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Abstract: Electric vehicles (EVs) are advancing the transport sector towards a robust and reliable
carbon-neutral future. Given this increasing uptake of EVs, electrical grids and power networks
are faced with the challenges of distributed energy resources, specifically the charge and discharge
requirements of the electric vehicle infrastructure (EVI). Simultaneously, the rapid digitalisation of
electrical grids and EVs has led to the generation of large volumes of data on the supply, distribution
and consumption of energy. Artificial intelligence (AI) algorithms can be leveraged to draw insights
and decisions from these datasets. Despite several recent work in this space, a comprehensive study
of the practical value of AI in charge-demand profiling, data augmentation, demand forecasting,
demand explainability and charge optimisation of the EVI has not been formally investigated. The
objective of this study was to design, develop and evaluate a comprehensive AI framework that
addresses this gap in EVI. Results from the empirical evaluation of this AI framework on a real-world
EVI case study confirm its contribution towards addressing the emerging challenges of distributed
energy resources in EV adoption.

Keywords: artificial intelligence; electric vehicles; demand profiling; demand forecasting; demand
explainability; charge optimisation; EV data augmentation

1. Introduction

Human emissions of greenhouse gases is the primary driver of the most pressing
challenge faced by human civilisation, climate change [1]. Fossil fuels account for over 75%
of global greenhouse gas emissions and nearly 90% of all carbon dioxide emissions [1]. In
order to ensure at least 50% likelihood of staying within 2 °C of global warming, sustain-
ability initiatives should target a 3–5% yearly decrease in the greenhouse gas emissions
until 2030 and a further total decrease of 50–80% by 2050 [2]. The transportation sector is
one of the largest consumers of fossil fuels at more than 90% of all vehicles, a majority light-
duty vehicles such as cars, but also trucks, ships and aeroplanes [3,4]. The sustainability
of distributed energy sources is a necessary mechanism to reduce energy emissions and
energy demand while also addressing the challenges of a warming planet. In response to
this challenge, advanced economies across the world are increasingly adopting plug-in
hybrid electric vehicles (PHEV) and electric vehicles (EVs) in both public and private
transport sectors [5]. This growth in transport electrification will lead to significant changes
in the energy landscape from generation, distribution, regulation, supply and consumption.
Commercially, global vehicle manufacturers have invested more than USD 140 billion in
transportation electrification, with approximately 130 EV models estimated to be available
in global markets by 2023 [6,7]. Besides its environmental benefits, EVs are also attributed
with an increased efficiency, low maintenance, noise reduction and the opportunity to be
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recharged [7–9]. However, effective transport electrification also requires a significant in-
vestment in the electric vehicle infrastructure (EVI) design, implementation and operation.
Government initiatives such as the European Investment Bank’s EUR 1.6 billion supporting
EVI and battery projects in EU member countries [10], the Australian Government’s AUD
1 billion Clean Energy Innovation Fund for EVI [11], and the Bipartisan Infrastructure
Law and National Electric Vehicle Infrastructure Formula program in the USA [12] are
instrumental in this transformation of the EVI. Simultaneous to a financial investment in
EVI, several technical challenges in EVI need to be addressed for increased adoption and
integration of PHEVs and EVs into transport electrification. This primarily stems from the
divergent origins of the two sectors: the limited to no intersection or interaction between
conventional fossil-fuel-based transportation and the electricity sector. In contrast, EVI is
transforming this into a significant intersection or dependency where transport electrifi-
cation is not only a new consumer of electricity, but in some scalable settings, it is also a
supplier of energy to electrical grids [8], as well as providing supplementary services such
as harmonic mitigation and reactive power supply [13,14]. The technical challenges that
need to be addressed to realise these opportunities include optimised charging locations
and capacity, operationalising EV aggregators, controlling for power generation, transmis-
sion and distribution, as well as the integration, coordination and overall optimisation of
power, control and communication infrastructure [5,8,14]. For instance, in a real-world
application setting, the aggregation of energy demand and supply can be captured as
data streams that are learned, profiled, predicted and optimised to identify underlying
causal behaviours and thereby provide scheduling opportunities for the EVI and related
distributed energy sources. In such a setting, most EV users expect to have a typical be-
haviour on work days where the charging events start soon after the morning peak and
end just before the evening peak, which then enables opportunities for scheduling. It is
within this control, communication and operations management space that we propose a
comprehensive AI framework.

The objective of this study was to address the technical challenges of a rapidly expand-
ing EV infrastructure using AI capabilities. Thereby, the main contribution was the design,
development and evaluation of an artificial intelligence (AI) framework for charge-demand
profiling, data augmentation, demand forecasting and optimisation of the EVI. The frame-
work consists of five modules, namely demand profiling, data augmentation, demand
forecasting, forecast explainability, charge optimisation, supported by a centralised EVI
data lake for a cyclic connection of information sharing between these often disconnected
capabilities in a practical EVI setting.

