Design of a Test Section for the Experimental Investigation of the WCLL Manifold Hydraulic Features
Abstract
:1. Introduction
2. W-HYDRA: The Water Loop High Power Branch
- the Inlet Manifold (IM) fed by STEAM hot leg,
- the Recirculation manifold (REC),
- a first rank of pipe assembly, moving from the inlet to the recirculation manifold,
- the outlet Manifold (OM) linked to the downstream STEAM cold leg
- a second rank of BZ pipe assembly, moving from the recirculation manifold to the outlet manifold
- Instrumentation: mass flow meters and differential pressure transducers.
3. Design of the Manifold Mock-Up
3.1. Mock-Up Test Objectives
- Measure the mass flow rate distribution in the BU along the manifold, and
- Demonstrate, by measuring the mass flow rate distribution in the Breeding Zone (BZ) tubes, that the manifolds feed the BZ tubes along the manifold according to design technical specifications, and/or quantify the deviation from it;
- Possibly investigate and measure the 3D flow behavior inside the different manifolds with highlights on: flow development and recirculation which may induce flow distortions and uneven mass flow distribution;
3.2. Constraints from the Test Facility
- The manifold test section shall be designed to qualify the lumped parameter modeling approach (equivalent channel model) for First Wall (FW) channels and BZ tubes as adopted in [6];
- The maximum available working pressure is 18.5 MPa;
- The maximum available working temperature is 350 °C;
- The maximum available footprint for the test section is 2 m × 1.5 m;
- The maximum available height of the test section is 13 m;
- The maximum available mass flow is 20 kg/s;
- The maximum pressure drop is 0.15 MPa across the test section;
- The test section shall be coupled with the STEAM facility with a flanged connection of 5′′ class 2500;
- The test section shall be an isothermal (zero-input power) component, heat losses through the component shall be reduced to an extent such as the maximum temperature loss along the manifold remains below 3 °C (about 300 kW);
- The maximum number of available signals to be acquired at the same time from the manifold test section is 50.
3.3. Scaling Procedure
4. Mock-Up Analysis
4.1. Simulation Set-Up
4.2. Results and Check of Representativeness
4.3. Preliminary Instrumentation Layout
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donné, A.J.H. The European roadmap towards fusion electricity. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2019, 377, 20170432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arena, P.; Del Nevo, A.; Moro, F.; Noce, S.; Mozzillo, R.; Imbriani, V.; Giannetti, F.; Edemetti, F.; Froio, A.; Savoldi, L.; et al. The DEMO Water-Cooled Lead–Lithium Breeding Blanket: Design Status at the End of the Pre-Conceptual Design Phase. Appl. Sci. 2021, 11, 11592. [Google Scholar] [CrossRef]
- Barucca, L.; Hering, W.; Martin, S.P.; Bubelis, E.; Del Nevo, A.; Di Prinzio, M.; Caramello, M.; D’Alessandro, A.; Tarallo, A.; Vallone, E.; et al. Maturation of critical technologies for the DEMO balance of plant systems. Fusion Enginering Des. 2022, 179, 113096. [Google Scholar] [CrossRef]
- Eboli, M.; Lorusso, P.; Tarallo, A.; Cammi, A.; Giannetti, F. Design of the new built STEAM facility for low power testing, EUROfusion Deliverable, IDM Ref.: EFDA_D_2PSFVX, Aug 2022. Available online: https://idm.euro-fusion.org/default.aspx?uid=2PSFVX (accessed on 12 January 2022).
- Arena, P.; Burlon, R.; Caruso, G.; Catanzaro, I.; Di Gironimo, G.; Di Maio, P.A.; Di Piazza, I.; Eboli, M.; Edemetti, F.; Forgione, N.; et al. WCLL BB design and Integration studies 2019 activities, EUROfusion Deliverable, IDM Ref.: EFDA_D_2P5NE5, Feb 2020. Available online: https://idm.euro-fusion.org/default.aspx?uid=2P5NE5 (accessed on 10 January 2022).
