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Abstract: A non-Darcy flow with moving boundary conditions in a low-permeability reservoir was
solved using the homotopy analysis method (HAM), which was converted into a fixed-boundary
mathematical model via similarity transformation. Approximate analytical solutions based on
the HAM are guaranteed to be more accurate than exact analytical solutions, with relative errors
between 0.0089% and 2.64%. When λ = 0, the pressure drop of the Darcy seepage model could
be instantaneously transmitted to infinity. When λ > 0, the pressure drop curve of the non-Darcy
seepage model exhibited the characteristics of tight support, which was clearly different from the
Darcy seepage model’s formation pressure distribution curve. According to the results of the HAM, a
moving boundary is more influenced by threshold pressure gradients with a longer time. When the
threshold pressure gradients were smaller, the moving boundaries move more quickly and are more
sensitive to external influences. One-dimensional, low-permeability porous media with a non-Darcy
flow with moving boundary conditions can be reduced to a Darcy seepage model if the threshold
pressure gradient values tend to zero.

Keywords: low permeability; non-Darcy flow; homotopy analysis method (HAM); moving boundary

1. Introduction

With the reduction in traditional oil resources, global oil companies have increasingly
focused on developing heavy oil reservoirs and tight reservoirs (such as shale reservoirs).
As a result of the boundary layer effects and fluid dynamics, theories [1–5] and experi-
ments [6–8] have shown that there are threshold pressure gradients [8] when a fluid flows
through low-permeability porous media.

Studies of non-Darcy seepage models in porous media considering threshold pressure
gradients [9–16] have many practical applications in the development of low-permeability
oil and gas reservoirs, hydraulic fracturing proppant suspensions, and polymer-enhanced
oil recovery.The existence conditions of threshold pressure gradients of gas flow in tight gas
reservoirs with water was investigated experimentally by Zhu et al. [9]. Using laboratory
tests, the threshold pressure gradient, water saturation, and absolute permeability were
determined, and the threshold pressure gradient was proven. With the law of conserva-
tion of mass and momentum, Yao et al. [10] developed a comprehensive mathematical
model of gas flow and adsorption in adsorption beds. An analysis of the typical cycle
process of axial flow rapid pressure swing adsorption was performed numerically. A new
physics-based non-Darcy equation for low-velocity flow was presented by Zhao et al. [11].
A modified Buckingham-Rehner equation was used in order to derive the new equa-
tion strictly. Darcy equations are modified by using boundary layer parameters and
non-Darcy coefficients. Wei et al. [12] proposed A-B Swartzendruber model connecting
non-Darcy flows in porous media at different scales. Laplace transform was used to
obtain the analytical solution, and provided a unified description of non-Darcy flow in
low-permeability and high- permeability porous media. A one-dimensional non-Darcy
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flow originating from linear sources was studied by Zhou et al. [13] by taking into account
the bilinear relationship between fluid velocity and pressure gradient. A comparison
of non-Darcy flow with threshold pressure gradient and non-Darcy flow with bilinear
relationship was conducted, and the error caused by neglecting permeability under low
pressure gradients was investigated. The Izbash equation was used to construct a radial
two-zone composite non-Darcy flow model by Nie et al. [14]. For simulating Darcy flow,
the outer region was considered as a homogeneous medium, whereas the inner region
was considered as a dual porous medium. By combining Laplace transform, linearization,
and Stehfest numerical inversion, this model could be used to study pressure transient
behavior of non-Darcy flows in homogeneous systems. Moghimi et al. [15] found the
porosity of the foam structure and the number of pores per inch influence non-Darcy
flow initiation. A study of the Forchheimer coefficient and permeability value of the
system was also conducted. Despite low Reynolds numbers, non-Darcy flow was ob-
served due to the complexity of pore flow mode. The impact of interlayer interfaces on
Darcy and non-Darcy flow characteristics in layered porous media was investigated by
Zhang et al. [16] using pore scale flow data. Darcy permeability of layers of porous media
could be estimated more accurately using the effective permeability factoring in interface ef-
fect. The moving boundary models of non-Darcy flows in low-permeability reservoirs have
gained a considerable amount of attention in recent years [17–26]. At present, the research
methods for such moving boundary problems mainly include analytical methods [17–21]
and numerical methods [22–26]. In a comprehensive study of non-Darcy single-phase
flows, Chen et al. [17] examined the effects of threshold pressure gradients on the distri-
bution of pressure at the free boundaries. By using the similarity transformation method
and the finite difference method, non-Darcy seepage models in porous media with low
permeability were numerically and analytically solved by Liu et al. [18–21,24–26]. To solve
the problem of low permeability with a moving boundary, Guo et al. [22] produced a non-
dimensional seepage control equation, the initial conditions, and the boundary conditions
using a non-grid numerical simulation. Cheng et al. [23] developed numerical models to
test low-velocity non-Darcy seepage in micro-compressors with threshold pressure gradi-
ents and moving boundaries, discretized the time and space variables, and obtained the
numerical solutions. Permeability was numerically simulated using non-Darcy models by
Xu et al. [27]. In the new calculation of the relative permeability of oil and water, the value
was slightly increased compared with that in Darcy seepage models.

