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Abstract

:

This study is a systematic review of research on heat transfer analysis in cavities and aims to provide a comprehensive understanding of flow and heat transfer performance in various kinds of cavities with or without the presence of fins, obstacles, cylinders, and baffles. The study also examines the effects of different forces, such as magnetic force, buoyancy force, and thermophoresis effect on heat transfer in cavities. This study also focuses on different types of fluids, such as air, water, nanofluids, and hybrid nanofluids in cavities. Moreover, this review deals with aspects of flow and heat transfer phenomena for only single-phase flows. It discusses various validation techniques used in numerical studies and the different types and sizes of mesh used by researchers. The study is a comprehensive review of 297 research articles, mostly published since 2000, and covers the current progress in the area of heat transfer analysis in cavities. The literature review in this study shows that cavities with obstacles such as fins and rotating cylinders have a significant impact on enhancing heat transfer. Additionally, it is found that the use of nanofluids and hybrid nanofluids has a greater effect on enhancing heat transfer. Lastly, the study suggests future research directions in the field of heat transfer in cavities. This study’s findings have significant implications for a range of areas, including electronic cooling, energy storage systems, solar thermal technologies, and nuclear reactor systems.
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1. Introduction


The study highlights that enclosed cavities have a broad area of uses, such as electronic cooling, energy storage systems, solar thermal technologies, and nuclear reactor systems. The study has considered various shapes of cavities, including square, rectangular, triangular, trapezoidal, semicircular, hexagonal, U-shaped, etc. Different types of boundary conditions are applied to the walls of the cavities, which affect the flow and thermal behavior inside the cavities. The study considers temperature, heat flux, adiabatic, and isothermal as thermal boundary conditions, such as. On the other hand, the hydraulic boundary conditions considered are fixed, moving, and elastic. Some authors have also applied magnetic field strength to enhance heat transfer or alter buoyancy effects. Different types of fluids have been used in the cavity, including pure water, air, nanofluids, phase change material, porous media, and non-Newtonian fluid.



The main mechanisms of heat transfer in enclosed cavities are natural, forced, or mixed convection. The driving force for natural convection is mainly the buoyancy force (according to Boussinesq approximation), which is caused by the change in fluid density resulting from the applied temperature difference [1,2]. Research has shown that the buoyancy force can destabilize the flow inside the enclosure, but the application of a magnetic field can stabilize it [3]. In addition, the addition of nanoparticles to the liquid inside the cavity can improve its thermal conductivity, heat capacity, and density [4]. Alqaed et al. [5] studied the use of Al2O3/H2O nanofluid with an applied magnetic field. They proved that the presence of nanoparticles contributed to the fluid properties and improved heat transfer. The magnetic field also imposed a specific force (Lorentz force), which opposes the flow inside the cavity and reduces the heat transfer rate. Hatami [6] demonstrated that the presence of fins inside the cavity leads to an increase in vortices (increased mixing) which in turn leads to an enhancement of the rate of heat transfer. The interplay between the magnetic and buoyancy of a hybrid nanofluid Cu-Al2O3 inside a cavity leads to a decrease in flow velocity and reduced heat transfer rate [7]. Similar trends in the effect of nanofluid have been observed in different-shaped enclosures such as hexagonal [8], U-shaped [9], and trapezoidal cavities [10].



The moving boundary imposes a shear force on the fluid surface, which can lead to the generation of recirculating eddies that closes the wall of the cavity. The direction of the moving boundary can affect the strength of the shear force and the characteristics of the eddies that are formed. Additionally, for low values of Prandtl numbers, the effects of the moving boundary on the flow can be more pronounced [11]. Adding nanoparticles to a fluid can have a similar effect to that of fixed boundaries in that the fluid’s thermal conductivity enhances, and the rate of heat transfer rises. That’s because nanoparticles can enhance a fluid’s thermal conductivity and improve the rate of heat transfer. Additionally, if the fluid has been subjected to a magnetic field, the presence of the nanoparticles can lead to the generation of Lorentz force that acts in the vertical direction of the magnetic field. This force can suppress circulation and reduce the heat transfer rate. This effect is observed when the nanoparticles are magnetic nanoparticles and the intensity of the magnetic field is raised [12].