- Allio, A.; Savoldi, L.; Arena, P.; Del Nevo, A. Hybrid modelling for the manifolds and coolant flow distribution in the Water-Cooled Lead-Lithium Breeding Blanket of the EU-DEMO reactor. In Proceedings of the 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19), Bruxelles, Belgium, 6–11 March 2022. [Google Scholar]
- Umminger, K.; Dennhardt, L.; Schollenberger, S.; Schoen, B. Integral Test Facility PKL: Experimental PWR accident Investigation. Sci. Technol. Nucl. Install. 2012, 2012, 1687–6075. [Google Scholar] [CrossRef]
- Martinez, Q.V.; Reventos, F.; Pretel, C. Post-Test Calculation of the ROSA/LSTF Test 3-2 Using RELAP5/Mod3.3, NUREG/IA-0410; USNRC: Rockville, MD, USA, 2012. [Google Scholar] [CrossRef]
- Bestion, D.; D’Auria, F.; Lien, P.; Nakamura, H. A State-of-the-Art Report on Scaling in System Thermal-Hydraulic Applications to Nuclear Reactor Safety and Design; Nuclear Safety; OECD Publishing: Paris, France, 2017. [Google Scholar]
- Bertinetti, A.; Froio, A.; Ghidersa, B.E.; Gonzalez, F.A.H.; Savoldi, L.; Zanino, R. Hydraulic modeling of a segment of the EU DEMO HCPB breeding blanket back supporting structure. Fusion Eng. Des. 2018, 136, 1186–1190. [Google Scholar] [CrossRef]
- Froio, A.; Casella, F.; Cismondi, F.; Del Nevo, A.; Savoldi, L.; Zanino, R. Dynamic thermal-hydraulic modelling of the EU DEMO WCLL breeding blanket cooling loops. Fusion Eng. Des. 2017, 124, 887–891. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, O.K.; Al-Zahrani, M.; Al-Sarkhi, A.; Zubair, S.M. Flow Distribution in U- and Z-Type Manifolds: Experimental and Numerical Investigation. Arab. J. Sci. Eng. 2020, 45, 6005–6020. [Google Scholar] [CrossRef]
- Hassan, J.M.; Mohamed, T.A.; Mohammed, W.S.; Alawee, W.H. Modeling the Uniformity of Manifold with Various Configurations. J. Fluids 2014, 2014, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Siemens PLM Software Inc. Star-CCM+ User’s Guide v. 15.02; Siemens PLM Software Inc: Plano, TX, USA, 2020. [Google Scholar]
- Menter, F.R. Zonal two equation κ-ω turbulence models for aerodynamic flows. In Proceedings of the 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, Orlando, FL, USA, 6–9 July 1993. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
P | kW | 3000 |
pH2O,l | MPa | 15.5 |
TH2O,in,l | °C | 328 |
TH2O,out,l | °C | 295 |
ΓH2O,l | kg/s | 15.53 |
ΓH2O,max | kg/s | 20.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collaku, A.; Arena, P.; Del Nevo, A.; Marinari, R.; Savoldi, L. Design of a Test Section for the Experimental Investigation of the WCLL Manifold Hydraulic Features. Energies 2023, 16, 2246. https://doi.org/10.3390/en16052246
Collaku A, Arena P, Del Nevo A, Marinari R, Savoldi L. Design of a Test Section for the Experimental Investigation of the WCLL Manifold Hydraulic Features. Energies. 2023; 16(5):2246. https://doi.org/10.3390/en16052246
Chicago/Turabian StyleCollaku, Aldo, Pietro Arena, Alessandro Del Nevo, Ranieri Marinari, and Laura Savoldi. 2023. "Design of a Test Section for the Experimental Investigation of the WCLL Manifold Hydraulic Features" Energies 16, no. 5: 2246. https://doi.org/10.3390/en16052246
APA StyleCollaku, A., Arena, P., Del Nevo, A., Marinari, R., & Savoldi, L. (2023). Design of a Test Section for the Experimental Investigation of the WCLL Manifold Hydraulic Features. Energies, 16(5), 2246. https://doi.org/10.3390/en16052246