There are many non-linear problems in the mechanics of petroleum engineering. It is
of great scientific value to obtain approximate analytical solutions to non-linear equations.
Traditional analytic approximate methods cannot provide effective solutions for all the
physical parameters, which means that, in essence, they are only applicable to weak
non-linear problems. The homotopy analysis method (HAM) is widely used to solve
strong non-linear problems in many different fields [28–42]. Unlike the perturbation
method, the results of HAM do not depend on small or large physical parameters. A
further advantage is that the homotopy analysis method (HAM) allows for a choice in the
form of the expression for higher-order approximate series solutions. Simple control can
also be obtained over the convergence of a series solution using the homotopy analysis
method (HAM).

The consideration of threshold pressure gradients in non-Darcy models of porous
media is a moving boundary problem. The exact analytical solutions of moving boundary
models are difficult to obtain unless the mathematical model is transformed equivalently
by similarity variables. For flows in porous media with threshold pressure gradients, there
are few studies on the exact analytical solutions of correlative moving boundary models. It
is also more complicated to solve this type of problem using numerical methods, fractal
modeling, and pore scale network modeling. In this study, by applying the similarity
transformation [43] widely used in heat transfer systems to solve classical Stefan moving
boundary problems [44], we present approximate analytical solutions based on the ho-
motopy analysis method for one-dimensional non-Darcy flow in porous media with low
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permeability. In addition to the introduction in Section 1, Section 2 contains a mathematical
description of the problem and a derivative using the homotopy analysis method (HAM).
Section 3 includes the results and discussion, covering graphic illustrations and tables.
Finally, Section 4 contains the conclusions, highlighting the main findings of this work.

2. Mathematical Models and Methods

The research object of this study was to investigate non-Darcy models in one-dimensional,
low-permeability porous media with threshold pressure gradients [16]. It was assumed
that: (1) the flow had one phase, and was slightly compressible and not influenced by
gravity, considering a low-pressure gradient for their formation; and (2) the porous media
were homogeneous, isotropic, isothermal, and slightly compressible.

The state equation for the density of a fluid and the porosity of rock [16] is

ρ = ρie
−C f (pi−p), φ = φie−Cφ(pi−p), (1)

where ρ is the density of the fluid, ρi is the initial density of the fluid, p is the formation
pressure, pi is the original formation pressure, φ is the porosity, φi is the initial porosity, C f
is the fluid compression coefficient, and Cφ is the pore compression coefficient.

When the threshold pressure gradient is taken into account, the non-Darcy flow
equation for porous media with low permeability is

v =



0, 0 ≤
∣∣∣∣∂p
∂x

∣∣∣∣ ≤ λ

− k
µ

∂p
∂x

1− λ∣∣∣∣∂p
∂x

∣∣∣∣
 ,

∣∣∣∣∂p
∂x

∣∣∣∣ > λ
, (2)

where v is the seepage velocity, k is the permeability, µ is the fluid viscosity, x is the distance,
and λ is the threshold pressure gradient.