The main objective of this work is to conduct a comprehensive literature review of the hydraulic and thermal behaviors inside a cavity. The focus will be on studying the effects of different shapes of the cavity, various applied boundary conditions, and different types of working fluids. The study will compare the effects of using various types of fluids such as air, water, nanofluids, non-Newtonian fluid, etc. The study will also aim to predict correlations for the Nusselt number for different ranges of Rayleigh and Reynolds numbers at different imposed boundary conditions.



The primary conclusion of this literature review is that not many studies have been conducted on phase change materials (PCMs) in cavities, and it is not the focus of our review. Additionally, few studies have considered the use of LES and DNS models to model turbulent flow in cavities. It is also suggested that optimization should be conducted to predict the optimum shape of the cavity. Finally, more studies are needed to investigate the behavior of cavities filled with different types of fluids, such as two immiscible fluids, which can include the interaction between two different regions inside the same enclosure, such as the development of a couple of thermal boundary layer with different fluids separated by different types of partition.



Aim of the Study


A configurative systematic review process is adopted for this study to review the following:




	
Model geometry, flow domain, type, CFD modeling, parameters, and meshing.



	
Different types of validations are used by researchers.



	
Heat transfer behavior for different flow conditions, geometries, boundary conditions, and the presence of different obstacles inside cavities.










2. Methodology


The present review employs a configurative systematic review approach to report on the heat transfer analysis inside different shapes of cavities. A flow chart of the process is provided in Figure 1. The study used various databases such as ScienceDirect, SAGE, ResearchGate, Google Scholar, and Web of Science to conduct the literature search. The search was conducted using key terms such as “Heat transfer”, “Rectangular cavity”, “Square cavity”, “Trapezoidal cavity”, “Triangular cavity”, “Hexagonal cavity”, “Octagonal cavity”, “T-shaped cavity”, “U-shaped cavity”, “C-shaped cavity”, “V-shaped cavity”, “H-shaped cavity”, “Arc-shaped cavity”, “L-shaped cavity”, “M-shaped cavity”, and “Cavity or enclosure”. The article-searching process began on 1 March 2022 and ended on 30 November 2022. One restriction was imposed during the search process, which was that the articles must be written in English.



In addition to the language restriction, the review also excluded articles that were published in ArXiv and Preprints, including conference and review articles. Book chapters, editorials, duplicate articles, articles with no data on heat transfer, articles with no full text available, and other irrelevant articles were also excluded. The authors also reviewed all the references that are connected to their research. Eligible articles were selected by two authors (G.S. & A.A.) who worked independently, screened all the articles, checked the title and abstract as well as assessed the full text. If there was any disagreement regarding the selection, a third author (S.C.S.) discussed the issues that occurred between the first two authors and then resolved the problem. Two authors (G.S. & A.A.) collected some information from the appropriate studies: author’s last name, published year, CFD tools, flow domain or shape of the domain, dimension of the study, algorithms used to solve the problem, parameters and their ranges, type of flow, name of nanofluids or hybrid nanofluids, nanofluids thermo-physical properties, validation data, and results on heat transfer analysis. A total of 2732 articles were considered, 1257 articles were removed because of duplication, 905 articles were removed for other exclusion criteria, and 570 articles were considered which were related to heat transfer analysis inside cavities. After careful screening of the title and abstract, a total of 315 articles were considered for screening of the full text. Finally, 297 articles were selected for the present review study.



The word cloud map in Figure 2 shows the most frequently used words in the abstracts of the selected articles. It appears that the main topics of these articles are natural convection and mixed convection, steady flow, and heat transfer. These articles also focus on numerical experiments, using air and nanofluids as working fluids and utilizing FVM and FEM as numerical methods. The average rate of heat transfer is often presented as a function of the Nusselt number in relation to the Richardson number and Rayleigh number.



Figure 3 shows that square cavities are the most studied among the different types of cavities, accounting for 47.5% of the total number of articles. The second most studied are triangular cavities, with 14.1% of the articles. Rectangular cavities (12.5%), trapezoidal cavities (7.4%), and cubical cavities (6.1%) are also studied in a significant number of articles. The other types of cavities are studied at much lower percentages, with T-shaped (0.7%) and U-shaped (1%) cavities being the least studied. 2.5% of articles deal with other types of cavities. Square cavities have a wide range of practical applications in various fields, such as aerospace, mechanical engineering, energy, and electronics. They have many advantages, for example, in heat transfer, fluid flow, and electromagnetic waves, and therefore are widely used in many engineering systems and devices. The high percentage of research articles focused on square cavities suggests that they are an important area of study in the field.




