---|---|---|
ε/eV | σ/Å | |
Ar–Ar | 0.0104 | 3.405 |
Ar–Cubottom | Variable | 2.87 |
Ar–Cuup | 0.02 | 2.87 |
Cubottom–Cubottom, Cuup–Cuup | 0.406 | 2.338 |
Cubottom–Cuup, Cubottom–Cuup | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Kong, Y.; Liu, Z.; Guo, L.; Yang, Y. A Novel Pressure-Controlled Molecular Dynamics Simulation Method for Nanoscale Boiling Heat Transfer. Energies 2023, 16, 2131. https://doi.org/10.3390/en16052131
Wang C, Kong Y, Liu Z, Guo L, Yang Y. A Novel Pressure-Controlled Molecular Dynamics Simulation Method for Nanoscale Boiling Heat Transfer. Energies. 2023; 16(5):2131. https://doi.org/10.3390/en16052131
Chicago/Turabian StyleWang, Cong, Yalong Kong, Zhigang Liu, Lin Guo, and Yawei Yang. 2023. "A Novel Pressure-Controlled Molecular Dynamics Simulation Method for Nanoscale Boiling Heat Transfer" Energies 16, no. 5: 2131. https://doi.org/10.3390/en16052131
APA StyleWang, C., Kong, Y., Liu, Z., Guo, L., & Yang, Y. (2023). A Novel Pressure-Controlled Molecular Dynamics Simulation Method for Nanoscale Boiling Heat Transfer. Energies, 16(5), 2131. https://doi.org/10.3390/en16052131