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Abstract: Optimization-based design tools for energy systems often require a large set of parameter
assumptions, e.g., about technology efficiencies and costs or the temporal availability of variable
renewable energies. Understanding the influence of all these parameters on the computed energy
system design via direct sensitivity analysis is not easy for human decision-makers, since they
may become overloaded by the multitude of possible results. We thus propose transferring an
approach from explaining complex neural networks, so-called locally interpretable model-agnostic
explanations (LIME), to this related problem. Specifically, we use variations of a small number of
interpretable, high-level parameter features and sparse linear regression to obtain the most important
local explanations for a selected design quantity. For a small bottom-up optimization model of a
grid-connected building with photovoltaics, we derive intuitive explanations for the optimal battery
capacity in terms of different cloud characteristics. For a larger application, namely a national model
of the German energy transition until 2050, we relate path dependencies of the electrification of the
heating and transport sector to the correlation measures between renewables and thermal loads.
Compared to direct sensitivity analysis, the derived explanations are more compact and robust and
thus more interpretable for human decision-makers.

Keywords: energy system design models; explainable AI (XAI); LIME; sensitivity analysis;
decision makers

1. Introduction

Energy system design (ESD) tools allow domain experts to build and optimize energy
system models concerning system costs or CO2 emissions. Various modeling frameworks
exist, such as TIMES [1] and OSeMOSYS [2], typically based on linear optimization. Ready-
to-use implementations including model equations and data are available for countries
such as the United States [3], United Kingdom [4], or Germany [5]. All such models are
based on a multitude of parameter data. Required data include time series, technical and
economic parameters, and legal and physical limitations. For example, for modeling wind
power, historic weather time series for the wind speeds, the currently installed capacity
of wind power plants per model region, the specific costs for new installations, and the
maximum possible capacity allowed by regulation are required. When no data are available,
assumptions have to be made. The computed ESDs are highly dependent on these data and
assumptions. The dependence can even be counter-intuitive [6]. A robust interpretation of
these optimization models’ outcomes thus requires detailed knowledge of the models and
their inputs.

The people who decide on the real-world implementation of computed ESD proposals
are typically non-experts in the field of energy system modeling. Such decision-makers can
be CEOs responsible for their companies’ CO2 footprint, politicians responsible for shaping
energy regulation, or citizens responsible for their own homes and electing the politicians
that fit their needs. All these actors take personal risks when deciding about ESDs, with
respect to either financial or electoral consequences. In order to promote informed decision-
making of these non-experts—or indeed to promote any decision-making at all—intuitive
explanations of the computed ESD proposals are essential to build the required trust into
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the model outcomes [7]. In addition, experts could greatly benefit from good, intuitive
explanations, e.g., to verify their modeling assumptions and result interpretations.

A tool often used by domain experts to explain ESD tools’ results is sensitivity analysis,
which creates explanations based on how a system reacts to individual parameter changes.
The term sensitivity analysis is used for methods that vary the input of a model and observe
the change in outputs. Approaches differ in how they change the inputs; e.g., changes can
be infinitesimal or finite, and variations can be deterministic or probabilistic. For a general
overview of sensitivity methods, see [8,9]. For sensitivity analysis applied in the context
of ESD , see [10–12]. For models formulated as linear programs, differential sensitivities
are easily accessible as a byproduct of the dual problem solution [13]. They are then called
“marginals” and can be used to answer questions such as “What is the value of an additional
unit of capacity of a power plant?” or “What is the effect on the battery capacity if the
electricity demand at 8:15 a.m. would be 1 unit lower?”.

Model sensitivities for high-dimensional input parameters, such as demand or renew-
able time series, are often not helpful since small changes in parameter values for individual
time steps often have only a minor impact on the optimal system design. Changes for
multiple time steps, however, can have a significant impact. For example, suppose the
renewable energy potential is increased for a single time step. In that case, it is unlikely
that the cost-optimal storage capacity changes since additional storage capacities are expen-
sive when used only once. If the renewable increase covers several well-distributed time
steps, storage capacity can be reused and becomes more attractive. This argumentation
shows that changes in high-dimensional parameters such as time series are relevant for
decision-makers, even when sensitivity analysis of individual values is not informative.

Machine learning methods also often have high-dimensional inputs and the need
to explain their decisions [14]. The input data for many classification methods are high-
dimensional data structures such as images or texts. Since a change in an individual input
dimension, i.e., a pixel or a letter, should not change the class prediction, and sensitivity
analysis based on these variations is not very informative. Moreover, models such as
neural networks and random forests include large numbers of complex operations that are
often not transparent to the user. Their information processing is thus often conceived as
a black box. A popular explainable AI method to overcome these limitations is “locally
interpretable model-agnostic explanations” (LIME) [15]. LIME, designed for application
to classification problems, addresses the shortcoming of traditional sensitivity analysis
regarding high input dimensions by introducing an interpretable abstraction layer for the
input features. It then aims to find the interpretable features whose variations are most
relevant for changing the predicted class label. This feature is then considered most relevant
for a given class decision.

In this paper, we propose to transfer the LIME idea from the machine learning domain
to the ESD community given the parallels between the two described problem settings.
While explainable AI methods have been used in energy and power systems before, explain-
ing machine learning-based models employed in power grids, the energy sector, or energy
management in buildings, see e.g., [16–18] and the review [19], we use explainable AI
methods here for energy system design, where not statistical learning methods but an
optimization problem is at the core. Specifically, the key contributions of this paper are
as follows:

1. We employ the LIME idea to create explanations for the outputs of ESD tools that
are based on bottom-up optimization models. To this end, we establish the parallels
between the two problem settings and the possible solution approaches.