3. Physical Domain and Mathematical Modelling


3.1. Physical Domain


Many researchers have published a large number of articles over the years to study the hydraulic and thermal performances inside enclosures with various shapes such as square, rectangular, triangular, hexagonal, octagonal, trapezoidal, T-shaped, U-shaped, L-shaped, M-shaped, V-shaped, H-shaped, I-shaped, C-shaped, arc-shaped, and other modified geometries. These studies often introduce obstacles such as fins, cylinders, blocks, rotating blades, etc., inside these physical domains to further complicate the flow patterns and potentially enhance or degrade heat transfer rates Table 1 provides more information about this research.




3.2. Governing Equations


The Navier-Stokes equations describe the motion of a fluid and are widely used in engineering and physics to model different fluid flow phenomena. The equations consist of three main components: the continuity equation, which describes the conservation of mass, the momentum equation, which describes the forces that were applied to the fluid; and the energy equation, which describes the transfer of thermal energy. These equations can be applied to a wide range of fluid types and flow conditions, including incompressible, steady and unsteady flows, Newtonian and non-Newtonian fluids, laminar and turbulent flows, and fluids with different physical properties, such as air, water, and nanofluids. The geometry of the system can also be two or three-dimensional. Solving the Navier-Stokes equations is a challenging task and requires advanced mathematical techniques. In addition to the commonly studied body forces such as gravity and electromagnetic forces, other types of body forces can also play a role in various physical systems. These can include buoyancy forces, Brownian motion of particles, thermophoresis effect, heat generation or absorption, radiation, and the porous medium effect described by the Forchheimer-Brinkman model. These forces can have significant effects on the behavior of the system and must be taken into account when studying and modeling the system. Considering all the assumptions, the three-dimensional Navier-Stokes equation can be presented in the dimensional form (Versteeg [13]):



Continuity equation:


    ∂ u   ∂ x   +   ∂ v   ∂ y   +   ∂ w   ∂ z   = 0  



(1)







 u -momentum equation:


    ∂ u   ∂ t   + u   ∂ u   ∂ x   + v   ∂ u   ∂ y   + w   ∂ u   ∂ z   = −  1 ρ    ∂ p   ∂ x   +  μ ρ       ∂ 2  u   ∂  x 2    +    ∂ 2  u   ∂  y 2    +    ∂ 2  u   ∂  z 2      +  other   terms     



(2)







 v -momentum equation:


    ∂ v   ∂ t   + u   ∂ v   ∂ x   + v   ∂ v   ∂ y   + w   ∂ v   ∂ z   = −  1 ρ    ∂ p   ∂ y   +  μ ρ       ∂ 2  v   ∂  x 2    +    ∂ 2  v   ∂  y 2    +    ∂ 2  v   ∂  z 2      + g β   T −  T c      sin α +  other   terms   



(3)







 w -momentum equation:


       ∂ w   ∂ t   + u   ∂ w   ∂ x   +   v   ∂ w   ∂ y   + w   ∂ w   ∂ z        = −  1 ρ    ∂ p   ∂ z   +  μ ρ       ∂ 2  w   ∂  x 2    +    ∂ 2  w   ∂  y 2    +    ∂ 2  w   ∂  z 2      + g β   T −  T c      cos α +  other   terms      



(4)







Energy equation:


    ∂ T   ∂ t   + u   ∂ T   ∂ x   + v   ∂ T   ∂ y   + w   ∂ T   ∂ z   =  κ  ρ  C p         ∂ 2  T   ∂  x 2    +    ∂ 2  T   ∂  y 2    +    ∂ 2  T   ∂  z 2      +  Q  ρ  C p      T −  T c    +  other   terms   



(5)







Here,   u ,   v ,   w   are the velocities,  p  is the pressure, and t is the time.   x ,   y ,   z   are the Cartesian coordinate systems,  T  is the temperature,  ρ  is density,  μ  is dynamic viscosity,  g  is gravitational acceleration,  α  is the angle, and  β  is the thermal expansion coefficient respectively.



