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Abstract: Energy consumption reduction and thermal quality improvement constitute two major
aspects of building design and/or retrofitting. Following the current energy transition trends, a state-
of-the-art solution is the implementation of Adaptive Dynamic Building Envelopes (ADBEs), which
are capable of integrating different technologies and components. The purpose of this investigation is
to assess the annual performance improvement of two actual building spaces retrofitted with ADBEs,
consisting of Building Integrated Photovoltaics (BIPVs), additional thermal insulation, mechanical
ventilation system with heat recovery, and solar air heaters (SAHs). Both buildings are pilot sites
for the EU Horizon 2020 Plug-n-Harvest project and are located in two rather different climate
zones, i.e., Cardiff, Wales, and Grevena, Greece. Moreover, through detailed dynamic modeling with
the use of Modelica language, this study attempts to accurately capture all interactions between
buildings and all the aforementioned ADBE components. The simulations compared the energy
performance and indoor temperature levels in each space before and after the installation of the
ADBEs. The results showed that the harvesting of renewable energy through the ADBE system could
potentially contribute 60% and 21.8% to the annual electricity and heating load of the space in Cardiff,
respectively, and 43.5% to the annual electricity load of the building space in Grevena.

Keywords: adaptive dynamic building envelope; building integrated photovoltaic; building energy
performance simulation; energy consumption; solar air heater

1. Introduction

Energy demand increase and its negative impact on the environment is a major issue
with economic and social dimensions. The building sector represents 30% of global final
energy consumption and 27% of total energy sector emissions [1,2]. In this context, the
architecture of buildings is being revised to promote performance enhancement, energy
loss reduction, and even contribution to energy production [3].

Regarding the retrofitting of a building for status improvement, the most common
practices are conventional retrofitting, implementation of Building Automation Systems
(BASs), and use of advanced Adaptive Dynamic Building Envelopes (ADBEs) [3–5]. Con-
ventional retrofitting is the simplest approach towards the improvement of the building and
suggests the enhancement or replacement of the existing construction with more efficient,
passive components and materials [4]. This may result in energy consumption reduction at
the expense of high installation costs. In addition, conventional retrofitting is a passive way
to improve the building envelope and does not provide the possibility for self-consumption
through Renewable Energy Sources (RES). On the other hand, BASs include technologies,
such as sensors and communication systems, which are capable of harvesting energy from
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RES with demand response and demand shaping attributes provided that a form of RES is
already installed in the building [5]. Nevertheless, this solution is less effective at reducing
energy consumption compared to conventional retrofitting. Finally, the concept of ADBEs
suggests the combination of active and passive modules on the building envelope and con-
tributes towards loss reduction, and improvement of thermal quality, RES generation, and
self-consumption [6]. In this way, ADBE systems result in significant energy consumption
reduction and RES harvesting, which renders them the most effective option.

Technologies that have emerged as possible components for ADBE systems include solar
power modules, Phase Change Materials (PCMs), insulation, algae bioreactor façade systems,
etc. [7,8]. Out of all these options, solar power modules have gained much attention over the
past few years, due to certain unique advantages over their alternatives. This category includes
renewable energy production through photovoltaic (PV) systems, mostly Building Integrated
PVs (BIPVs) [9], which enhance the self-consumption capability and the environmentally
friendly behavior of the buildings [10]. Furthermore, BIPVs are capable of incorporating
additional components, such as Solar Air Heaters (SAHs) and Photovoltaic–Thermal (PVT)
collectors, to recover solar radiation either directly or through the heated air behind the panels.
In both cases, mechanical ventilation systems are already installed or can be incorporated to
drive the heated air into the interior for heating and ventilation [11].

Due to the significance of the above technologies in the context of the ongoing energy
transition of buildings, several researchers have approached this field of development
over the past few years. For example, Calise et al. [12] used TRNSYS [13] to study the
potential energy and financial benefits from the combination of roof-mounted BIPVs,
small-scale Wind Turbines (WTs), and heat pumps for the multigeneration of heating,
cooling, electricity, and domestic hot water (DHW) in a hotel. According to the results,
renewable electricity generation could cover 61% of the hotel’s annual electricity demand
and the heat pump adoption could lead to a reduction of the primary energy demand
by 27% for heating, cooling, and DHW purposes. Moreover, Kant et al. [14] studied the
behavior of a façade combining a PCM unit attached at the back surface of Building-
Integrated Photovoltaic/Thermal (BIPV/T) panels, and a ventilated air gap between the
components and the existing wall. More specifically, the study simulated the BIPV/PCM
temperature spatial distribution using COMSOL Multiphysics [15]. Moreover, in the
framework of a design optimization procedure, the effect of various parameters, such as
the PCM material type and thickness, the BIPV height, and the air channel thickness, on
the PV electricity generation and the energy extracted by the air ventilation system has
been examined. The selection of the proper characteristics is able to increase the total
energy extraction by approximately 650%, proving the significance of such components
to the energy efficiency improvement of the buildings. Yet, the analysis focused on the
integrated façade itself, neglecting interactions with building thermal zones. In Ref. [16], the
cooling potential of a desiccant cooling machine in the Mataró library building (Spain) was
studied, when the latter was supplied by ventilated PV/SAH units mounted on façades.
According to the results of the simulations conducted in TRNSYS, on average, 93% of
the cooling demand during the summer could be covered by the solar-powered system.
Furthermore, Yang et al. [17] assessed the energy performance of various topologies of
Double-Skin Façades (DSFs) in three Australian climate zones. In this context, numerical
simulations in TRNSYS evaluated the energy consumption of a 5.6 m2 single-zone building,
when the façade was equipped with non-ventilated BIPV, naturally ventilated BIPV/T or
mechanically ventilated BIPV/T systems. According to the results, a total annual energy
savings of 34.1%, 86%, and 106% could be attained with the optimal configuration in
Darwin, Sydney, and Canberra, respectively. Additionally, Alhammadi et al. [18] presented
the testing and validation of façades with naturally ventilated BIPVs in desert climates.
According to the results, the annual energy yield of the south modules was higher than
the east and west modules, making it an optimal orientation for BIPV façades. Yet, the east
and west façades could produce up to 40.9% more energy than the south from April to August,
which are months with high energy demand in countries with hot climates. In a slightly different
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and more modern approach, Nguyen et al. [19] developed an Artificial Neural Network (ANN)
to exclusively predict the annual output energy of a BIPV system, using one-month datasets of
spectral and environmental databases of Gifu, Japan. Based on the results, the annual efficiency
of the system could range from 7% to 23%, depending on its orientation.