There is a continuity equation for seepage flow in one-dimensional porous media,
which is

− ∂(ρv)
∂x

=
∂(ρφ)

∂t
, 0 ≤ x ≤ s

(
t
)
, (3)

where s is the moving boundary and t is time.
If we substitute Equations (1) and (2) into Equation (3), the governing equation is

deduced to be
∂2 p
∂x2 =

µφiCt

k
∂p
∂t

, 0 ≤ x ≤ s
(
t
)
, (4)

where the initial conditions, the internal boundary conditions under variable levels of
pressure, and the moving boundary conditions are, respectively,

s|t=0 = 0, p|t=0 = pi, (5)

p|x=0 = f
(
t
)
, (6)

p|x=s(t) = pi,
∂p
∂x

∣∣∣x=s(t) = λ, (7)

where Ct is the comprehensive compression coefficient and f represents the bottomhole
pressure function, which changes with time.

The moving boundary condition is the major difference between the non-Darcy seep-
age model and the classical Darcy seepage model, as shown in Figure 1. Therefore, seepage
only occurs in the range where the formation pressure gradients near the well exceed the
threshold pressure gradients. There is a smaller pressure gradient outside the moving
boundary than there is inside the moving boundary; consequently, seepage cannot occur,
and the formation pressure remains the same.
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To transform them into a general form, the dimensionless variables are defined as

x =
x

xw
, t =

k
µφiCtx2

w
t, δ =

s
xw

, p =
k

vwxwµ
(pi − p), λ =

kλ

vwµ
, (8)

where xw is the distance constant, x is the non-dimensional distance, t is the non-dimensional
time, δ is the non-dimensional moving boundary, p is the non-dimensional formation pres-
sure, and λ is the non-dimensional threshold pressure gradient.

Equations (4)–(7) can be changed into

∂2 p
∂x2 =

∂p
∂t

, 0 ≤ x ≤ δ(t), (9)

δ(0) = 0, p|t=0 = 0, p|x=0 = f (t), p|x=δ(t) = 0,
∂p
∂x

∣∣∣∣
x=δ(t)

= −λ, (10)

Equations (9) and (10) jointly constitute a dimensionless moving boundary for non-
Darcy flows in one-dimensional, low-permeability porous media considering a threshold
pressure gradient under variable levels of internal boundary pressure. As a result of
the moving boundary conditions, seepage will only occur when the formation pressure
gradient near the well exceeds the threshold pressure gradient. There will be no seepage
beyond the moving boundary, as the formation pressure gradient will be smaller than the
threshold pressure gradient. This is the difference between the non-Darcy seepage model
considering the influence of the threshold pressure gradient and the classical Darcy seepage
model [16].

The function of the variable internal boundary pressure and the similarity variables
are as follows:

f (t) = 2U
√

t, (11)

g =
p

2
√

t
, ξ =

x
2
√

t
, ε =

δ

2
√

t
. (12)

In fact, the production pressure is more difficult to control than the internal boundary
during the production process. Interpretation of the well test shows that the slope of the
double logarithmic curve of dimensionless pressure with respect to dimensionless time is
1/2. In addition, Equation (11) can also make the mathematical model maintain adequately
similar characteristics [16].

For a mathematical model with a non-dimensional moving boundary, Equations (9) and (10)
can be transformed into

1
2

∂2g
∂ξ2 + ξ

∂g
∂ξ
− g = 0, 0 ≤ ξ ≤ ε, (13)
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g|ξ=0 = U, g|ξ=ε = 0,
∂g
∂ξ

∣∣∣∣
ξ=ε

= −λ, (14)

where U is a dimensionless positive fitting parameter of the production pressure data.
Equations (13) and (14) set up a closed form of an ordinary differential equation that has
fixed boundary conditions, which can be analytically approximated more easily.