The rest of the paper is organised as follows. Section 2 presents related work on
the application of AI for the improved operations and management of the EVI, followed
by Section 3 that delineates the overall composition of the proposed AI framework. In
Section 4, we present the constituents of the AI framework alongside an empirical evalua-
tion of its functionality in a real-world application setting. Section 5 presents a discussion,
and Section 6 concludes the paper.

2. Related Work

This section begins with a deliberation on AI in the broad topic of transport electrifi-
cation, focusing on challenges and opportunities. Given the modular composition of the
proposed AI framework, the second part of this section focuses on related work in AI that
is relevant to each module and the expected capabilities of that module.

The role of AI in transport electrification was initially studied by [15], where they
reported on the benefits of AI across all EVI functionality, such as energy efficient EV
routing, charging-point selection, integration of EVs into the smart grid, battery-charging
algorithms and network congestion management algorithms. They also documented
the key challenges in this space as uncertainty, dynamism, interoperability, privacy and
real-world validation, followed by the need for operating standards that enable universal
adoption. In a recent review [8], the authors have explicated the role of AI in terms



Energies 2023, 16, 2245 3 of 18

of facilitating the charging process, automatic power balancing capabilities, adaptive
charging, the mobility analysis of EVs, the transition process of assisted driving and
the management of demand–supply for the charge and discharge of the EVI. They also
deliberated on the emerging development of the Internet of EVs (IoEVs), as a complex
system of humans, vehicles, humans, data, algorithms and EV infrastructures. A block-
chain-based decentralised energy framework was proposed in [16], where a novel algorithm
was presented for data exchange between the EV fleet and the grid. Related to the EVI
but on the topic of AI and EVs, the utility of AI in semiconductor devices, design and
prognostics and thermal management design was reported by Paret et al. [17]. In [18], the
authors claimed the current research and practice of AI in the EV infrastructure was still
in the early stages of development, where they enumerated the application of AI in EV
battery design and discovery, battery management and the smart control of EVI hardware
and auxiliary systems. More broadly in transport electrification, the intelligent detection
of driver behaviour changes [19], commuter behaviour profiling [20], self-learning for
autonomous surveillance [21], bidding optimisation with uncertainty [22] and urban traffic
control and optimal coordination [23,24] have also been reported in the recent literature.

In terms of EV charge-demand profiling, a stochastic model for EV users was proposed
by Fotouhi et al. [25] and used for the investigation of the congestion of charging stations
by an increasing number of EVs in order to achieve an appropriate service quality. EV user
behaviour was modelled as a state machine, such that there was a behavioural reaction
of the driver to the battery state of charge. Quirós-Tortós et al. [26] analysed the charging
behaviour of 221 EVs, using a dataset of over 68,000 data samples. Diverse charging fea-
tures were modelled into probability density functions to analyse EV user behaviour and
augmentation. In terms of EV charge schedule optimisation, Cao et al. [27] proposed an in-
telligent method to control the EV charging load in response to the time-of-use (TOU) price
in a regulated market. By using an iterative algorithm, EVs were able to adjust the charging
power and time, reduce the cost of consumers, and thus “reduce peaks and fill valleys” in
the load demand. In [28], a day-ahead EV-charging scheduling based on an aggregative
game model was proposed. The impacts of the EV demand on electricity prices were formu-
lated with the game model in the scheduling considering possible actions of other EVs. A
quadratic programming technique was used to calculate the Nash equilibrium of the game
model. Furthermore, González Vayá and Andersson [29] proposed a bidding price market
with a bilevel mixed-integer linear programming approach, while Vandael et al. [30] pro-
posed a reinforcement learning approach to learn and adapt to the charging behaviour of
an EV fleet. Kristoffersen et al. [31] modelled EVs as prosumers that determined charging
price through participation in a transitive market. As exemplified in this section, the related
literature on the application of AI in EVs and EVI are limited to a few reviews and imple-
mentations. To the best of our knowledge, a comprehensive study of the practical value of
AI algorithms in charge-demand profiling, data augmentation, demand forecasting and the
optimisation of the EVI has not been explored. In the following section, we propose an AI
framework that addresses this gap, alongside its empirical evaluation using a real-world
case study.