2. We demonstrate how to create interpretable abstraction layers for ESD settings.
3. We showcase exemplary explanation results for a building and a nationwide ESD

model, improving on the traditional sensitivity analysis.
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By making ESD better understandable to non-expert decision-makers, we hope
that the work supports informed decision-making in the transition towards low-carbon
energy systems.

The remainder of the paper is structured as follows: An exemplary ESD model of a
building with a renewable energy supply is presented in Section 2. It serves as a running
example throughout this work. We then explain the concept of LIME and show how the
methodology can be transferred from the machine learning domain to ESD models in
Section 3. Explanations for the optimal design of the exemplary energy system are derived
and discussed in Section 4. Explanations of a more complex model, i.e., a model of the
German energy system, are presented in Section 5. A conclusion is given in Section 6.

2. An Exemplary Building Energy System

This paper uses a building energy system as a running example. Its structure is shown
in Figure 1. The building is characterized by an electric and a thermal demand. Electric
energy is locally generated by a photovoltaic (PV) plant or can be bought from the external
electricity grid. Electricity can be stored in a battery for later use and converted into heat
using a heat pump. Heat can be stored in heat storage, such as a hot water tank.

Electricity HeatPV

Import from Grid Battery Heat Pump Heat Storage

Heat DemandElectricity Demand

Figure 1. Schematic overview of exemplary energy system model of a building with photovoltaic
(PV) power plant. Energy commodities are displayed as ellipses and energy conversion processes as
rectangles. Arrows of a conversion process denote which energy commodities can be transformed
into each other, while colors encode different types of energy. Conversion processes without input or
output represent energy demands or energy imports into the model domain.

The energy system is modeled using a bottom-up approach based on linear program-
ming [20], extending the model of [7] by a heat sector. The model’s objective is to minimize
the total system costs, including investment and operational contributions. Optimization
variables are the scheduling decisions of all components, e.g., when to charge or discharge
the battery. Furthermore, the system’s design is optimized by model-endogenously choos-
ing cost-optimal capacities for the battery and heat storage. In contrast to [7], the PV power
plant capacity is assumed to be known. The model adheres to a set of constraints. These
include the power balances for electricity and heat at every time step. Other conditions
describe the storage level’s dependency on charging and discharging decisions. Three sets
of inequalities limit the available PV energy per time step to an externally given, weather-
dependent time series, ensure feasible storage levels, and constrain the heat pump’s power
output by capacity. The detailed mathematical equations are given in Appendix A.
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3. Proposed Explanation Methodology

In this section, we present our methodology to derive explanations for ESD models
that go beyond the scope of traditional sensitivity analyses. As our approach is based on
the LIME [15] method from the explainable machine learning domain, we first describe
LIME in its original context and then introduce our proposed methodology in parallel.

3.1. LIME for Machine Learning

LIME introduces an interpretable abstraction layer for the input dimensions of the
machine learning task and combines it with a modified sensitivity analysis. As the name
“local interpretable model-agnostic explanation” suggests, LIME creates explanations for
non-experts for any classifier f : X → [0, 1]L given a specific point of interest (POI) x̄ ∈ X ,
where X ⊆ Rd is the original input space of the classification problem and L is the number
of class labels f can predict. The created explanations are local, i.e., only valid for variations
close to the POI. To this end, an interpretable feature space Z ⊆ {0, 1}d′ is created for the
original, high-dimensional input space of the classification problem X ⊆ Rd with d′ � d.
The vector z̄ ⊆ Z is a binary vector encoding the presence or absence of interpretable
features related to the POI x̄. First, I variations zi in the interpretable feature set are made
around z̄. Second, a function hx̄ : Z → X maps the interpretable variations zi back to the
input space, i.e., xi = hx̄(zi). Each variation xi is then weighted by πx̄(xi) based on its
similarity to x̄. Finally, LIME determines the most important interpretable features, i.e., the
explanation, for a given class label by solving the regularized least-squared regression

arg min
g∈G

I

∑
i=1

πx̄(xi)( f (xi)− g(zi))
2 + Ω(g), (1)

where the model g : Z → R is a model in the class of all linear models G ⊆ RZ and Ω(g)
is a complexity measurement of g ∈ G, for example, the number of non-zero weights of
g. Interpretable features with non-zero weighting are then deemed explanations for the
classifier’s local behavior around the POI x̄. By choosing Ω(g) appropriately, the complexity
of the explanation can be limited as desired.

A visualization of the concept of LIME applied to image classification is found in
Figure 2a, where an interpretable explanation for the classifier f ’s prediction of the “dog”
class is created by LIME. The original input space X contains vectors with the color values
of the individual pixels of an image. Clusters of pixels, the so-called super-pixels, are
used to define the interpretable feature space Z. Each interpretable feature encodes the
presence or absence of a super-pixel. Variations zi around the interpretable representation
z̄ = (1, . . . , 1) of the image are made. Those variations are mapped back to the input space
X by replacing all pixels belonging to a non-selected super-pixel with a neutral color, i.e., a
50% grey value. The resulting inputs xi are classified by f , and a linear model g is fitted to
the resulting “dog” class probabilities by solving the problem defined in Equation (1). The
magnitudes of the weights in g represent the impacts of the super-pixels on f and can thus
be used to explain f locally. The complete explanation is a list of super-pixels in decreasing
order based on their absolute impact on the class label. Shown in green is the super-pixel
with the highest weight for predicting the class “dog”; shown in red is the super-pixel with
the highest weight for not predicting the class “dog”.
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(a) (b)