Under the conditions of variable internal boundary pressure, 1D non-Darcy flows
in low-permeability porous media considering the threshold pressure gradients have the
following exact analytical solutions:

p = U
[

2
√

te−
x2
4t +
√

πxerf
(

x
2
√

t

)
−
√

πxerf(ε)− x
eε2

ε

]
, x ∈ [0, δ], λ > 0, (15)

p = U
[

2
√

te−
x2
4t +
√

πxerf
(

x
2
√

t

)
−
√

πx
]

, x ∈ [0,+∞), λ = 0, (16)

These exact analytical solutions can verify the correction of approximate analytical solutions
based on the HAM.

As a result of the HAM approach, a non-linear problem can be reduced to an infinite
number of linear problems. Most boundary layer flows decay exponentially after infinity
from a physical perspective [45–54]. According to Equations (13) and (14), g(ξ) can be
expressed by {

εkξ i exp(−jβξ)
∣∣∣k ≥ 0, i ≥ 0, j ≥ 0

}
, (17)

g(ξ, ε) =
+∞

∑
k=0

+∞

∑
i=0

+∞

∑
j=0

ak
i,jε

kξ i exp(−jβξ), (18)

where ai,j is the constant coefficient to be determined using the HAM.
Using Equations (13) and (14), Equation (17) provides a convenient way to select the

initial guess

g0(ξ, ε) = U
(

1− ξ

ε

)
e−βξ , (19)

and the auxiliary linear operators

Lg =
∂2G
∂ξ2 − β2G, (20)

which have the following properties

Lg[C0 exp(−βξ) + C1 exp(βξ)] = 0, (21)

where C0, C1 are the integral coefficients.
The HAM deformation equation is constructed as follows

(1− q)Lg[G(ξ, ε; q)− g0(ξ, ε)] = qhgNg[G(ξ, ε; q)]

= qh
[

1
2

∂2G(ξ, ε; q)
∂ξ2 + ξ

∂G(ξ, ε; q)
∂ξ

− G(ξ, ε; q)
] (22)

with the boundary conditions

G(ξ, ε; q)|ξ=0 = U, G(ξ, ε; q)|ξ=ε =0,
∂G(ξ, ε; q)

∂ξ

∣∣∣∣
ξ=ε

= −λ, (23)
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where the embedding parameter is q ∈ [0, 1] and the non-linear operator based on the
governing Equation (13) is Ng. Through use of the HAM, approximate analytical solutions
can be fully determined:

G(ξ, ε; q)|q = 0 = g0(ξ, ε), G(ξ, ε; q)|q = 1 = g(ξ, ε). (24)

The embedded parameter q contributes to mapping. Namely, as q changes from 0
to 1, mapping ensures that G(ξ, ε; q) from the initial guess g0(ξ, ε) continues to converge
to the exact solution g(ξ, ε). According to Taylor’s theorem, G(ξ, ε; q) for power series
expansion is

G(ξ, ε; q) = G(ξ, ε; 0) +
+∞

∑
n=1

gn(ξ, ε)qn, (25)

where

gn(ξ, ε) =
1
n!

∂nG(ξ, ε; q)
∂qn

∣∣∣∣
q=0

. (26)

As mentioned above, there is considerable freedom of choice regarding the auxiliary
linear operator Lg, the initial solution g0(ξ, ε), and the convergent control parameters.
Assuming that all of them are correctly chosen so that the series of Equation (25) converges
at q = 1, the following series solutions can be obtained from Equation (23):

g(ξ, ε) = g0(ξ, ε) +
+∞

∑
n=1

gn(ξ, ε). (27)

Taking the series of Equation (25) and substituting it into the zero-order deforma-
tion equation (Equation (22)) and the boundary conditions of Equation (23), the m order
deformation equation is obtained by using the equal power coefficients of q

Lg[g(ξ, ε)− χmgm−1(ξ, ε)] = hRm(ξ, ε), m ≥ 1, (28)

for which the boundary conditions are

gm(ξ, ε)|ξ=0 = 0, gm(ξ, ε)|ξ=ε =0,
∂gm(ξ, ε)