Based on this literature review, it is evident that research objectives are needed to be
enriched and further key indices to be included in order to further expand the knowledge
in this field. A main research gap that stems from the relevant literature is the limited
number of works studying building thermal zones, passive construction elements, HVAC
systems, and ADBEs as an undivided system of interacting components. An additional task
that previous investigations have not fully resolved is to keep the component modeling
as detailed and accurate as possible, by avoiding simplifying assumptions. Moreover,
the combination of façade components, such as BIPVs, SAHs, and mechanical ventilation
units, was not part of the investigation in previous works. Finally, previous studies did not
evaluated the overall system performance; instead, the main objective was the estimation
of the thermal performance and efficiency of individual components. In this context, the
purpose of this paper is to simulate and evaluate the annual performance improvement
of two building spaces retrofitted with ADBEs in terms of energy consumption reduction,
RES harvesting increase, and indoor thermal quality enhancement. The first building is
located in Cardiff, Wales, and its ADBE is equipped with BIPVs, thermal insulation, and
an SAH. The second building is located in Grevena, Greece, and its ADBE is equipped
with BIPVs, thermal insulation, and a mechanical ventilation system. ADBE designs
are graphically presented in Figure 1. It should be noted that these buildings are actual
demonstrator sites of the Plug-n-Harvest Horizon 2020 project, the purpose of which is
to propose and evaluate sustainable, optimally designed ADBEs for building renovation,
given their climate zone, residential structure, and energy requirements. Therefore, the
results of this study offer valuable conclusions for the buildings under study and the
engaged communities. The simulations are performed using the equation-based, object-
oriented Modelica language [20] within the Dymola software environment [21], enabling
accurate monitoring of the dynamic evolution of system components’ physical quantities
and proper capturing of all mutual interactions.
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The main contributions of this research are:

• Mathematical modeling of ADBEs as part of broader building systems, involving
novel technologies, such as BIPVs, SAHs, and mechanical ventilation units.

• Evaluation of the effect of the installed façades on the sites under study, namely a 60%
and a 22% RES share in heating and electricity load coverage for the Cardiff space,
respectively, and a 43% share in electricity load coverage for the Grevena space.

2. Materials and Methods

Dynamic building-level simulations have been conducted for the former and latter
states of both building spaces under investigation, i.e., before and after the installation of
the new façades. To model building thermal zones, construction elements, and heat transfer
mechanisms at all system points, the open-source Modelica AixLib library [22] has been
used. This library focuses on the dynamic modeling of buildings in a bottom-up approach,
namely from internal elements, such as wall material layers, to building interaction with
the environment. More specifically, the construction element model (i.e., wall, slab, roof,
window, etc.) consists of a number of sequential models of heat conductors and capacitors
equal to the number of material layers. Each pair of heat elements retrieves the thermal and
geometric properties of the corresponding material layer it represents. The heat transfer
mechanisms of each construction element include conduction, convection, and radiation. It
should be highlighted that the high-order AixLib model has been selected over the reduced-
order to ensure that accuracy is not compromised. The thermal zone model also consists
of an air volume model exchanging heat and mass flows with its adjacent construction
elements and the environment, being able to operate as a heat source/sink for the building,
depending on the weather/indoor conditions, the heat gains from available solar radiation,
and internal activity.

Certain component models, which play an important role in energy consumption/savings
and system efficiency, needed development from scratch or certain customizations. In this
respect, their mathematical models, used for simulations, are described in detail below.

2.1. Solar Air Heater

The Solar Air Heater (SAH) is an active component that can be mounted on a building
façade and transfers collected heat, provided by solar radiation, into the room. Except for
the provision of heat, the SAH can also ensure room ventilation, since it is an open-loop
component that uses ambient air as its working medium. As an active component, the
air circulation is caused by an attached fan, which, depending on the commercial SAH
model, can be powered by a low-power photovoltaic cell or directly by the grid. SAHs are
available in many different types and sizes, depending on the manufacturer and model.