Figure 2. (a): The LIME method: For an image classifier where individual pixels of an input image x̄
have no explanatory power, an abstraction layer with interpretable features Z (here super-pixels)
is created. Variations zi around the interpretable representation of the input image z̄ are made and
mapped back to the input space X via hx̄, i.e., by replacing each pixel belonging to a super-pixel with
a single neutral color. The classifier f is applied to the modified inputs. LIME fits a linear model
g(z) to the classifier’s outputs and uses g to explain the behavior of g locally around x̄. (b): Proposed
Method: For a high-dimensional input x̄, e.g., a radiation time series, interpretable features z̄i that
could be relevant for explanation are identified. Variations zi around z̄ are made and mapped back
to the input space X by hx̄. The ESD model f is optimized for each input variation xi. A linear model
g(zi) is fitted to the output of the ESD optimization, e.g., the cost-optimal battery capacity Cb. The
weights of the linear model g represent the relevance of the interpretable features for the output of
the ESD model f locally around x̄.

3.2. Proposed Method for Explaining ESD Models

We now want to explain to non-experts an output value from the cost-optimal solution
of an ESD model. To this end, we propose a method based on the LIME concept, where
instead of a class probability given by the classifier, we explain an output value of a cost-
optimizing ESD model. The POI is a vector x̄ in the ESD model’s input space X . We
then identify interpretable features Z that may or may not be part of the original model
parameters but are assumed to be potentially relevant for an explanation. Since we are
interested in quantitative explanations and not only qualitative ones, instead of the binary
encoding used by LIME for the interpretable features space, we define Z ⊆ Rd′ . Similar
to LIME, variations in the interpretable features are mapped to the model’s inputs via a
mapping hx̄ : Z → X between the interpretable features space Z and the input space
X . The ESD model is optimized for each variation. A linear model g : Z → R is fitted
to the results of the ESD model runs by minimizing the objective in Equation (1). As the
complexity measure Ω(g), we chose the number of non-zero weights of g. The linear
model g is finally used as an interpretable explanation for the ESD model: a weight in g
corresponding to an interpretable feature represents that feature’s influence on the ESD
model’s output.

A visual representation of the methodology proposed for the explanation if ESD is
shown in Figure 2b. The illustration is based on our exemplary building energy system
from Section 2. An interpretable explanation for the cost-optimal battery capacity designed
by the ESD model is created for a given set of input parameters, the POI x̄. In the presented
case, the POI is a summer day’s solar radiation time series. An interpretable feature space
Z is then created. Interpretable features considered potentially relevant for an explanation
are the specific battery investment cost, the number and shape of “fleecy clouds” occurring
during the day, and the existence of “morning mist”. Interpretable variations zi around
the POI are made, and the mapping hx̄ : Z → X maps the interpretable variations to the
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models’ input space X , resulting, e.g., in variations xi in the solar radiation time series. The
ESD model is then optimized for each variation. A linear model g is fitted to approximate
the cost-optimal battery capacity Cb of the ESD model’s results. The weights of the resulting
linear model g are taken as an interpretable explanation for the ESD model. A weight in g
corresponding to an interpretable feature represents that feature’s influence on the ESD
model’s output. In the given example, the most relevant interpretable feature for the ESD
model’s cost-optimal battery capacity is the size/duration of the “fleecy clouds”.

We show the application of this method to an exemplary building energy system in
Section 4 and a model of the German energy system in Section 5. These examples include
the explicit definition of the interpretable feature space Z and the mapping hx̄.

4. Experimental Demonstration: The Exemplary Building Energy System

In this section, we apply our proposed method to create an explanation of the cost-
optimal battery capacity for our exemplary building energy system introduced in Section 2.
To this end, we first define a set of interpretable features that can impact the cost-optimal
battery capacity. They consist of cloud characteristics, the PV surplus with respect to the
load, and the specific battery investment cost. These features are described in Section 4.1.
Section 4.2 describes details of the first implementation of our methodology to the exem-
plary building energy system. Section 4.3 shows results for our proposed method on a
simplified version of the same exemplary energy system model, which includes only the
electricity sector. We create explanations around two points of interest with different battery
costs and test their robustness towards different feature mappings hx̄. Explanations for the
complete version of the exemplary building model, i.e., including the heat sector, are then
given in Section 4.4.

4.1. Interpretable Features

The defined interpretable features Z ⊆ Rd′ for this demonstration are shown in
Table 1b. They consist of the number of clouds, the size of clouds, the existence of morning
mist, the storable PV surplus, specific battery investment costs, and the specific heat storage
investment costs. The number of clouds nc refers to the number of individual clouds in
a simulation period, i.e., one day here. The cloud size sc describes the duration of an
individual cloud, and it is measured in terms of lost energy, i.e., the cloud clips the PV
power plant’s output to zero until the energy amount sc is lost. The interpretable feature
morning mist mm describes a reduced PV power production in the early hours of the
simulated day, and we implement it by reducing the solar radiation to zero during the mm
time steps following the first time avPV(t) > 0. The storable PV surplus sPV measures the
energy available for storage. It is defined as the sum over all modeled time steps t ∈ T of
the positive difference between the available PV supply avPV(t) and electricity demand
De(t), i.e.,

sPV =
T

∑
t=0

max(0, avPV(t)− De(t)) + ncsc, (2)

ncsc accounts for the lost energy from clouds, and its addition keeps sPV independent from
the interpretable cloud features.