Complex geometries are often encountered in physical systems, and numerical methods are often used to solve the system of equations that govern these systems. Some common numerical techniques used include the finite difference method, finite volume method, finite element method, lattice Boltzmann method, wavelet-based methods such as Coiflet wavelet-homotopy method, fourth-order compact formulation, dual reciprocity boundary element method, spectral element method, large eddy simulation, direct numerical simulation, radial basis function-based partition of unity method, and Improved element-free Galerkin–reduced integration penalty method. These methods can be used to solve a wide range of problems and have been applied in various fields, such as fluid dynamics, heat transfer, and solid mechanics. The problem of heat transfer analysis inside cavities can also be solved using commercial and open-source computational fluid dynamics (CFD) codes or software. Some examples of commonly used commercial CFD codes include COMSOL Multiphysics, ANSYS Fluent, and ADINA Multiphysics. There are also open-source options, such as FlexPDE and OpenFOAM that can be used to solve such problems. These codes and software can be used to perform a wide range of simulations, including heat transfer, fluid flow, and solid mechanics. They are widely used in various fields such as aerospace, automotive, and mechanical engineering and often include a range of features and capabilities such as pre-processing, solving, and post-processing.




3.3. Meshing


In order to solve the system of equations that govern a physical system, the physical domain must be discretized into a smaller number of elements or cells. This process is known as meshing. The Navier-Stokes equations are then solved on these elements or cells to determine the complex flow and thermal field nature. The accuracy of the results largely relies on the number of cells used in the mesh, and smaller cells are preferred to obtain higher accuracy. However, there is a trade-off between the accuracy and computational resources required. It is necessary to find a balance between the computational time and cost and the desired accuracy of the solution.



Researchers have used a variety of meshing techniques to discretize the physical domain and solve the Navier-Stokes equations. These include uniform or non-uniform meshing with rectangular or orthogonal grids, tetrahedral meshing, and non-uniform meshing with triangular grids or clustered grids. The choice of meshing technique depends on the complexity of the geometry, the level of accuracy required, and the computational resources available. It is observed that many researchers have used structured meshes as opposed to unstructured meshes. This is because structured meshes are typically less computationally expensive and require less time for simulation. Additionally, most of the researchers carry out grid-independent tests (GIT) to ensure that the solution does not depend on the grid size. GIT is a vital part of numerical simulations, and it is important that researchers present a clear and detailed discussion of GIT. However, it is also seen that some researchers did not present a clear and detailed discussion on GIT.



A lack of comparison between the performance of uniform meshes and dense non-uniform or fine meshes on flow and temperature fields is often missing in the literature. This can make it difficult for readers to understand the effects of mesh resolution on the solution and the accuracy of the simulation. Comparing the results of simulations using different meshes is an important part of any numerical study, and it is known as a mesh independence study. This is particularly important for complex flow features and can help readers to understand or revisit the study. By comparing the performance of uniform meshes and dense non-uniform or fine meshes, one can determine the optimal mesh resolution for a specific problem and also identify the errors and uncertainties associated with the simulation. Therefore, a clear presentation of the mesh independence study is important for future readers to understand the study and to replicate the simulations.
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Table 1. (a): Research performed from 1989 to 2013. (b) The research was performed from 2014 to 2019. (c): Research performed from 2020 to 2023.






Table 1. (a): Research performed from 1989 to 2013. (b) The research was performed from 2014 to 2019. (c): Research performed from 2020 to 2023.





	
(a)




	
Ref.

	
CFD Methods and Algorithms

	
Flow Domain

	
Dimension, Type of Flow

	
Parameters and Ranges

	
Meshing




	
Wee et al. [2]

	
Experimental, FDM, DADI

	
Rectangular cavity

	
2D, unsteady, laminar

	
2   ×   105 ≤ GrT ≤ 2   ×   106, 10 ≤ GrC ≤ 2   ×   105, 2   ×   104 ≤ Ra ≤ 1.47   ×   106

	
-




	
Moallemi & Jjang [11]

	
FVM, SIMPLIER

	
Lid-driven square cavity

	
2D, steady, laminar, non-Newtonian

	
102 ≤ Re ≤ 2200, 0.01 ≤ Pr ≤ 50, 0.01 ≤ Ri ≤ 10

	
Non-uniform grid, 42   ×   42




	
Sasaguchi et al. [14]

	
Grid generation

	
Rectangular cavity with cylinders

	
2D, unsteady, laminar

	
N/A

	
Uniform mesh, 31   ×   101, 31   ×   121




	
Al-Amiri et al. [15]