∂ξ

∣∣∣∣
ξ=ε

= 0, (29)

where

Rm(ξ, ε) =
1
2

∂2gm−1

∂ξ2 +
m−1

∑
n=1

ξm−1−n
∂gm−1

∂ξ
− gm−1, (30)

χm =

{
1 m > 1
0 m = 0

. (31)

The right-hand side of Equation (22) is taken from Equation (13), and the left-hand side
is independent of ε. Therefore, Equation (22) is actually an ordinary differential equation
for ξ, so it is easy to solve. The particular solution of Equation (22) is as follows:

g∗m(ξ, ε) = χmgm−1(ξ, ε) + }
∫ ξ

0

{∫ ξ

0

[
e−βξ Rm(ξ, ε)eβsds

]
dξ

}
dξ. (32)

According to Equation (21), its general solution is

gm(ξ, ε) = g∗m(ξ, ε) + C0,m exp(−βξ) + C1,m exp(βξ). (33)

Two integral coefficients are determined by the boundary condition in Equation (29):

C0,m =
1
β

∂ f ∗m
∂ξ

, C1,m = 0. (34)
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Thus, there is an infinite number of linear ordinary differential equations based on
Equation (28) with coefficients that are constants derived from the original non-linear
partial differential equation (Equation (13)) with variable coefficients.

Obviously, it is much easier to solve a linear ordinary differential equation with con-
stant coefficients than it is to solve a non-linear partial differential equation with variable
coefficients. It is worth noting that, unlike perturbation methods, this kind of transforma-
tion does not require any small or large physical parameters. The auxiliary linear operator
of Equation (20) chosen in this problem had no obvious relationship with the linear term
∂2g/∂ξ2 in the original Equation (13). This is mainly because, unlike other analytic methods,
the homotopy analysis method (HAM) provides a great deal of freedom to choose the aux-
iliary linear operators appropriately. Without this freedom, there can be no transformation
of a non-linear partial differential equation such as Equation (13) with variable coefficients
into a linear ordinary differential equation (Equation (28)) with constant coefficients.

3. Results and Discussion

On the basis of the results of the HAM, non-dimensional moving boundary mathe-
matical models of non-Darcy flows in one-dimensional, low-permeability porous media,
considering threshold pressure gradients under varying production pressures and internal
boundary values, were solved approximately and analytically. It is noteworthy that the
series solutions of Equation (27) contained the convergence control parameter h and the
auxiliary parameter β. Although there is no physical significance, this can be used to ensure
the convergence of the series solution. Obviously, if the series solution of Equation (27)
is convergent, then the corresponding first derivative gξ(ξ, ε) should also be convergent.
For simplicity, consider the convergence of gξ(ξ, ε) series solutions. First, let h = −1 and
consider β to be an unknown variable. As shown in Figure 2a, it was found that for large
values of β, for example, when β ≥ 2, the series solutions of gξ(ξ, ε) converged to the same
value when ξ = 0, ε = 1. Now, gξ(ξ, ε) is only dependent on β and parameter h if ξ, ε are
fixed. Given β = 2, gξ(ξ, ε) is just a power series of h, and its convergence depends on h
when ξ = 0, ε = 1, as shown in Figure 2b.
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Therefore, β = 2 and h = −1 can be simply selected for HAM calculations, as shown
in Table 1. In order to verify results of the HAM, as shown in Table 1, comparisons of
the results for dimensionless formation pressure p(x, t) of 10th-order HAM with exact
analytical solutions were made for λ = 0, U = 0.5, t = 5000. As shown in Figure 2, a
comparison was made between the results for dimensionless formation pressure p(x, t)
of 10th-order HAM and the exact analytical solutions of the non-dimensional formation
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pressure distributions depending on the non-dimensional threshold pressure gradients
λ = 0, 0.2, 0.5, 0.8, 1 when U = 0.5, t = 5000. There was no significant difference between
the 10th-order HAM results and the exact analytical solutions, with relative errors between
0.0089% and 2.6023% when the dimensionless distance was taken into account. The results
of the 10th-order HAM matched the exact analytical solutions well, as shown in Table 1
and Figure 2. Therefore, the correctness and effectiveness of solving a moving boundary
model by using the homotopy analysis method (HAM) can be verified.