Table 1a shows the input space X ⊆ Rd of the exemplary building energy system
model. Note that the specific battery investment costs and specific heat storage investment
costs, which are part of Z , also belong to the input space X and thus do not need to be
mapped. A mapping hx̄ : Z → X is required for the four remaining features, i.e., number of
clouds, size of clouds, morning mist, and storable PV surplus, targeting the solar radiation
availability time series avPV ∈ X . First, hx̄ takes the solar radiation time series and finds a
multiplicator for which ∑T

t=0 max(0, avPV(t)− De(t)) is equal to the desired storable PV
surplus. Then, the starting time step for each one of the nc clouds is calculated. Starting
points can be calculated by assuming clouds to be distributed at equal distances from one
another or uniformly at randomly selected hours where avPV(t) > 0. In our experiments,
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clouds either have a fixed sizeor each cloud has its size determined based on a Gaussian
distribution with its mean equal to the interpretable feature and a fixed variance of 0.1 kWh.
Mapping the clouds to the solar radiation availability avPV affects the storable PV surplus
sPV . Hence, we calculate the difference of the sPV after the mapping to the desired sPV and
distribute the difference equally to all time steps of avPV where avPV(t) > 0.

Table 1. (a): Inputs of the exemplary building energy system. Time-dependent parameters are vectors
with entries for every modeled time step. This model needs a total of 2T + 4 values as its input,
with T as the number of time steps. (b): The six interpretable features for explaining the cost-optimal
battery capacity of the exemplary building energy system.

(a)

Input Parameters Symbol Unit Number of
Values

Specific battery investment costs pb e/kWh 1
Solar radiation availability avPV(t) kWh T

Demand time series De(t) kWh T
Grid electricity price pe e/kWh 1

Specific heat storage investment costs pHS e/kWh 1
Heat pump, coefficient of performance COP - 1

(b)

Interpretable Feature Symbol Unit Number of
Values

specific battery investment costs pb e/kWh 1
cloud size sc kWh 1

number of fleecy clouds nc - 1
morning mist mm - 1

storable PV surplus sPV kWh 1
Specific heat storage investment costs pHS e/kWh 1

4.2. ESD Model Implementation

We solve the exemplary building energy system model for a single day with a time-
step duration of 10 min, resulting in 144 time steps. To prevent unnatural storage depletion
at the end of the optimization horizon, we define the storage levels of t = 0 and t = 144 to
be equal. We assume a lifetime of 10 years for all technical components such as the battery
and distribute their investment costs evenly over their lifetime. A constant grid electricity
price pe of 0.25 e/kWh is assumed.

An example of a solar radiation availability time series created by our mapping and the
resulting cost-optimal battery scheduling is shown in Figure 3. Three clouds of randomized
size and distribution are added to the original solar radiation availability time series. The
solar radiation availability data correspond to the historical data of Darmstadt, Germany,
obtained at [21] for 2019. Random days within May, June, and July are selected for our
mapping. We assume a constant electricity demand of 1 kW for the electricity-only model.
For model runs with randomized cloud distribution and size, we solve the ESD model
fifteen times and take the average of the results.

Standardized load profiles for German households [22,23] are used for the heat and
electricity demands for the full model in Section 4.4. The time series based on those profiles
are scaled to have a total electricity demand equal to the electricity-only model (24 kWh
per day). The total heat demand is twice as large as the electricity demand (48 kWh per
day). We assume the heat pump to have a coefficient of performance of 3. The heat pump’s
power rating is large enough to cover the heat demand in every time step, making the
heat storage optional from a pure heat balancing perspective. We use the mapping hx̄ as
described above with randomly distributed clouds and random cloud size.
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Figure 3. Exemplary solar radiation time series (yellow line) created by the mapping for randomly
sized and randomly distributed clouds. The resulting cost-optimal battery storage levels (red line),
which provide for the constant electricity demand (blue line), are shown.

To deal with the scale heterogeneity of our interpretable features, we normalize them
before applying the regression in Equation (1). To normalize the input and interpretable
feature vectors, we group their entries. One group contains, for example, all entries in xi
that describe the solar radiation availability time series. We subtract the smallest value
from each group member and divide by the largest difference within the group. We define
x̃i, z̃i as the normalized versions of xi and zi respectively, and ỹi as the normalized output
values to be explained from the ESD model f (xi), in this case, the cost-optimal battery
capacities. We then rewrite Equation (1) to create the explanation for the building energy
system as

arg min
g∈G

I

∑
i=1

πx̄(x̃i)(ỹi − g(z̃i))
2 + Ω(g). (3)

For the distance metric πx̄(xi), we use an exponential kernel with a radial basis function on
the normalized inputs, i.e.,

πx̄(x̃i) = exp
(
‖x̃i − ˜̄x‖2

2σ2

)
, (4)

with ˜̄x as the normalized input vector at the POI. The vector σ is the standard deviation of
all normalized input variations in the experiment.

For the complexity measurement Ω(g), we chose the number of non-zero weights
of g, allowing only one weight to be non-zero. For the implementation, we choose
Ω(g) = α‖wz‖1, with wz as the weights vector of the linear function g, i.e., g(z̃i) = wzz̃i.
The parameter α is increased until wz has only one non-zero entry. This LASSO path
procedure is described in [24]. We will refer to the feature corresponding to this non-zero
entry as the most relevant interpretable feature.