The operation of the SAH considered in this study is as follows. An ambient airflow
enters the SAH. Solar radiation penetrates the cover and is absorbed by the absorber. The
airflow temperature increases mainly by the heat received from the absorber through
convection. Finally, the heated airflow is injected into the building interior.

The main technical characteristics of the SAH, as provided by the manufacturer, are
given in Table 1.

Table 1. Technical characteristics of the Solar Air Heater (SAH).

Quantity Value

Length (mm) 2000
Width (mm) 1006

Nominal air volume flow rate (m3/h) 125

According to assumptions, the technical characteristics of the SAH, used for the
simulations can be seen in Table 2.
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Table 2. Assumptions about the technical characteristics of the SAH.

Quantity Value

Cover transmittance coefficient 0.7
Cover U-value (W/(m2·K)) 3.0

Absorber length (mm) 1800
Absorber width (mm) 905.4

Absorber thickness (mm) 2
Absorber density (kg/m3) 1200

Absorber specific heat capacity (J/(kg·K)) 1200

The absorber volume is calculated as:

Vabs= Labs · Wabs · Dabs (1)

where Labs, Wabs, and Dabs are the absorber’s length, width, and depth, respectively (in m).
The absorber heat capacity, Cabs (in J/K), is given by:

Cabs= ρabs · cabs · Vabs (2)

where ρabs is the density (in kg/m3), cabs is the specific heat capacity (in J/kg/K), and Vabs
is the volume (m3) of the absorber.

Finally, based on the manufacturer datasheet, with 1000 W/m2 radiation, the air
volume flow rate can reach up to its maximum value of 125 m3/h to provide the peak
thermal power output (1.4 kWp). The model developed for the SAH is presented in Figure 2
(Dymola environment). To model the air passages of the flow entering and leaving the
collector, two pipes have been considered, while the heat transfer mechanisms between
the flow and the absorber have also been taken into consideration. Furthermore, operation
control actions are implemented in order for the space temperature setpoint to be respected
and the inlet stream temperature always to exceed room temperature, or equivalently, allow
the component to operate solely as a heat source.
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2.2. Gap Ventilation

Due to the installation of a new façade in front of the already existing walls, there is a
narrow air gap between the two types of surfaces. This gap is important from two main
aspects: (a) the low air gap flow acts as an additional insulation layer, especially for the
cold periods of the year and (b) the cooling effect of the gap’s air flow on the PV panel
improves its efficiency. In this study, the focus is given to the first aspect to capture the
effects of the air gap on the building’s thermal behavior. However, according to [17], the
technology implemented for PV ventilation (natural, mechanical, and no ventilation) may
lead to a maximum variability of 0.7% in its electricity generation, even in hot tropical
climate conditions. Therefore, the accuracy of the PV production estimation is slightly
affected by this assumption. In this regard, the mathematical model of the air gap consists
of an air volume that is connected with the infiltration ports of ambient air and the existing
wall mass transfer ports. In this way, the infiltration mechanism of the room is modelled
by the air gap model by directly linking the environment with the wall’s ports. Therefore,
the infiltration air flow through the air gap is assumed to be unaffected by the thermal
interaction with the adjacent surfaces (façade, existing wall). However, the component of
air volume is assumed to be full of motionless air that increases its temperature through
the exchanged heat, thus acting as an additional insulation layer to the building, especially
for the cold periods of the year.

2.3. Mechanical Ventilation Unit

The model developed within the Dymola environment to describe the operation of the
mechanical ventilation unit is presented in Figure 3. The main operation of this component
is to provide the room with fresh, ambient air to enhance the interior conditions for the
occupants. Furthermore, the recuperator brings the inlet stream temperature closer to the
interior one. More specifically, the unit sucks air from the outside atmosphere and passes it
through a recuperator in order for its temperature to be brought closer to the building’s
interior temperature. In this framework, when the ventilation unit is turned on by the
users, the mathematical model considers a fan unit sucking air from outside and a second
fan unit sucking air from the room through two respective port connections, while the heat
exchange between the two streams is implemented through a suitable counter-flow heat
exchanger model with 90% effectiveness.
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2.4. BIPV Module

For the simulation of the building-integrated PVs (BIPVs) on top of the installed
façades, the model developed by the AixLib library has been utilized. The following widely
accepted equation set is used, as proposed by [23,24]:

Tc= Ta +
GT

GNOCT
· (T c,NOCT − Ta,NOCT

)
(3)

PPV= PPV,STC · GT

GSTC
· (1 − γ · (T c − TSTC)) (4)

where Tc is the PV cell temperature (in ◦C), Ta is the ambient temperature (in ◦C), GT is
the measured solar radiation intensity (in W/m2), Tc,NOCT is the nominal operating cell
temperature (NOCT) (in ◦C), GNOCT is the solar radiation intensity at which the NOCT is
defined (in ◦C), Ta,NOCT is the ambient temperature at which the NOCT is defined (in ◦C),
PPV is the cell output power (in W), PPV,STC is the cell output power in Standard Test
Conditions (STC) (in W), GSTC is the solar radiation intensity at STC (in W/m2), γ is the
cell output power temperature coefficient (in ◦C−1), and TSTC is the standard measurement
temperature (in ◦C).