Table 1. Comparison of the results of dimensionless formation pressure p(x, t) of 10th-orderHAM
and the exact analytical solutions when λ = 0, U = 0.5, t = 5000.

x p(x, 5000) (Analytical) p(x, 5000) (10th-Order HAM) Relative Error (%)

0 70.7170 70.7107 0.0089
5 66.3679 66.3589 0.0135
10 62.2017 62.1848 0.0271
15 58.2113 58.1879 0.0402
20 54.3957 54.3672 0.0524
30 47.2822 47.2482 0.0719
50 35.0585 35.0304 0.0802

100 14.7673 14.7895 0.1501
150 5.1944 5.2046 0.1948
200 1.5049 1.4704 2.3490
250 0.3552 0.3463 2.5577
300 0.0677 0.0660 2.6023

As can be seen in Figure 3, the threshold pressure gradients have a profound influence
on one-dimensional porous media seepage models. When the non-dimensional threshold
pressure gradient was λ = 0, the pressure drop of the Darcy seepage model can be
instantaneously transmitted to infinity. When λ > 0, the formation pressure corresponding
to the non-zero non-dimensional threshold pressure gradient value was greater than zero
within the moving boundary, while the formation pressure outside the moving boundary
remained at zero. The pressure drop curve of the non-Darcy seepage model showed
the characteristics of tight support, which clearly showed a different distribution of the
formation pressures in contrast to the Darcy seepage model. Thus, the greater the non-
dimensional threshold pressure gradients, the greater the difference between the solutions
of Darcy’s seepage model and the moving boundary model.
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Figure 4a illustrates distributions of the dimensionless transient distance δ(t) com-
pared with the transient distance with moving boundaries depending on different values
of non-dimensional threshold pressure gradients (λ = 0.2, 0.5, 0.8, 1) when U = 0.5. As
λ rises from 0.2 to 1, the dimensionless transient distance δ(t) increases. The value of the
dimensionless transient distance δ(t) increases with an increase in the non-dimensional
time t. When the value of the dimensionless time t is small, the increase in the dimension-
less transient distance δ(t) is not obvious; however, when the value of the dimensionless
time t is large, the value of the dimensionless transient distance δ(t) will increase signif-
icantly. As shown in Figure 4b, the distribution of the dimensionless transient distance
δ(t) was compared with the transient distance of a moving boundary, depending on differ-
ent values of non-dimensional positive fitting parameters within the production pressure
data (U = 0.2, 0.5, 0.8, 1) when λ = 0.5. As U decreased from 1 to 0.2, the dimensionless
transient distance δ(t) increased. As the dimensionless time t increased, the value of the
dimensionless transient distance δ(t) increased. When the value of the dimensionless time
t was small, the increased in the value of the dimensionless transient distance δ(t) was not
obvious; however, when the value of the dimensionless time t was large, the value of the
dimensionless transient distance δ(t) increased significantly.
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when U = 0.5; (b) comparisons of the transient distance of moving boundaries depending on various
values of U when λ = 0.5.