The python implementation of our experiments can be found on https://github.com/
pe0nd/LIME_for_ESD (accessed on 20 January 2023).

4.3. Explanation Results: Electricity Only

We first omit the heat sector of the exemplary building energy system to facilitate the
manual validation of the results. For our exemplary building energy system of a building
with a PV power plant, we create an explanation for the cost-optimal battery capacity for
two points of interest by comparing the most relevant interpretable features determined by
our approach.

The first POI x̄ has low specific battery investment costs pb of 600 e/kWh, a storable
PV surplus of 5 kWh, 5 clouds, and a cloud size of 0.5 kWh. We refer to this POI as

https://github.com/pe0nd/LIME_for_ESD
https://github.com/pe0nd/LIME_for_ESD
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cheap battery. The input vector for the second POI is identical except for a higher specific
battery investment cost of 1200 e/kWh. We refer to this second POI as expensive battery.

Table 2 shows that for cheap battery, the last feature that remains non-zero is the cloud
size sc; i.e., sc is the most relevant interpretable feature for explaining the cost-optimal
battery capacity at this POI. Applying our approach to the expensive battery results in the
PV surplus sPV being the most relevant interpretable feature affecting the cost-optimal
battery capacity.

Table 2. Output of the proposed methodology for the electricity-only ESD model. The most relevant
interpretable features for the cost-optimal battery capacity using different cloud mappings hx̄ are
shown. Interpretable features are the cloud size sc, the number of clouds nc, the storable PV surplus
sPV , specific battery investment costs pb, and morning mist mm.

Point of Interest x̄
Equal Cloud Dist. Random Cloud Dist.

Equal sc Random sc Equal sc Random sc

cheap battery sPV sPV sPV sPV
expensive battery sc sc sc sc

Verifying why the different most relevant interpretable features at each POI is a good
explanation considering the different uses for battery storage. First, suppose that the specific
costs of battery capacity are high. In this case, building a small battery is cost-optimal to
mitigate the fluctuations in electricity production caused by the clouds during the day.
The optimal battery capacity for this purpose corresponds to the energy lost by a single
cloud. In contrast, if the specific battery investment costs are low compared to the electricity
prices, it is cost-optimal to build a large battery. This battery stores electric energy for
nighttime, which otherwise would be curtailed from the PV power plant production during
the daytime. In this case, the storable PV surplus is the dominant feature for determining
the battery capacity.

Table 2 also shows the most relevant interpretable features at the points of interest for
different implementations of the mapping function hx̄, i.e., fixed or random cloud size and
equally or randomly distributed clouds. The most relevant interpretable features are not
affected by the different mapping functions. Hence, the explanations for these points of
interest are robust against different implementations of the mapping function.

Figure 4 compares our proposed methodology and traditional sensitivity analysis. To
this end, we provide in Figure 4a the effect of changes in the solar radiation availability
time series avPV on the cost-optimal battery capacity Cb for the POI cheap battery. The
top plot shows the sensitivity analysis results for a fixed demand and a deterministic
feature mapping with evenly distributed clouds of fixed size. The bottom plot displays the
sensitivity results for a standardized load curve, namely demand and randomized cloud
placement and size. For the deterministic scenario, the period between 7:40 and 16:00 turns
out to be crucial for determining the optimal battery capacity. This is plausible since it is
when the PV production exceeds the demand, resulting in surplus PV energy. However,
this explanation is not easily deduced from the sensitivity results in the randomized setting.
On the other hand, the proposed methodology provides clear and interpretable results as
shown in Figure 4b. The fitted linear model provides weights for the interpretable features
that are better understandable for both experts and non-experts.
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(a) (b)

Figure 4. Comparison of sensitivity analysis and the proposed methodology for explaining the
cost-optimal battery capacity Cb at the POI cheap battery. (a): Sensitivity of Cb towards changes in
solar radiation availability avPV . Red values indicate a positive sensitivity, and blue values indicate
a negative sensitivity. Top: deterministic cloud mapping and constant demand. Bottom: cloud
mapping with random cloud sizes sc, random cloud distribution, and a standardized load profile.
(b): Weights of the fitted linear model. Green implies positive influence, and red implies negative
influence. The features are ordered by absolute weight magnitude on the right.

4.4. Explanation Results: Including the Heat Sector

We now examine the exemplary building energy system, including the heat sector,
i.e., with a heat demand, a heat storage, and a heat pump, and explain the cost-optimal
battery capacity Cb and the cost-optimal heat storage capacity CHS. The heat storage can
offer temporal flexibility to the system if the heat pump converts excess electricity from the
PV power plant into heat. This additional flexibility might allow part of the battery storage
to be replaced by heat storage.

We investigate four different points of interest x̄ to check if the additional flexibility
provided by the heat storage changes the explanation for the cost-optimal battery capacity.
All points of interest map to interpretable features with a storable PV surplus of 9 kWh,
5 clouds, and a mean cloud size of 0.5 kWh. We consider a larger storable PV surplus
compared to Section 4.3 since the additional heat demand has to be provided by the heat
pump, which increases the electricity demand. The examined points of interest differ in
their specific battery investment costs pb and specific heat storage investment costs pHS.
We refer to the points of interest by their specific investment costs for heat storage and the
battery. The specific heat storage investment costs are either cheap (pHS = 50 e/kWh) or
expensive (pHS = 200 e/kWh). Specific battery investment costs are cheap (pb = 600 e/kWh)
or expensive (pb = 1200 e/kWh).