	
FEM

	
Lid-driven cavity with wavy wall

	
2D, steady, laminar, mixed convection

	
Pr = 0.71, 1, Gr = 104, 0.1 ≤ Ri ≤ 10, 0 ≤ Am ≤ 0.075, 0 ≤  λ  ≤ 3, Re = 500

	
-




	
Saha et al. [16]

	
FEM

	
Inclined rectangular enclosure

	
2D, natural convection, steady, laminar

	
Pr = 0.71, 103 ≤ Gr ≤ 106, 0.5 ≤ A ≤ 1.0, 0 ≤  ϕ  ≤ 30

	
Non-uniform, six nodded 6394 elements




	
Saha et al. [17]

	
FVM

	
Triangular cavity

	
2D, natural convection

	
Pr = 0.71, Gr = 1.33   ×   106, 0.5 ≤ A ≤ 1.0

	
360   ×   90, 720   ×   160, 270   ×   90 for A = 0.2, 0.5, 1.0




	
Tiwari & Das [18]

	
FVM, SIMPLE, QUICK, TDMA

	
Double lid-driven square cavity

	
2D, unsteady

	
Pr = 6.2, 0.1 ≤ Ri ≤ 10, 103 ≤ Ra ≤ 106, 0 ≤  χ  ≤ 0.2,

Cu-water nanofluid

	
Uniform grid, 61   ×   61




	
Saha et al. [19]

	
FEM

	
Inclined sinusoidal enclosure

	
2D, steady, natural convection, laminar

	
Pr = 0.71, 103 ≤ Gr ≤ 106, 0 ≤  ϕ  ≤ 45

	
Non-uniform grid, 5240 elements




	
Varol et al. [20]

	
FDM

	
Triangular cavity

	
2D, natural convection

	
0.25 ≤ A ≤ 1.0, 102 ≤ Ra ≤ 103

	
Uniform grid, 61   ×   61




	
Chen & Cheng [21]

	
FVM, SOR

	
Lid-driven triangular cavity

	
2D, mixed convection, unsteady, laminar

	
Pr = 0.71, Re = 100, Gr = 5   ×   105

	
41   ×   41




	
Noor et al. [22]

	
FDM, QUICK, RK-4, SOLA

	
Double lid-driven square cavity

	
2D, unsteady, laminar

	
Pr = 0.71, 10 ≤ Re ≤ 103, 1 ≤  ϖ  ≤ 5

	
Clustered grid, 125   ×   125




	
Ouertatani et al. [23]

	
FVM, QUICK.

CDS, RBSOR

	
Double lid-driven cubic cavity

	
3D, mixed convection, unsteady, laminar

	
Pr = 0.71, 102 ≤ Re ≤ 103, 10−3  ≤  Ri ≤ 10

	
64   ×   64   ×   64




	
Basak et al. [24]

	
FEM

	
Triangular porous cavities

	
2D, natural convection, steady

	
10−5 ≤ Da ≤ 10−1, 0.015 ≤ Pr ≤ 103, 103 ≤ Ra ≤ 5105

	
20   ×   20–28   ×   28 bi-quadratic elements




	
Lei & O’Neill [25]

	
FVM, SIMPLE, CDS, SUR

	
Square cavity with different corners

	
2D, unsteady, natural convection

	
Pr = 6.62, 0 ≤ Ra ≤ 108

	
16,000 cells




	
Saha [26]

	
FEM

	
Sinusoidal corrugated enclosure

	
2D, steady

	
Pr = 0.71, 103 ≤ Gr ≤ 106, 0 ≤ Ha ≤ 102

	
Non-uniform grid, 4928 elements




	
Saha et al. [27]

	
FEM

	
Octagonal enclosure

	
2D, natural convection, steady, laminar

	
Pr = 0.71, 7, 20, 50, 103 ≤ Ra ≤ 106

	
Non-uniform, 10,466 elements




	
Saha et al. [28]

	
FVM, QUICK, SIMPLE

	
Triangular enclosure

	
2D, natural convection, unsteady

	
Pr = 0.72, 104 ≤ Ra ≤ 7.2   ×   106, A = 0.2, 0.5, 1.0

	
270   ×   90, 320   ×   80, 360   ×   90 for A = 1, 0.5 & 0.2




	
Saha et al. [29]