3. Proposed AI Framework

The proposed AI framework operates within the digitalised EVI as depicted by the
lowest layer of Figure 1. As explicated by Das et al. [14]), the EVI receives data and
communications from the upper levels of a typical smart grid, such as the transmission
network and control centres for utility and distribution. Additionally, it would also have
direct feeds from renewables within local microgrids. The constituents of the proposed
AI framework are depicted in Figure 2, consisting of five modules supported by a central
EVI data lake. This data lake maintains a persistent record of all data inputs, actionable
outputs and intelligent processes of the five modules, which in turn facilitates a layer of
knowledge representation for current and future EVI operations. This layer of knowledge
representation can be used for both lateral and hierarchical communication within the
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smart grid. The five modules of the proposed AI framework are, EV charge-demand
profiling, EV data augmentation, charge-demand forecasting, forecast explainability and
EV charge optimisation. Figure 2 further depicts the transition of information and insights
between these five modules, as well as the cyclic composition of the framework where
the charge optimisation feeds back recurrently into the demand profiling for the next
iteration of EVI usage. The modules of this framework operate on diverse AI capabilities,
such as association, profiling, prediction and optimisation. The algorithms used for these
capabilities can be summarised as the k-means algorithm, Gaussian mixture models (GMM),
multivariate regression and deterministic optimisation.

Figure 1. Hierarchical composition of EVI in a smart grid setting.

Figure 2. Proposed AI framework for electric vehicle infrastructure (EVI).

4. Constituents of the Proposed AI Framework

Here, we unpack each of the five modules in terms of its AI functionality and algo-
rithmic capabilities. An empirical evaluation of each module is also presented in each
subsection where we use the real-world case study of the Adaptive Charging Network
(ACN) from Caltech [32]. ACN data were collected from two adaptive charging networks
inside the Caltech campus and the other at the Jet Propulsion Laboratory (JPL) site. This
dataset represents a hybrid of a workplace and a public charging station and provides
detailed data about each of the charging sessions. Table 1 summarises the key data points
acquired by the EVI in each charging session. A smartphone application was used to
interact with the registered users to obtain the details of the requested energy, the model of
the vehicle and the time the user planned to depart from the location. This user information
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is uncommon in EVI data sources, where most contain data collected only when the EVs
are connected.

Table 1. Selected data fields of the ACN dataset.

Field Description

connectionTime Time the user plugs in
doneChargingTime Time the charging finishes
disconnectTime Time the user unplugs
kWhDelivered Measured energy delivered
sessionID Unique ID for the charging session
timezone Time-zone of the charging station
userID * Unique identifier for the user
WhPerMile *† EV specific energy demand in miles
kWhRequested *† Requested energy
requestedDeparture *† Requested departure time

* Field not available for every session. † User input field. Registered users can enter these data.

4.1. Demand Profiling

In demand profiling, we used AI to determine EV charge demand behaviours and
microprofiles that are instrumental in data augmentation to support the downstream
applications of demand forecasting and charge optimisation. Suppose the dataset X has N
charging session. Each charging session i = 1, 2, . . ., N is represented by a multidimensional
vector xi = (baseyear, basemonth, baseday, baseweekday, ∆connect, ∆disconnect, ∆done, ∆modified,
∆req-departure, emile, erequired) and the dependent variable, the charged energy, as yi = echarged.
Attributes baseyear, basemonth, baseday and baseweekday are the year, month, the day of the
month and the weekday of the day for each session’s connection time, respectively. All
∆ parameters represent time differences in hours measured from the base date’s 0000 h,
i.e., the base time. Attributes, ∆con, ∆disconnect, ∆done, ∆modified and ∆req-departure represent
the time difference between the connection time, disconnection time, done-charging time,
user-input modified time and requested departure time and the base time, respectively.
emile and erequired are the energy required per mile by the vehicle and the energy requested
by the user in kilowatt-hours (kWh). We applied a novel unsupervised learning algorithm,
Hyperseed [33], on this 11-dimensional feature space. Hyperseed operates on few-shot
learning and a learning rule based on a single vector operation. It has been successfully
demonstrated to learn an entire feature space from a few input vectors and few iterations,
which qualifies its application in a low-resource, low-energy and time-sensitive setting such
as optimised EVI operations at the ebb of a smart grid. The Hyperseed learned projection is
depicted in Figure 3a, where it contains two significant profiles identifying charging sessions
beginning before and after 0800 h. Furthermore, charging sessions with high energy-
consuming EVs form a separate profile closer to that which describes charging sessions
after 0800 h. Through this profile generation, we can infer that high-throughput EVs are
charged in evening sessions. This Hyperseed projection can be further evaluated using a
principal components analysis (PCA), as depicted in Figure 3b–d. Principal component (PC)
1 has feature contributions for ∆done, ∆con, ∆modified, ∆req-departure and ∆disconnect of 19%,
19%, 18%, 18% and 17%, respectively, meaning PC1 is more related to the charging time of
the day. PC2 has feature contributions for baseyear, basemonth and emile of 36%, 33% and
14%, respectively, while PC3 has feature contributions for erequired, emile and baseweekday of
34%, 23% and 13%, respectively. PC2 is a representation of the time of the year the charging
session occurred and PC3 is more related to the type of EV, assuming an owner with a higher
emile EV will tend to enter a higher erequired during the user input phase during charging
sessions. emile is a vehicle-specific parameter, so the EV user knows the required energy
during one charging session. The initial observation of Figure 3b is the profiling of data
around two major regions in orange and green. These profiles represent the different times
of the day for EV charging. The majority of the orange cluster includes charging sessions
that started and ended within the first 8 h of the day, the green cluster represents evening
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charging sessions after the first 8 h of the day, which is also the largest cluster. Figure 3c
reveals another profile, the red cluster, which is a profile of high-energy-consuming EVs.
This profile is part of the green cluster, meaning all these high-energy-consuming vehicles
were charged in evening sessions. Figure 3d shows that this profile is spread throughout
the months in a year meaning these high-energy consumers are regulars of the EVI. The
feature importance of the PCA analysis is shown in grey vectors adjacent to each subfigure
in Figure 3. The magnitude of the vectors of each feature represents the importance of the
feature and the length of the projection of the vector to each PC represents how much each
feature contributes towards the PCs. The explained variance for PC1, PC2 and PC3 are
38.1%, 13.4% and 9.9%, respectively.