In the cases studied in this work, three different types of PVs were examined. Their
specifications, as provided by the manufacturers, are listed in Table 3.

Table 3. Technical specifications for the PV modules installed.

#1 #2 #3

PV type PV PV PV window
Location Grevena Cardiff Cardiff

Installed capacity 6 kW 166 W 86 W
Efficiency 5.3% 15.74% 2.81%

Total PV area 38 m2 1.05 m2 3.05 m2

Cell output power temperature coefficient 0.0043 ◦C−1 0.0038 ◦C−1 0.0019 ◦C−1

Nominal operating cell temperature 46 ◦C
Standard measurement temperature 25 ◦C

2.5. Load Scheduling, Internal Heat Gains, and Weather Data

The equipment and the users of a room are both considered to contribute to its heating.
For this purpose, internal heat gains are also considered. In particular, the machinery
heat gains are modeled with the use of DIN V 18599, depending on the zone type, and
their emissivity is considered to be equal to 0.90. Furthermore, the lighting heat gains are
also modeled according to DIN V 18599, where the illuminance is calculated based on the
type of zone, and their emissivity is considered to be equal to 0.98. In addition, the heat
output of the occupants inside the room, whenever they are present, is modeled according
to VDI 2078. Finally, typical meteorological year (TMY) weather datasets of the time
interval 1983–1995 have been used for the simulations. For the estimation of the available
solar irradiance, the transposition model of Perez [25] has been used. Transposition is the
calculation of the incident irradiance on a tilted plane using the horizontal irradiance data.

3. Use Cases
3.1. Demonstrator Site in Cardiff, Wales

The Welsh demonstrator site is located in Cardiff and is represented by a room on
the ground floor of an office building, which is currently being used as a storage space.
Based on the Köppen classification, Cardiff belongs to the Cfb climate group, namely
temperate oceanic climate or subtropical highland climate with no dry season and warm
summer. Maximum and minimum monthly temperatures average 21.8 ◦C (July) and 2.47 ◦C
(February). After proper radiation transformations, the maximum monthly available solar
irradiance on the vertical surface varies from 483 W/m2 (December) to 805 W/m2 (March).
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The selection of this location is based on the need to prove the applicability of the proposed
system in an area with mainly mild weather, often cloudy, wet, and windy. Subsequently, the
climate conditions render this pilot site ideal for examining the system performance in a region
with low average daily sun hours. The façade is installed on the southeast wall of the room.

In the current version of the building, the appliances used in the examined room
include a lighting system of three fluorescent tubes of a nominal power of 70 W each.
The lighting system is expected to remain the same after the renovation of the building.
Furthermore, in order to cover the space heating requirements during the winter period,
the room is heated through the central heating system, powered by a natural gas boiler.
At both states, i.e., before and after the façade implementation, the heating system was
modeled through a radiator of 1 kW nominal capacity and 90% efficiency. The operation of
the terminal units is expected to be controlled by a thermostat in respect of the ideal room
temperature range, i.e., between 21 ◦C and 23 ◦C during winter.

The proposed façade for the Welsh pilot will be installed on top of the existing south-
east wall at a distance of 85 mm (the width of the air gap) and consists of specially designed
aluminum frames for the support of the integrated PV panels and the SAH. Installation of
the PV system aims to provide electricity to the room and incorporates two types of panels:
(a) one opaque panel, and (b) two semi-transparent panels (PV windows) on top of the
existing windows (for their technical characteristics see Table 3). The SAH installation is
necessary to provide auxiliary heating through renewable sources and not conventional
fuels. In this study, SAH was considered to be installed on the right side of the façade
covering an area of approximately 2 m2 with a maximum thermal power output of 1.4 kWth.
The construction of the whole façade and its subcomponents can be seen in Figure 4. In
addition, the inner walls and ceiling of the room were all considered adiabatic surfaces
since they are adjacent to heated thermal zones. Due to the lack of information about
soil thermal properties, an adiabatic boundary condition between the slab surface and the
ground has been considered. According to [26], the error caused by this simplification in in-
door temperature calculation is acceptable. Their construction materials are also presented
in Figure 4, while the respective physical properties, not provided by the manufacturers,
are defined by [27]. Regarding the windows, the thermal transmittance and the coefficient
of the solar energy transmission were considered to be equal to 2.665 W/(m2·K) and 0.703,
respectively. Additionally, based on the manufacturer, the respective parameters for the
semi-transparent PV windows of amorphous silicon in front of the existing building’s
windows were defined as equal to 1 W/(m2·K) and 0.15, respectively.
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Finally, the room’s ventilation was based on passive means, such as natural ventilation
through the window and infiltration through the walls. Since there is no information or
experimental data, a series of assumptions have been made. More specifically, the total air
change rate can be set either to 0.6 cycles per hour (h−1) due to infiltration or to 3 h−1 due
to opening of the window, when the room temperature exceeds 25 ◦C [28,29] during both
working and non-working hours. As the work schedule, Monday through Friday from
9 a.m. to 5 p.m. has been considered.