The most relevant interpretable features determined by our methodology for all POIs
are shown in Table 3. The storable PV surplus is the most relevant feature for explaining
the cost-optimal heat storage capacity, no matter the specific battery investment cost if heat
storage is cheap. The cost-optimal Cb for the points of interest with cheap heat storage is mostly
explained by the storable PV surplus sPV or the cloud size sc, but not the specific heat-
storage investment costs pHS. One may anticipate that the specific heat storage investment
costs would be the most relevant interpretable feature, as incorporating heat storage with
heat pumps presents a more cost-effective way of utilizing electric energy generated by
PV production, which could potentially replace battery storage in the exemplary building
energy system. However, it is important to note that heat storage is not a complete substitute
for battery storage in the exemplary building energy system, as heat cannot be converted
back into electricity. As a result, battery storage cannot be fully replaced by heat storage.
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Table 3. The most relevant interpretable features for cost-optimal battery capacity Cb and heat storage
capacity CHS. Interpretable features are the cloud size sc, the number of clouds nc, the storable
PV surplus sPV , specific battery investment costs pb, morning mist mm, and specific heat storage
investment costs pHS.

Point of Interest x̄ Cb CHS

cheap heat storage, cheap battery sPV sPV
cheap heat storage, expensive battery sc sPV
expensive heat storage, cheap battery pHS pHS
expensive heat storage, expensive battery sc sPV

For POI expensive battery and expensive heat storage, Table 3 shows that the cloud size
sc is the most relevant interpretable feature for Cb. The storable PV surplus SPV is the
most relevant interpretable feature for CHS. At this POI, expensive heat storage is still
relatively cheap compared to expensive battery storage. Hence it will be used to store most
of the storable PV surplus. Keeping a small battery capacity is cost-optimal for storing
electricity fluctuations caused by clouds. The POI expensive heat storage, cheap battery has
the specific heat storage investment costs pHS as the most relevant interpretable feature for
explaining Cb and CHS. At this POI, the specific investment costs of heat storage capacity
and battery capacity are close to balance; i.e., a change in relative investment costs shifts
between battery and heat storage.

These examples show that the behavior of even this simple energy system model is
not always intuitive. However, our method is able to create explanations in the form of the
most relevant interpretable features for Cb and CHS.

5. Experimental Validation: Country-Wide Model

In this section, we employ our approach to create an explanation for different German
energy system transition paths towards low-carbon-emitting technologies, e.g., heat pumps
and battery electric vehicles (BEVs). Section 5.1 introduces the ESD model used.Next, we
define interpretable features in Section 5.2. Finally, we show the explanation created in
Section 5.3.

5.1. ESD Model Implementation

We use the German energy system model presented in [5]. The model is based on
Germany’s 2016 production capacities and energy demands as an initial condition and
takes the heat, electricity, and transport sector into account. The objective function is cost
minimization in a time horizon until 2050. We only simulate even years using a sparse time
step selection of 8 weeks per simulated year to reduce computation time. Due to linearly
decreasing CO2 limits in all feasible solutions, the initial energy system has to change.

The ESD model has the cost-optimal operation and extension plan as its output. We
refer to this cost-optimal extension plan of a technology as its transition path. For comparing
different transition paths by a single value, we explain the aggregated use of a technology
cp by its energetic use as modeled years scp = ∑y ∑t Ecp(t, y), with Ecp(t, y) as the energy
output and t as time and y as years. Note that a technology that is deployed earlier will
typically provide more total energy than one that is deployed later, but this could be offset
if the later-deployed technology is adopted at a faster rate.

5.2. Interpretable Features

We use three interpretable features: the fossil fuel price, the correlation of PV availabil-
ity with heat demand, and the correlation of wind availability with heat demand.

The German ESD model uses five fuels: coal, gas, oil, lignite, and biomass. We define
a change in fossil fuel price to be the change in prices of all fuels, except biomass; i.e., for
a 10% increase in fossil fuel price, the costs of coal, gas, oil, and lignite increase by 10%.
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Hence, we define the mapping hx̄
f uel : R1 → R4Y with Y as the number of years of the

optimization horizon since prices are fixed within a year in this model.
We define hx̄

wind and hx̄
PV to map the correlation to the input availability time series of

wind and PV, i.e., R1 → RT with T being the set of time steps within a modeled year. The
mapping takes the availability time series of wind (or PV) at the POI x̄ and alters them to
increase or decrease their correlation towards the heat demand without changing their full
load hours. First, we determine the correlation of the wind (or PV) availability time series
to the heat demand. If the correlation is below the desired level, the time step with the
highest heat demand is determined, as well as the time steps with the highest wind (or PV)
availability. For the availability time series, the values of those two time steps are switched.
Since the highest wind (or PV) availability is now in the same time step as the highest heat
demand, the correlation of the two time series increases slightly. We continue this sorting
process with the next highest values until the desired correlation, and thus the simultaneity
of demand and production availability is reached. If the correlation of an availability time
series and the heat demand is above the desired correlation, the lowest heat demand time
series is used for the value swapping; i.e., the highest wind (or PV) availability will appear
when the heat demand is at its minimum.

The correlation of the wind’s onshore and offshore availability time series with the
heat demand at x̄ is about 0.2 for both of them. For PV availability at x̄, the correlation
with heat demand is about −0.33. We create two variations of the time series each for wind
onshore, wind offshore, and PV production availability. The first set of time series created
has its correlation increased by 0.2, and the second set of time series has its correlation
decreased by 0.2. For the distance metric, we use an exponential kernel as in Equation (4)
on the availability time series and the price vector.