Figure 3. Demand profiling: learned projection from Hyperseed and subsequent analysis of this
projection using PCA. Orange cluster: charging sessions started during 0000–0800 h. Green cluster:
charging sessions started during 0800–2400 h. Red cluster: charging sessions with high energy
consuming EVs. (a) Hyperseed learned projection. (b) PC1–PC2 projection of the dataset. (c) PC2–
PC3 projection of the dataset. (d) PC1–PC3 projection of the dataset. Vector plots in (b–d) show the
feature contributions to each of the PCs.

4.2. Data Augmentation

Common challenges with EVs and EVI data streams are the imbalanced nature, the
low volume of complete data and missing or erroneous values. This is a further challenge
that can be addressed using AI techniques. As noted in the proposed AI framework, the
demand profiles feed into this module to inform and validate the augmentation process in
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addition to the original data sources. We demonstrated data augmentation on the ACN
dataset [32], which is representative of a workplace charging scenario consisting of over
30,000 charging sessions from 52 electric vehicle supply equipment (EVSE) or fast-charging
points. Data augmentation was performed using an unsupervised learning technique, the
Gaussian mixture model (GMM) algorithm. A GMM draws on the assumption that data
points are generated from a mixture of a finite number of Gaussian distributions with
unknown parameters represented as a weighted sum of Gaussian component densities.
They are a generalisation of k-means clustering that takes into account latent Gaussian
functions and the covariance structure of the data. The data augmentation process begins
with the assumption that augmented data are generated using a charging station with q
fast-charging points. The EV range is known to be dependent on the ambient temperature
of the environment [34], and this can cause some of the seasonal EV charging behaviours
to be unrealistic if the same timestamps were to be used. Therefore, in order to conduct a
seasonal adjustment to the dataset, a specific location is needed. Here, we decided to adopt a
geographically disparate location to Caltech, the city of Melbourne in Australia. The quality
of the resulting augmented data confirmed the robustness of using AI for this task, even
when the augmentation locations were geographically disparate. Since the augmentation
using GMM increased the number of data points, we needed to fix the number of charging
stations in order to filter out unrealistic data, so we set q = 52, the same as at the JPL
charging site. Furthermore, about 6.5% of the data points in the dataset lacked the user
input fields. These missing user input data were completed considering the most popular
EVs in Australia in the year 2021 and their EV batteries [35]. The seasonal adjustment for
the time stamps of the dataset was carried out by matching the yearly temperature charts
of California and Melbourne in 2021. The temperature was at an average minimum in the
months of December–January in California and June–July in Melbourne for the year 2021.
Therefore, the data points in January of the ACN dataset were matched to July in the new
dataset and the following months were matched accordingly. The weekday data of each
data point was preserved by mapping Mondays to Mondays, Tuesdays to Tuesdays and so
on, for all the data points. After completing the missing user input data, the GMM was
executed as follows. Suppose the dataset X had N charging session. Each charging session
i = 1, 2, . . . ,N was represented by a 12-dimensional vector xi = (baseyear, basemonth, baseday,
baseweekday, ∆connect, ∆disconnect, ∆done, ∆modified, ∆req-departure, emile, erequired, echarged). Note
that here, echarged was included in the feature space. Let the random variable representing
xi be Xi. We considered that Xi was an independently and identically distributed (i.i.d.)
random variable according to some unknown distribution. We assumed that all drivers
had a finite K number of behaviour profiles, denoted by µ1,..,µK. Therefore, each of the
data points in the dataset could be considered as a deviation of the typical profiles with
some probability. A latent variable Y was defined such that Yi ≡ k, if and only if Xi was a
deviation of µk. Furthermore, each EV had the identical probability of πk taking µk such
that πk = P(Yi = k) for i = 1, . . . ,N and k = 1, . . . ,K. Therefore, the difference Xi − µk
could be regarded as a Gaussian noise deviating from the typical profiles. Thus, under the
assumption of Yi = k, we let Xi ∼ N (µk, Σk) be a Gaussian random variable (r.v.) with
mean µk and covariance matrix Σk. Finding θk = (πk, µk, Σk) for k = 1, .., K approximated
the underlying distribution as a mixture of Gaussian functions. The probability of observing
the data x could then be approximated by,