3.2. Demonstrator Site in Grevena, Greece

The Greek demonstrator site is located in Grevena, a northwestern city of Greece in the
Region of Western Macedonia (RWM). It is a public building that hosts municipal authorities.
Based on the Köppen classification, Grevena belongs to the Csb climate group, namely the
warm-summer Mediterranean climate. Maximum and minimum monthly temperatures
average 29.6 ◦C (July) and −1.2 ◦C (January). After proper radiation transformations, the
maximum monthly available solar irradiance on the vertical surface varies from 435 W/m2

(June) to 896 W/m2 (February). Consequently, this large difference in temperatures exhibited
between winter and summer renders this demonstrator ideal for examining the system’s
performance in a wide range of temperature conditions. In this case, the ADBE is installed on
the southeast corner of the building, including two rooms (one room per floor); however, in
this study, only one floor and, therefore, one room was considered.

The proposed façade for the Greek pilot site will be installed on top of the existing wall
at a distance of 300 mm (the width of the air gap) and consists of assemblable aluminum
frames for the support of the utilized PV panels and the mechanical ventilation unit.
Their construction materials are presented in Figure 5, while their physical properties are
defined by the constructor. The frames in front of the walls will also be equipped with a
30 mm insulation layer (0.036 W/(m·K) thermal conductivity) in order to minimize the
thermal losses to the ambient air. The installed PV panels are of two types: (a) opaque
fixed panels, which are expected to be installed in front of the building’s walls, and
(b) semi-transparent PV windows of amorphous silicon in front of the existing building’s
windows. The nominal power per unit surface of the selected opaque fixed panels and
semi-transparent PV windows are 57.6 Wp/m2 and 34 Wp/m2, respectively. Using a
weighted arithmetic mean based on the ratio of the PV surfaces, the efficiency is supposed
to be equal to 5.3%, regardless of the type of the installed PV. The thermal transmittance
and the coefficient of the solar energy transmission of the existing windows of the room
are estimated to be equal to 2.6 W/(m2·K) and 0.60, respectively. In addition, based on
the manufacturer, the respective parameters for the semi-transparent PV windows of
amorphous silicon in front of the existing building’s windows are defined as equal to
5.7 W/(m2·K) and 0.34, correspondingly.
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The mechanical ventilation unit’s operation is approximated by assuming two opera-
tion modes: the first, when occupants are absent, is defined by an inlet volume flow rate
of 33 m3/h (0.011 kg/s), and the second, when occupants are present, by an inlet volume
flow rate of 51 m3/h (0.017 kg/s). These values correspond to 0.30 h−1 and 0.46 h−1 air
exchange rates for the low and high operation modes, respectively. It should be noted that
in the former state of the building under investigation, there was no mechanical system
for providing the necessary air exchange, so this process is based on mainly wind-driven
ventilation through open windows and infiltration with a total air change rate equal to four
cycles per hour throughout the year, both for working and non-working hours [28].

In order to further set up the mathematical model, it is necessary to define the heat gains
by the presence of humans and the operation of appliances and systems for both states of the
investigated building, i.e., before and after the retrofitting actions. The profile of the human
activity inside the room remains unchanged between the cases and foresees 2–3 occupants in
the time interval between 7:00 a.m. and 4:00 p.m. from Monday to Friday and no occupants
during the weekend since the investigated rooms are offices of the public sector.

In the former state of the building, the appliances used in the examined room included:
(a) three personal computers and monitors with a nominal power of 300 W each, (b) two
printers/scanners with a nominal power of 150 W each, and (c) two fridges with a nominal
power of 90 W each. The utilized appliances were not subject to changes after the renovation
of the building. On the contrary, the lighting system was upgraded to a new lighting system
for better visual comfort, i.e., an environment with the required quantity and quality of light.

The room is heated through the central heating system, powered by an oil boiler.
In order to match the numerical results with the reference value in terms of the thermal
energy provided, a radiator with a 2.5 kW nominal capacity was selected. Even though the
room was not equipped with a thermostat and the operation of the system is continuous,
when the occupants are present the heater is supposed to be controlled by a thermostat.
The reference temperature was set to 19.5 ◦C, thus component actions are performed to
maintain the room’s temperature near the desired setpoint.