As shown in Figure 5a, distributions of non-dimensional formation pressure p(x, t)
were compared with those of non-dimensional formation pressure depending on different
values of the non-dimensional positive fitting parameter within the production pressure
data (U = 0.2, 0.5, 0.8, 1) when λ = 0, t = 5000. As U increased from 0.2 to 1, the dimen-
sionless formation pressure p(x, t) increased. As the dimensionless distance x increased,
the value of the dimensionless formation pressure p(x, t) decreased. When the value of
the dimensionless distance x was small, the increase in the dimensionless formation pres-
sure p(x, t) was significant as U increased from 0.2 to 1; however, when the value of the
dimensionless distance x was large, the increase in the dimensionless formation pressure
p(x, t) was not obvious as U increased from 0.2 to 1. When λ = 0, the dimensionless
formation pressure p(x, t) tended to zero when the dimensionless distance x was limited to
infinity. Namely, the pressure drop in the Darcy seepage model could be instantaneously
transmitted to infinity. As shown in Figure 5b, the distributions of dimensionless forma-
tion pressure p(x, t) were compared with the distributions of non-dimensional formation
pressure depending on different values of the non-dimensional positive fitting parameter
within the production pressure data (U = 0.2, 0.5, 0.8, 1) when λ = 0.5, t = 5000. As
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U increased from 0.2 to 1, the dimensionless formation pressure p(x, t) increased. As
the dimensionless distance x increased, the value of the dimensionless formation pres-
sure p(x, t) decreased. When the non-dimensional distance x was small, the increase
in the non-dimensional formation pressure p(x, t) was significant as U increased from
0.2 to 1; however, when the non-dimensional distance x was large, the increase in the non-
dimensional formation pressure p(x, t) was not obvious as U increased from 0.2 to 1. When
the non-dimensional threshold pressure gradient was λ > 0, the pressure drop curves of
non-Darcy models showed the characteristics of tight support, which are different from
the formation pressure distribution curves corresponding to the Darcy seepage models.
Whether the moving boundary conditions are considered makes a great deal of difference
to the model’s calculation of the results. Therefore, the influence of moving boundaries
should be considered when studying unsteady flows in low-permeability porous media,
especially when threshold pressure gradients in tight porous media (such as tight oil, shale
oil, etc.) are large.
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4. Conclusions

The homotopy analysis method (HAM) was used to solve the approximate analytical
solutions of non-Darcy flows with moving boundary conditions of a low-permeability
reservoir, which were converted into a fixed boundary mathematical model via similarity
transformation. Compared with the exact analytical solutions, the accuracy of the analytical
approximate solutions based on the HAM is guaranteed. The numerical stability was high,
and the relative errors of the calculated case were between 0.0089% and 2.6023%. When
λ = 0, the pressure drop of Darcy seepage models can be instantaneously transmitted to
infinity. When λ > 0, the pressure drop curves of the non-Darcy seepage model showed the
characteristics of tight support, which made them obviously different from the distribution
curves of the formation pressure corresponding to the Darcy seepage models. Therefore,
the influence of a moving boundary should be considered when studying the unsteady
flows in low-permeability porous media, especially when the threshold pressure gradients
in tight porous media (such as tight oil, shale oil, etc.) are large. The results of HAM
showed that the greater the non-dimensional time, the greater the influence of the threshold
pressure gradients on the moving boundary. The smaller the threshold pressure gradients,
the faster the moving boundaries will move and the stronger the sensitivity affecting the
moving boundaries will be. When the threshold pressure gradient data tend to zero, one-
dimensional, low-permeability, porous media non-Darcy flows with moving boundary
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conditions can be reducible to Darcy seepage models. In future research, it is suggested that
the present research should be compared with real cases to determine the non-dimensional
positive fitting parameter of the production pressure data U and the non-dimensional
threshold pressure gradient λ.
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Nomenclature

p Formation pressure
pi Original formation pressure
C f Fluid compression coefficient
Cφ Pore compression coefficient
v Seepage velocity
k Permeability
x Distance
t Time
s Moving boundary
Ct Comprehensive compression coefficient
f Bottom-hole pressure function that changes with time
xw Distance constant
x Non-dimensional distance
t Non-dimensional time
δ Non-dimensional moving boundary
p Non-dimensional formation pressure
U Non-dimensional positive fitting parameter of production pressure data
Greek Symbols
ρ Fluid density
ρi Initial density of fluid
φ Porosity
φi Initial porosity
µ Fluid viscosity
λ Threshold pressure gradient
λ Non-dimensional threshold pressure gradient
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