P(x|θ) = ∑K
k=1πk

exp
(
−1

2
(‖x− µk‖)2Σ−1

k

)
√
(2π)3 det(Σk)

. (1)

The approximation was done considering K = 10 and the resulting Gaussian functions
were used to generate new data points. The green cluster, the orange cluster and the red cluster
were fitted with 8, 1, and 1 Gaussian functions, respectively. Initially, 7500 new samples
were generated from all 3 profiles, which was about 25% of the original full dataset. The
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resulting samples were filtered out by removing unrealistic data based on the timestamps.
For example, the connection time could not be less than the disconnected time, the charging
finished time had to be less than the disconnected time and the resulting date had to be
a valid date. This filtering reduced the new samples down to 3395. As per the initial
assumption that the charging facility consisted of 52 fast-charging points, no more than 52
EVs could be charged simultaneously, thereby, contradictory samples were removed. This
augmented dataset flowed into the next AI module for charge demand forecasting.

4.3. Demand Forecasting

This module predicts the next day energy demand for EVI, and these predictions
are used in the final module along with the model explainability output for the charge
optimisation. The statistical parameters of the distribution of the daily energy delivered
are summarised in Table 2. Days where no energy was delivered were omitted assuming
that there was some operational fault in the charging infrastructure. Considering the whole
dataset, there were 33.05 charging sessions and 31.6 users per day on average.

Table 2. Statistical parameters of daily energy-delivered distribution.

Statistical Parameter Value (kWh)

Mean 483.8
Standard deviation 419.5

Minimum value 2.09
Quartile 1 75.3
Quartile 2 379.1
Quartile 3 937.1

Maximum value 1300.67

We designed demand forecasting as a multivariate regression problem. The feature
space for the regression model generation included the day of the week, energy delivered
on the previous day, 3- and 7-day moving averages of the total energy delivered, the month
of the year and the number of days since the starting date of the dataset. Two approaches
were taken during model generation. The first (Model A), used the total energy delivered
daily. The second (Model B) comprised two separate models for the charging sessions
started during 0000–0800 h and 0800–2400 h on each day as shown in Figure 4. These two
were trained separately with the charging sessions belonging to each of the time periods
and the summation of these two models were taken as the output of Model B. This Model
B design was informed by the demand-profiling module that revealed two major clusters
of data for the charging sessions before 0800 h and after. Model training was performed
by allocating 75% of the dataset to training data and the remaining 25% to testing data.
Hyperparameter tuning was conducted by a grid search for different types of models and
the performances are summarised in Table 3. Models A and B were the final models, and
the morning and evening models were intermediary models trained separately to obtain
Model B. The morning model corresponded to models trained only using charging sessions
before 0800 h and the evening model after 0800 h. The best-performing model was the
multi-layer perceptron (MLP) Model B with 2 hidden layers consisting of 6 and 5 neurons
in each layer. It had a root mean squared error (RMSE) of 96.753 and mean absolute error
(MAE) of 65.096 with a coefficient of determination (COD) of 94.910%. A further inference
from Table 3 was that Model B outperformed Model A in every metric. This meant that
the underlying user behaviour was better represented through data partitioning across the
time axis for green and orange clusters.



Energies 2023, 16, 2245 9 of 18

Figure 4. Architecture of the forecasting models. (a) Model A architecture. (b) Model B architecture.
In Model B, the summation of the morning model and the evening model was taken as the final
output. Morning and evening models were trained separately without any data sharing.

Table 3. Accuracy of models predicting day-ahead EV demand.