4. Results
4.1. Results of Demonstrator Site in Cardiff, Wales

In this study, the parameters under investigation were the level of the temperature
inside the room, indoor thermal quality, the PV generation, the SAH generation, and
the electric and thermal demand throughout the year. The temperature inside the room
before/after the renovation actions is presented in Figure 6. In the former state of the
building, the temperature during the working hours of winter was kept between 21 ◦C
and 23 ◦C due to thermostat operation. During the night, which is considered an inactive
period for the space heating system, significantly lower levels of temperature occurred. The
minimum temperature was as low as 6.7 ◦C. During the rest seasons, both during working
and non-working hours, the highest temperature values exceeded 23 ◦C and this can be
explained by the lack of any cooling or/and mechanical ventilation systems and shading
devices. The highest temperature exhibited during the summer was equal to 35 ◦C. After
the renovation, the thermostat controls the room temperature, during the winter period
and during working hours. During non-working hours, the room still experienced low
temperatures, but the local minima were higher than the case before the renovation since
the additional insulation installed on the building lowers the heat losses to the environment.
During the summer, the room was expected to experience lower temperature maxima
(approximately 28.5 ◦C). The lower temperature peaks can be explained by the installation
of the PV windows, the PV panel, and the SAH, which reduce the radiation inserted in the
room and the heat absorbed by the room’s walls, due to the additional components’ lack of
or semi-transparency. This leads to a counterbalancing of the overheating phenomenon
that takes place owing to the lack of typical shading measures.
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Figure 6. The Welsh pilot room temperature (in ◦C) before/after the renovation.

The room temperature distribution into classes during working hours throughout
the year for both states is presented in Figure 7. It can be assumed that the temperature
range for thermal quality is 18–23 ◦C during winter (21–23 ◦C is the thermostat setpoint
range) and 18–24 ◦C during summer. Therefore, in order to extract meaningful conclusions,
the temperature values have been sorted into three classes: (a) values lower than 18 ◦C,
(b) values between 18 ◦C and 24 ◦C, and (c) values higher than 24 ◦C. A key output of
the results is that during 37% of the working hours, before the renovation of the building,
there was feelings of discomfort for the occupants due to higher/lower temperatures
than the desired temperature range. In comparison with the results before retrofitting,
the frequency of discomfort after the renovation actions decreased to 17% for the year.
The frequency of the highest temperature values (>24 ◦C) dropped to 10% from 32% due
to the installation of the PV, the PV windows, and the SAH that act as shading devices,
while the frequency of the lowest temperatures (<18 ◦C) was almost unaffected and was
in the range of 5–7%. However, a notable differentiation in the results was the increase in
operating hours between 18 ◦C and 21 ◦C, from 4% to 35%. This can also be explained by
the reduction of incoming radiation due to the installation of additional components and
semi-transparent PV windows. Even if this increase does not radically affect the occupants’
comfort, it can be translated into significant heating demands.

Indeed, as can be seen upon observing Figure 8, which presents the heating load of
the room before/after the renovation, from March until October, the thermal needs of the
room were increased; the highest differences were experienced in spring. This is directly
attributed to the lower radiation into the room due to the additional components installed
and the increased required load to maintain the room temperature inside the desired range.
However, since the SAH was exploited as an auxiliary heating source after the renovation,
the total energy provided by the central heating system was decreased. More specifically,
in the prior state of the building, the heating energy demand of the room, which was
covered exclusively by the existing central heating system, was estimated at 356.3 kWh.
This is equivalently translated into 50 m3 total natural gas consumption, given that the
total efficiency of the heating system was equal to 81% and the natural gas net heating
value was as high as 31.7 MJ/m3 at standard temperature and pressure conditions. After
the renovation of the building, the thermal contribution was calculated to be 314.3 kWh
and the total natural gas consumption was 44.1 m3, a reduction of approximately 12%.
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Therefore, it is concluded that this decrease in the use of the central heating system was
indeed affected by the SAH’s contribution.
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At this point, it should be highlighted that in order to properly select SAH spec-
ifications for optimized SAH’s contribution, a sensitivity analysis was conducted at a
preliminary level. Multiple values of air supply volume flow rate, as well as the option to
operate during additional hours, even during users’ absence, have been examined. Based
on the results of this analysis, listed in Table 4, the maximum value of energy contribution
was achieved with a volume flow rate equal to 10% of the nominal value (12.5 m3/h) and
additional operation (beyond users’ presence schedule) between 7 a.m. and 9 a.m. The
control conditions, specified in Section 2, should also be respected. More specifically, the
component operates when: (a) its production causes the room temperature not to exceed
the upper limit of the desired range in winter (23 ◦C), and (b) the inlet stream temperature
is higher than the room temperature.
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Table 4. Sensitivity analysis on the effect of air volume flow rate and operating hours on SAH
energy contribution.

Case Operating Condition
Annual Energy Contribution

from SAH (kWh)
Annual Energy Contribution from
the Existing Heating System (kWh)

1 (a) 50% of the nominal air volume flow rate 44.3 400.0

2 (a) 50% of the nominal air volume flow rate
(b) additionally on from 7 a.m. to 9 a.m. 48.7 401.7

3 (a) 30% of the nominal air volume flow rate
(b) additionally on from 7 a.m. to 9 a.m. 71.6 364.2

4 (a) 10% of the nominal air volume flow rate
(b) additionally on from 7 a.m. to 9 a.m. 87.7 314.3

Based on the above process, the SAH production was estimated as 87.7 kWh in total,
which is 21.8% of the annual heating load. Based on Figure 9, the contribution of SAH to
the total heating load of the room per month showed a vast range, i.e., from below 10%
to 100%. The highest percentages were experienced during the summer period, when the
thermal needs concern individual days with very limited thermal loads. During the winter,
the SAH contribution showed the lowest values (approximately 10%) due to the very low
available radiation and temperature levels experienced in the region, which affected the
efficiency of the system and its capability to operate as a heat source.
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Nevertheless, based on the results, the thermal demand in the post-retrofit state of the
building, covered by both the SAH and boiler, seemed to be higher than the respective value
in the current state of the building, i.e., 402 kWh against 356.3 kWh, which is equivalent
to a 13% increase. This, as already explained, is attributed to the effect of structure and
components that were installed after the retrofit actions.