5.3. Explanation Results: Energy Transition Paths

Figure 5 shows the cost-optimal heat provision by heat pumps, the cost-optimal
transport provided by BEVs, and the cost-optimal electricity production from wind power
for different input variations.

Figure 5. Yearly energy output of different technologies for different interpretable input variations
in the German energy system model. Each line is a different variation with the color encoding the
correlation of the PV or wind availability time series to the heat demand and the line style encoding
the fossil fuel price. On the left is heat output by heat pumps. In the middle is propulsion output from
battery electric vehicles. On the right is electricity output of wind onshore and offshore power plants.

The most relevant interpretable feature for the transition speed towards heat pumps
is fossil fuel prices. The importance of fossil fuel prices can be seen in the left graph of
Figure 5. For variations with expensive fossil fuel prices, heat pumps are used earlier and
to a greater extent than for cheap fossil fuel prices.
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This explanation makes sense when considering the available technologies for pro-
viding heat within the model. Heat is produced by burning biomass, gas, or oil, or by
using electricity to power resistive heaters or heat pumps. Resistive heaters have lower
investment costs but are more expensive in the long term compared to heat pumps be-
cause of their lower coefficient of performance. Therefore, when fossil fuel prices rise,
the cost-optimal solution to meet the heat demand is heat pumps. Additionally, electricity
produced by wind power plants can be used more efficiently by heat pumps when wind
power production is better aligned with heat demand; however, this effect is weaker than
the fossil fuel price change.

The transportation energy provided by BEV for different input variations is shown
in the center graph of Figure 5. The most relevant interpretable feature for explaining
the transition towards BEVs is the correlation between wind power availability and heat
demand. If the wind power availability is less correlated with the heat demand, a transition
towards BEV happens earlier. If the wind power availability is correlated more with the
heat demand, the transition happens in later years.

It may seem counterintuitive that less simultaneity between wind power production
and heat demand would impact the transport sector, but it makes sense. When wind
power, the cheapest source of renewable energy in this model, is less able to provide the
required heat, more heat is generated by burning fossil fuels. This leads to an increase in
CO2 emissions. The additional CO2 emissions needed for heating require savings in other
sectors, as emissions must be kept below their limit. This explains an earlier transition to
battery-electric vehicles (BEVs) away from combustion vehicles, as the transport sector is
the cheapest option for reducing emissions in this setup. Furthermore, the right graph of
Figure 5 shows that large capacities of wind power plants are built in later years of the
model, even when the simultaneity of wind availability with heat demand is low. This
indicates the need for CO2 reduction.

6. Discussion

The proposed method of creating explanations using LIME-based methodology offers
several benefits compared to sensitivity analysis, which is commonly used to explain
optimization results. First, the number of explaining factors is significantly reduced.
This is beneficial for discussion with experts and non-experts. Second, the sensitivity
results for each individual input dimension make it non-trivial to extract the underlying
determining reasons. For example, considering the setup in Figure 4, the color map derived
from sensitivity analysis could hardly encode factors such as cloud size in an obvious
fashion. The third argument concerns computation times and ease of implementation.
While sensitivity analysis for linear programs can be made efficient by exploiting the KKT
optimality conditions [25], this is not implemented or easily accessible in many existing
ESD frameworks. If sensitivities for high-dimensional inputs then have to be computed
externally via numeric differentiation, the effort quickly becomes infeasible. In contrast,
for the proposed methodology, the effort can be adapted by changing the number of selected
interpretable features and the number of parameter variations used.

When transferring the concept of LIME to energy systems, two challenges arise that
have to be considered by domain experts: defining interpretable features and choosing the
proper distance metric between different input variations. The definition of interpretable
features is challenging since they have to be independent of one another. Dependent inter-
pretable features will also be related in an explanation. For example, consider the exemplary
building energy system from Section 4.3 and the POI with low battery investment costs.
Instead of the storable PV surplus, we use the total energy availability ∑T

t=0 avPV(t) of the
PV power plant as an interpretable feature. The explanation for the cost-optimal battery
capacity will equally depend on cloud size, the number of clouds, and the total energy
output availability since the energy output is affected by the number of clouds times the
cloud size.
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The distance metric weights the changes in the interpretable features based on the
changes in the actual model inputs. For machine learning classifiers, model inputs are
homogeneous; e.g., all inputs of an image classifier are pixels. The distance between
interpretable variations can be determined by summing up the distance between individual
input changes. However, finding an appropriate distance metric remains a challenge,
as noted in [26]. For energy system models, the inputs are heterogeneous, e.g., cost
parameters that are part of the model’s objective function or availability time series in
the model’s constraints. Interpretable features that affect multiple constraints, such as
by altering an availability time series, are considered more distant than those that affect
only a single parameter of the objective because their input distances are simply summed.
However, it should be noted that the objective often has a greater impact on the model’s
outcome than changes in the constraints, which is not considered by the distance metric.
Investigating the effect of different distance metrics on the stability of the explanation could
be an interesting area for future research.