Regression Algorithm Model RMSE MAE COD

XGBoost

Model A 102.345 62.260 94.304
Model B 101.071 61.664 94.445

- Morning model 13.091 7.103 62.159
- Evening model 100.077 60.234 94.241

AdaBoost

Model A 169.534 143.639 84.371
Model B 159.059 132.124 86.243

- Morning model 15.789 13.150 44.951
- Evening model 154.089 127.011 86.348

Linear regressor

Model A 176.949 143.401 82.974
Model B 177.766 143.711 82.816

- Morning model 12.070 7.717 67.827
- Evening model 174.204 141.906 82.551

Multilayer perceptron

Model A 107.808 72.616 93.680
Model B 96.753 65.096 94.910

- Morning model 11.893 7.229 68.764
- Evening model 94.902 63.299 94.822

Random forest

Model A 98.827 57.571 94.689
Model B 102.095 59.676 94.332

- Morning model 12.740 6.547 64.157
- Evening model 101.874 58.150 94.033

Support vector regression

Model A 202.890 153.976 77.616
Model B 202.509 153.223 77.700

- Morning model 13.053 7.771 62.377
- Evening model 199.306 149.782 77.160

4.4. Demand Explainability

The demand forecast generated in the previous module could be further processed for
the explainability factors that contributed towards this prediction. Explainable AI (or XAI)
is a collection of processes and methods to interpret and understand the intelligent output
produced by a complex and opaque AI model [36]. SHAP (SHapley Additive exPlanations)
is a game-theoretic approach for XAI. It assigns each feature an importance value for a
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particular prediction [37]. Demand-forecasting model analysis using SHAP values revealed
that the 3-day moving average and the day of the week had the highest SHAP values in the
best-performing model meaning that the total EV user charging pattern was closely related
to the energy charged in the last 3 days and the day of the week. This could be justified by
the typical behaviour pattern in a workplace, where most of the employees report working
on weekdays compared to the weekends and tend to charge their EVs based on the most
recent charging events of the vehicles. The mean SHAP value and the bee-swarm plots
are depicted in Figures 5 and 6, respectively. In these plots, the features in Figures 5 and 6
represent the day of the week, 7-day moving average, 3-day moving average, previous
day’s delivered energy, month and the date count from the first date of the dataset.

Figure 5. SHAP values of the best performing model.

Figure 6. Beeswarm plot for the best-performing model.

4.5. Charge Optimisation

The final module is focused on charge optimisation. It receives inputs on forecasted
demand and the contributing factors to this forecast.

Minimise/Maximise:
f (x) (2)

Subjected to:
cj(x) = 0, j ∈ ε, (3)
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cj(x) ≥ 0, j ∈ ł, (4)

lbi ≤ xi ≤ ubi, i = 1, 2, ..., N (5)

Where ε and ł are sets of indices containing equality and inequality constraints.
To solve the following deterministic optimisation problems, we used the sequential

least squares programming algorithm (SLSQP).
The SLSQP algorithm was proposed by Klaus [38] and solves a constrained least

squares (LSQ) subproblem in each major iteration to generate a descent direction. The LSQ
problem solved at iteration k is shown as follows,

Minimize:
1
2

∥∥∥Rkdk − qk
∥∥∥2

(6)

Subjected to:
5hkT

dk + hk = 0, (7)

5gkT
dk + gk ≥ 0 (8)

where dk is the search direction to be solved. gk and hk are values of the constraint functions
at iteration xk, while5gk and5hk are current gradients of inequalities and equalities. Rk

and qk are the least squares matrix and observation vector, respectively, which are updated
during optimisation according to the Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula
and an LDL updating algorithm.

Following through with our focus on real-world application settings, we conjoined the
ACN dataset with conventional demand and supply data collected from a large multibuild-
ing organisational setting for the optimisation experiments. The selected organisational
setting was the La Trobe Energy AI/Analytics Platform (LEAP), which is the flagship AI ini-
tiative of La Trobe University’s commitment towards achieving net zero carbon emissions
in all campuses by 2029. The UNICON dataset from LEAP [39] consists of consumption
data from smart electricity meter readings with a 15-minute granularity and weather data
collected at a two-speed latency of 1 minute and 10 minutes. The Unisolar dataset from
LEAP consists of solar energy generation, solar irradiance and weather data from 42 PV
sites deployed across five locations [40].

4.5.1. Optimising Maximum EV Demand

In this subsection, we focus on charge optimisation to maximise the EV demand
over a period of time. It takes the following inputs: the predicted demand (consumption)
for the given time period (which is denoted by the set T), the total demand that can be
accommodated for the entire period, the maximum demand that can be accommodated
at any time point of the given period, the preferred time period (which is denoted by
Tpre f ) and the dominating constant (α). The mathematical formulation of the deterministic
optimisation problem is presented as follows.

Maximise:
∑
t∈T

dEV
t (9)

Subjected to:
∑
t∈T

(dEV
t + dbuild

t ) ≤ Dtot, (10)

∀t ∈ T, (dEV
t + dbuild

t ) ≤ Dmax, (11)

∑t∈ (T−Tpre f )
dEV

t

(Tsize − Tpre f
size )

≤ α
∑t∈ Tpre f

dEV
t

Tpre f
size

, (12)
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0 ≤ dEV
t (13)

The objective of the formulation was to maximise the total EV demand for the given
period of time (9). Constraint (10) controlled the demand balance while constraint (11)
limited the maximum allowed demand. Constraint (12) was set in a way for the solver
to not get stuck on the obvious answer for such a problem, which is to have a peak EV
demand on minimal building demand time steps (see Figure 7a). It controlled the EV
demand spread more towards the preferred time period (see Figure 7b). Furthermore, we
introduced α (0 < α ≤ 1) to control the bias towards the preferred time period. As it got
closer to 0, it was more biased towards the preferred time period and vice versa.