According to the simulations, the PVs resulted in an annual electrical energy gen-
eration of 239.9 kWh (60% of the annual load of the room) with a maximum power of
approximately 210 W, i.e., 83.3% of the installed capacity. The monthly PV percentage
contribution to the room’s load is shown in Figure 10. According to this, even during the
coldest period of the year (October–March), the PV load coverage ranges between 25 and
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75%, thus paving the way towards the enhanced autonomy of the building from the grid,
even during the days with low solar radiation.
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In Table 5 the simulation results regarding the electric and thermal energy demand
of the room before and after the installation of the façade are summarized. A significant
amount of electrical energy, namely 60% of the required load, was produced by the PV
systems. A notable result was the decrease of the annual natural gas consumption by
approximately 12%, even if the annual thermal demand was slightly increased by 13%,
due to the contribution of the SAH component. The increase in thermal demand, as
already noted, can be explained by the shading effect caused by the components installed
and the resulting decrease in the radiation entering the room. Therefore, although these
mechanisms provide protection from overheating during the summer months, they cause
a reduction of the solar gains during winter and, thus, lead to a slightly increased energy
consumption for space heating.

Table 5. Annual energy outputs before and after the installation of the Welsh site façade.

Quantity Before
Renovation

After
Renovation

Electrical energy consumption (kWh) 400.2 400.2
PV production (kWh) - 239.9

Total thermal energy demand (kWh) 356.3 402.0
Thermal energy provided by the main heating system (kWh) 356.3 314.3

Thermal energy provided by the SAH (kWh) - 87.7
Natural gas consumption (m3) 50 44.1

4.2. Results of Demonstrator Building in Grevena, Greece

This subsection is dedicated to the simulation results of the demonstrator building in
Grevena, Greece. In Figure 11, the temperature inside the room before/after the renovation
actions is presented. In both cases, it was noted that in the presence of occupants during
the winter the temperature is regulated at 19.5 ◦C by the thermostat/heater in order to
ensure the desired thermal conditions. Additionally, the interior temperature of the room
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during summer, when occupants are present, and especially at noon, reached very high
values, higher than 30 ◦C. This can be attributed to the high ambient temperature levels of
the region, the lack of a cooling system, and the absence of solar shading. However, in the
post-retrofit state of the building, the highest temperature values were slightly decreased,
due to the installation of the façade and its PV windows, both of which decreased the solar
radiation entering the room or preventing it from reaching the existing wall. Finally, in
both states of the building, while the occupants are absent, the heater was deactivated,
causing the room temperature to follow the trend of the ambient temperature.
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Figure 11. The Greek pilot room temperature (in ◦C) before/after the renovation.

Figure 12 presents room temperature distribution in classes during working hours
throughout the year for both states. Again, in order to extract meaningful conclusions,
the temperature values have been sorted into three classes: (a) values lower than 18 ◦C,
(b) values between 18 ◦C and 24 ◦C, and (c) values higher than 24 ◦C. It was noted that
after the renovation actions, while occupants are inside the room, the temperatures were
slightly shifted towards lower values. According to the results, after the renovation, the
frequency of temperature values lower than 18 ◦C was practically unaffected. However, the
frequency of the temperature values that were higher than 24 ◦C slightly decreased from
46% to 43%, denoting a slight improvement in maintaining the indoor temperature within
the occupants’ desired range. The general trend of the room temperature values towards
lower values is attributed to three main factors: (a) the additional insulation of the interior
from the ambient conditions owing to the implementation of the façade, which during
summer results in lower room temperature values, (b) the operation of the mechanical
ventilation unit that provides the room with additional air of lower temperature than
the room during the winter, except for the air that is supposed to be inserted through
the infiltration mechanism, and (c) the installation of PV windows that reduce the solar
radiation entering the room.

The heating load of the room per month, before and after the renovation actions, is
presented in Figure 13. According to the results, the heating load was increased throughout
the year with the highest absolute increase taking place in two sequential months, namely
February and March. Overall, the thermal energy provided by the heater on an annual basis
after the installation of the façade was calculated as equal to 1530 kWh, instead of 1389 kWh,
meaning that the heating load of the room was increased by 10% compared to the former
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state. This increase can be justified mainly by the significant reduction of the solar radiation
entering the room and reaching the building’s walls, as already thoroughly explained.
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Figure 13. Heating energy load provided to the Greek site room before and after the renovation.