7. Conclusions

In this paper, we propose a methodology based on LIME [15] that can be applied to
bottom-up ESD models, creating explanations beyond the scope of sensitivity analysis. We
applied the idea of an interpretable feature space from LIME to our approach. We mapped
interpretable features to the model’s inputs and allowed explanations based on those
features instead of the model’s inputs. The proposed methodology automatically selects
the interpretable features that are most important for an explanation. The complexity
of an explanation, i.e., the number of relevant interpretable features, is a parameter of
choice, allowing one to choose an appropriate degree of explanation complexity suited
for different target groups. Overall, the use of interpretable features makes explanations
more straightforward to understand by non-experts and, therefore, could support them in
making decisions.

The shown methodology faces some challenges that might be addressed in future
works. Those challenges are the mapping of interpretable features to the heterogeneous
inputs of the ESD models and finding the appropriate distance metric for input variations.
Additionally, the idea behind LIME’s interpretable abstraction layer can be applied to a
range of other contexts that give deeper insights into feature influence, such as partial
dependency plots [26].
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Abbreviations
The following abbreviations are used in this manuscript:

BEV battery electric vehicle
ESD energy system design
LIME local interpretable model-agnostic explanation
PV photo-voltaic
POI point of interest

Appendix A

In this supplementary section, we present the technical details of the building energy
system model used as a running example in the main paper. Below are the equations for
the simple PV house energy system. The equations are a modified version of the equations
from [7]. Blue variables or equations are only present if the model considers the heat sector.

The objective of the energy system is to minimize system costs. The system costs
consist of operational costs for buying energy Ee and investment costs for the battery
capacity Cb and heat storage capacity CHS, respectively, at price πe, πb, and πHS.

min
E,Cap

(
T

∑
t=0

πe × Ee(t)) + πb × Cb+πHS × CHS. (A1)

Note that the PV and heat pump capacity is assumed to be fixed and thus is not part
of the objective function.

A set of constraints restricts the objective. The first constraint is the electric power
balance of the system,

EPV(t) + Eout
b (t) + Ee(t) = De(t) + Ein

b (t)+Ein
HP(t), ∀t. (A2)

On the left side of the equation is the energy provided by the PV power plant EPV(t),
the energy taken from the battery storage Eout

b (t), and the energy bought from the grid
Ee(t). On the right side is the energy demand De(t), the energy put into the battery Ein

b (t)
and the electricity consumption of the heat pump Ein

HP(t). Both sides of the equation must
be balanced for every time step t to ensure that the electricity supply equals the demand.
Like the electric power balance, a heat power balance constraint is defined for every time
step t if the energy system considers the heat sector.

Eout
HP(t) + Eout

HS(t) = Dh(t) + Ein
HS(t), ∀t (A3)

with Eout
HP(t) as the heat output of the heat pump, Eout

HS(t) as the heat taken from the heat
storage, Dh(t) as the heat demand, and Ein

HS(t) as the heat put into the heat storage.
The battery storage level is defined by

ES
b (t) = ES

b (t− 1) + lossb × Ein
b (t)− Eout

b (t), ∀t (A4)

where the current energy stored in the battery ES
b (t) is given by the energy in the previous

time step ES
b (t− 1) reduced by the energy taken from the battery Eout

b (t) and increased by
the energy added in the current time step Ein

b (t). A power inverter loss is considered for
the battery storage by applying a loss lossb to the energy stored in the battery. We chose
lossb to be 0.95 to represent an inverter loss of 5%. The upper and lower limits of the battery
level are defined as

0 ≤ ES
b (t) ≤ CS

b , ∀t. (A5)

For heat storage, the same logic is applied to the battery.

ES
HS(t) = lossHS × ES

HS(t− 1) + Ein
HS(t)− Eout

HS(t), ∀t (A6)
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the current Energy stored in the heat storage ES
HS(t) is given by the energy stored at the

previous time step ES
HS(t− 1) decreased by the heat taken from the storage Eout

HS(t) and
increased by the energy added to the storage Ein

HS(t). It is assumed that part of the heat
stored is lost every time step, which is described by lossHS. We chose lossHS to represent a
heat loss of 1% per hour of the energy stored. The heat storage is restricted by its capacity
CS

HS and an additional bound UBHS on the maximum storage size that can be installed.

0 ≤ ES
HS(t) ≤ CS

HS ≤ UBHS, ∀t (A7)

We chose UBheat_storage to be 46.6 kWh or 1 m3 of water with a maximum heat difference
of 40 °K. In order to prevent storage depletion of the battery and the heat storage at the
end of the optimized time interval, we define t = T as the time step prior to t = 0 in
Equations (A4) and (A6).

In this energy system, the PV capacity is an input parameter, not part of the opti-
mization. Hence, the PV energy production EPV(t) can be described with the time series
avPV(t). The time series avPV(t) limits the possible energy output at each time step, i.e., a
percentage of output at each time step times the PV capacity.

0 ≤ EPV(t) ≤ avPV(t), ∀t (A8)

The limits of the heat pump are defined as

0 ≤ Eout
HP(t) ≤ COP× Ein

HP(t) ≤ 2× Dmax
h , ∀t (A9)

where Eout
HP(t) is the heat output and Ein

HP(t) is the electricity consumption of the heat
pump. The heat output of the heat pump is bound by the electricity consumption times
the coefficient of performance COP of the pump. We chose a COP of 3 in our experiments.
Furthermore, we assume that the heat pump’s power is limited by twice the highest heat
demand value Dmax

h . This limitation was made to prevent production spikes since there are
no costs for the heat pump’s capacity.

Finally, selling energy to the grid is not considered in this model. Hence, the energy
bought is limited to be positive by the following equation.

0 ≤ Ebuy(t), ∀t (A10)
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