(a) Unconstrained optimisation. (b) Constrained optimisation

Figure 7. EV demand optimisation.

Solving this optimisation reveals the maximum EV demand required by the EVI. This
is crucial information for long-term planning to decide whether an expansion is needed in
the EVI. The resulting optimised EV demand curve also provides a visualisation of how
the EV demand has to be spread across the day in order to avoid peak events.

4.5.2. Experiment 1—Optimising maximum EV Demand

In this experiment, we evaluated the module for optimising the maximum EV demand.
It took the following inputs: predicted EVI/building demand (considered provided from
the EVI), the total demand and maximum demand that the building can accommodate
(these were specific to the building and had a constant value) and the preferred time period
(this was selected by the EVI and set to 5 am to 8 am and 5 pm to 8 pm). The dominating
constant(α) was set to 0.2.

Furthermore, to understand the effect of Equation (13), we evaluated the same ex-
periment with and without the constraint (Equation (13)). Figure 7b shows the results of
the unconstrained optimisation whereas Figure 7a shows the results of the constrained
optimisation. We can clearly see that the constraint module tried to force a significant
amount of EV demand toward the preferred time period.

4.5.3. Optimising Target EV Demand

In this subsection, we optimised the forecasted total EV demand to spread it across the
given time period. It took the following additional input compared to the previous formu-
lation Section 4.5.1, the total forecasted EV demand (DEV

tot ). The mathematical formulation
of the deterministic optimisation problem is presented as follows.

Minimise:
(DEV

tot − ∑
t∈T

dEV
t ) (14)

Subjected to:
∑
t∈T

(dEV
t + dbuild

t ) ≤ Dtot, (15)
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∀t ∈ T, (dEV
t + dbuild

t ) ≤ Dmax, (16)

∑t∈ (T−Tpre f )
dEV

t

(Tsize − Tpre f
size )

≤ α
∑t∈ Tpre f

dEV
t

Tpre f
size

, (17)

∑
t∈T

dEV
t ≤ DEV

tot , (18)

0 ≤ dEV
t (19)

The objective of the formulation was to minimise the difference between the total
forecasted EV demand and the total EV demand for the given period of time (14). It had a
set of similar constraints to the previous formulation as mentioned below: (15) was similar
to (10), (16) was similar to (11) and finally, (17) was similar to (12). Constraint (18) ensured
that total EV demand for the given period of time did not exceed the total forecasted EV
demand, in other words, it positively minimised (14).

By solving this optimisation, the EVI is informed with a close-to-realistic day-ahead
EV-demand-per-hour curve that helps to minimise the load on the grid. Thus, the EVI
is aware of which hours peak events are likely to occur in and act upon them. The EVI
may choose to increase the price of charging during these hours in the hope of decreasing
demand or bring in other sources such as renewables or battery storage in order to discharge
during peak hours.

4.5.4. Experiment 2— Optimising Target EV Demand

In this experiment, we evaluated the module for optimising the target EV demand.
It took the forecasted EV demand for the given time period, which was a result of the
EV demand prediction module. Constraints and constants were similar to those of the
previous experiment.

Figure 8 shows the results obtained for this experiment. (Results here are without the
constraint (13)). The value of the forecasted EV demand was 1700 kWh.

Figure 8. Target EV demand optimisation.

4.5.5. Optimising EV Charge Scheduling

In this final formulation, we optimised the charging schedules for a given set of EVs
according to their availability. It took the following inputs: a set of EVs (which is denoted
by the set E), the preferred charging start and end times of EVs (te

p_start and te
p_end) and
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the charging requirement for each of the EVs (Ee). The mathematical formulation of the
deterministic optimisation problem is presented as follows.

Minimise:
∑
e∈E

(Ee − ce(te
end − te

start)) (20)

Subjected to:

∀ t ∈ T (dEV
f _t − ∑

e∈E
(ce i f te

start ≤ t ≤ te
end)) ≤ 0 (21)

∀ e ∈ E (te
p_start ≤ te

start ≤ te
end ≤ te

p_end) (22)

∀ e ∈ E (ce(te
end − te

start) ≤ Ee), (23)

Cmin ≤ ce ≤ Cmax (24)

The objective of the formulation was to minimise the difference between the EV user’s
charging requirements and the optimum scheduled charging amount for all the users
(20). The charge rate was assumed to be constant throughout the charging period of
time. Constraint (21) ensured that for any time step, the total sum of charge rates did not
exceed the optimised EV demand (which was the output from the previous optimisation).
Constraint (22) bounded the start and end times based on the time preference of each
EV. Constraint (23) ensured that the optimised charge amount was not greater than the
requested charging amount. Constraint (24) limited the charging rate of each EV to stay
within a certain practical range.