The electrical energy demand was calculated to be increased from 4972 kWh to
5321 kWh annually because of the renovation of the building and specifically the replace-
ment of the lighting equipment. According to the simulations, the installation of the PVs
resulted in an annual electrical energy generation of 2277 kWh (42.8% of the annual load
after the retrofit). The monthly PV percentage contribution to the room’s load is shown in
Figure 14. According to this, even during the heating period of the year (October–April), the
PV load coverage ranged between 25 and 55%, thus paving the way towards the enhanced
autonomy of the building from the grid even during days with low solar radiation.
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In Table 6 the simulation results regarding the electric and thermal energy needs of the
room before and after the installation of the ADBE façade are summarized. The electrical energy
provided by the grid after the installation of the sophisticated façade decreased by 39%, from
4972 kWh to 3044 kWh. As regards to the required thermal output of the heater to maintain the
indoor thermal quality during the heating period, it was estimated that it will present a slight
increase (approximately 10%) due to the reduction of the incoming absorbed solar radiation,
owing to the PV components installed on the building. However, the significant reduction
of the electrical energy demand due to the installation of the PV panels, the improvement of
thermal quality during summer, and the insignificant increase in the thermal needs renders the
implemented technology a major energy-efficient building solution.

Table 6. Annual energy outputs before and after the implementation of the installed façade.

Quantity Before
Renovation

After
Renovation

Electrical energy consumption by electrical appliances (kWh) 4972 5268
Electrical energy consumption for the mechanical ventilation unit (kWh) 0 53

PV production (kWh) 0 2277
Thermal energy provided by the main heating system (kWh) 1389 1530

Therefore, it is evident from the evaluation of the energetic performance of both pilot
sites that the proposed solution is capable of providing enhanced autonomy from the grid,
increased RES harvesting, improved interior conditions, and a decrease in conventional fuel
consumption. However, the installation of non-transparent or/and semi-transparent modules
decreases the radiation entering/affecting the building, so the thermal needs are increased.

5. Conclusions

This research work evaluated the retrofitting option of ADBE façade installations from
an energetic point of view using suitable mathematical models. For this purpose, two pilot
sites were examined; Cardiff, Wales, and Grevena, Greece. The actual demonstration in two
locations with different climates can provide conclusions about the system’s operability and



Energies 2023, 16, 2148 18 of 20

efficiency in a vast range of operating conditions. Furthermore, the inclusion of promising
ADBE components, such as BIPVs, SAHs, and mechanical ventilation units, provides the
possibility for valuable quantitative evaluation of the contribution of these technologies on
the improvement of building performance.

Based on the results for the Cardiff pilot site, the proposed solution was capable of
providing an almost 60% share in annual electrical load through PV generation. Regards
the interior conditions, the ratio of hours with discomfort for the occupants to the total
hours of user presence was been limited from 37% to 17%. Moreover, the SAH unit was
estimated to contribute to the annual space heating load by 22%, leading to a 12% decrease
in fuel consumption. However, the SAH’s share in heating load coverage reduced below
10% during months with extremely low available radiation and temperature levels, namely
from November to February. Another finding is that PV and SAH components on the
installed façade acted as shading devices leading to a 13% increase in thermal needs.

Regarding the Grevena pilot site, simulation results indicate that the BIPV panels are
able to provide an almost 43% share of the annual electrical load. In addition, the ratio of
hours with discomfort for the occupants to the total hours of user presence was slightly
reduced from 48% to 46%. Finally, the shading effect of the installed components led to a
10% increase in thermal needs, almost the same as in the Cardiff case.

In conclusion, the developed mathematical model focuses on the accurate represen-
tation of the ADBE components as interconnected physical entities and the conduction
of detailed, dynamic analysis of the whole system in terms of energy consumption, RES
harvesting, and indoor conditions. This approach is substantially different from previous
studies and methodologies, where the performance and behavior of the ADBE components
were studied independently. As a consequence, this work lays the foundations for further
investigation of such ADBE solutions, considering them as structures of undivided, continu-
ously interacting components. Due to this specific approach, it is possible to parametrically
investigate additional scenarios, considering a different combination of technical compo-
nents and elements, in order to attain sufficient improvement of the proposed solution.
Until now, the research has been focused on the optimization of an individual entity or
component that is possible to constitute a part of the whole ADBE construction. On the
contrary, this specific investigation is capable of providing designers, possible stakeholders,
and other entities with sufficient data for further evaluation of the efficiency, profitability,
and sustainability of such retrofitting options as an integrated system.

However, this study also possesses methodological limitations and assumptions that
could be addressed by future research work. These simplifications include the consider-
ation of adiabatic interior surfaces, the ideal conditions in terms of human presence and
interaction with the building components, the neglect of shading from adjacent buildings,
and the limited area of retrofitting. The inclusion of all these aspects in future works is
expected to further deepen the understanding of the system’s behavior in real operating
conditions and provide even more accurate input for the further techno-economic analysis
of the retrofit option. This would enable the possibility to enrich the extracted conclusions
on how solar-powered ADBE technologies can enhance building energy performance, both
during heating and cooling periods.
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Nomenclature

ANN Artificial Neural Network
BIPVs Building Integrated Photovoltaics
BIPV/T Building-Integrated Photovoltaic/Thermal
DHW Domestic Hot Water
DSFs Double-Skin Façades
EU European Union
PCMs Phase Change Materials
PVT Photovoltaic–Thermal
PVs Photovoltaics
RES Renewable Energy Sources
SAHs Solar Air Heaters
TMY Typical Meteorological Year
WTs Wind Turbines
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