4.5.6. Experiment 3—Optimising EV Charge Scheduling

In this experiment, we evaluated the module for optimising EV scheduling. For each
EV, it took the following inputs: the charging requirement (in kWh) and the preferred
charging time. Table 4 displays the sample data for the first five EV users.

Figure 9 shows the resulting final EV demand received from the scheduling experiment
which emphasize the behaviour according to the constraints. Furthermore, Table 5 displays
the scheduling results for the first five EVs.

Figure 9. EV scheduling.
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Table 4. EV sample data (preferred charging amount and period).

EV-ID Charge Amount Start Time End Time

1 35 12:00 pm 09:00 pm
2 40 12:00 am 07:00 am
3 37 11:00 am 06:00 pm
4 15 07:00 am 12:00 pm
5 32 03:00 am 12:00 pm

Table 5. EV scheduling results (scheduled charging amount and period).

EV-ID Charge Amount Start Time End Time

1 33.4 12:00 pm 07:00 pm
2 38.4 01:00 am 06:00 am
3 36.7 12:00 pm 05:00 pm
4 15.0 07:00 am 12:00 pm
5 32.0 03:00 am 12:00 pm

4.6. Results Analysis

Across all five modules of this framework, we can derive the following results and
analysis. The demand-profiling module revealed several key profiles along the time and
energy usage dimensions. Demand profiling also provided key information to the demand-
forecasting stage, where the results suggested that modelling user behaviour on each of
the clusters identified during profiling produced a better model performance. The best-
performing demand forecast model was used to identify the contributing features through
XAI and SHAP. This revealed the day of the week and the three-day moving average were
of high importance. This means most EV charging behaviours were based on the day of
the week and how much they had charged in the past few days. The seven-day moving
average had a lower feature importance comparatively, implying users were less concerned
about the charge cycles from a week ago. In the charge optimisation, experiments 1 and
2 demonstrated the viability of using deterministic optimisation techniques to address
constrained EV demand management. According to the simulation results of experiment 3,
the optimisation framework managed to accommodate the EV charging requirements of
users with no more than a 5% compensation of their original charging requirement while
maintaining their desired charging period.

5. Discussion

The proposed framework was composed of five modules, demand profiling, data
augmentation, demand forecasting, forecast explainability, charge optimisation and a
centralised EVI data lake for a cyclic connection of information sharing between these EVI
application requirements. In addition to the independent interactions of the modules, the
feed-forward flow of information provided valuable insights into the subsequent modules
of the framework. In our empirical evaluation, demand profiling revealed two significant
profiles based on the charge time of the day. In the data augmentation module, this
information was used for Gaussian mixture modelling that further revealed having two
separate forecasting models improved the prediction accuracy in the forecasting module.
The predictions were then used in the charge optimisation module. This module generated
an optimised charging schedule which became a decision point in the EVI, as well as fed
forward into the next iteration of the framework and updated the EVI data lake with EV
user profiles and behaviours. All optimisation formulations were based on deterministic
optimisations. As future work, we intend to generalise these formulations to accommodate
stochastic EVI behaviours.

In contrast to Fotouhi et al. [25] and Quirós-Tortós et al. [26], where the EV user profiles
were stochastic models, our framework used AI models to draw data-driven profiles.
Quirós-Tortós et al. [26] created probability density functions considering variables that
were observed among all users, while in the proposed data augmentation module, new
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samples were generated based on each of the clusters found in the demand-profiling stage.
In the demand-forecasting module, we treated the prediction as a multivariate regression
problem, which was relative to the related work [28,29]. Going beyond prediction, we input
this into the charge optimisation module for the EV charge scheduling. Although we solved
this as an optimisation problem, González Vayá and Andersson [29] and Vandael et al. [30]
framed scheduling as a bidding price market outcome and a reinforcement-based learning
and adaptation method, respectively.

6. Conclusions

In this paper, we proposed a comprehensive AI framework for distributed energy
sources in EVI. The framework consisted of five modules for demand profiling, data
augmentation, demand forecasting, demand explainability and charge optimisation of
the EVI, supported by a central EVI data lake that received inputs and outputs from each
module to inform the next iteration of EVI operations. The framework was also cyclic
in that it fed output from charge optimisation back into demand profiling for the next
iteration of EVI operations. We evaluated this framework using two real-world datasets that
demonstrated the challenges of EVI and EV management. The results of these experiments
confirmed the practical value of AI in responding to the complex needs of EV adoption.
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