	
FVM, QUICK, SIMPLE

	
Triangular enclosure

	
2D, natural convection, unsteady

	
Pr = 0.72, 7.2   ×   103 ≤ Ra ≤ 1.5   ×   106, A = 0.2, 0.5, 1.0

	
270   ×   90, 320  ×  80, 360   ×   90 for A = 1, 0.5 & 0.2




	
Saha et al. [30]

	
FVM, QUICK, SIMPLE

	
Triangular enclosure

	
2D, natural convection, unsteady

	
Pr = 0.72, 5 ≤ Ra ≤ 1.5   ×   107, A = 0.2, 0.5, 1.0

	
360   ×   120, 320   ×   90, 360   ×   90 for A = 1, 0.5 & 0.2




	
Sivasankaran et al. [31]

	
FVM, UDS, CDS, SOR

	
Lid-driven square cavity

	
2D, unsteady, laminar, mixed convection

	
Pr = 0.71, 0 ≤ Am ≤ 1, 0 ≤   ϕ   ≤   π  , 0.1 ≤ Ri ≤ 102, 102 ≤ Re ≤ 103

	
Uniform grid, 81   ×   81




	
Sivakumar et al. [32]

	
FVM, SIMPLE, QUICK. CDS

	
Lid-driven square cavity

	
2D, mixed convection, unsteady, laminar

	
Pr = 0.71, 102 ≤ Re ≤ 103, 102 ≤ Gr ≤ 106, 10−2 ≤ Ri ≤ 102

	
Uniform grid, 81   ×   81




	
Al-Amiri & Khanafer [33]

	
ADINA, FSI, FEM, ALE

	
Lid-driven square cavity

	
2D, steady, laminar

	
Pr = 0.71, 102 ≤ Re, Gr ≤ 103

	
Non-uniform mesh, 120   ×   120




	
Cheng [34]

	
Compact formulation, SOR, ADI

	
Lid-driven square cavity

	
2D, mixed convection

	
10 ≤ Re ≤ 2200, 100 ≤ Gr ≤ 4.86  ×  106, 10−2 ≤ Pr ≤ 50, 10−2 ≤ Ri ≤ 102

	
256   ×   256




	
Nasrin & Parvin [35]

	
FEM, TFM

	
Lid-driven square cavity with wavy wall

	
2D, laminar, steady, mixed convection

	
30 ≤ Re ≤ 300, 0 ≤ Ha ≤ 50, Pr = 0.71, Ra = 104

	
Non-uniform, 37,123 nodes, 5604 elements




	
Saha [36]

	
FVM, QUICK

	
Triangular cavity

	
2D, unsteady, natural convection

	
0.2 ≤ A ≤ 1.0, 5 ≤ Pr ≤ 100, Ra = 107

	
-




	
Saha [37]

	
FVM, SIMPLE, QUICK

	
Triangular cavity

	
2D, unsteady, natural convection

	
0.2 ≤ A ≤ 1.0, 5 ≤ Pr ≤ 100, 5   ×   106 ≤ Ra ≤ 108

	
-




	
Yu et al. [38]

	
Fluent, FVM, QUICK, SIMPLE

	
Square cavity

	
2D, unsteady, natural convection

	
104 ≤ Ra ≤ 106, 0 ≤  χ  ≤ 0.04, CuO–H2O nanofluid

	
100   ×   100




	
Al-Farhany & Turan [39]

	
FVM, SIMPLER

	
Inclined rectangular porous cavity

	
2D, unsteady, natural convection

	
0 ≤ ϕ ≤ 85, 0.1 ≤ Le ≤ 10, −5 ≤ N ≤ 5, Pr = 4.5, Ra = 5 × 106

	
-




	
Arani et al. [40]

	
FVM, SIMPLIER, TDMA, CDS, UDS

	
Lid-driven square cavity

	
2D, mixed convection, laminar, steady

	
10−3 ≤ Ri ≤ 10, 0 ≤  χ  ≤ 0.1, Gr = 102, Re = 102

Cu–H2O nanofluid

	
Uniform grid. 80   ×   80




	
Basak et al. [41]

	
FEM

	
Porous triangular cavities

	
2D, natural convection, steady

	
Pr = 0.025, 1000, 10−5 ≤ Da ≤ 10−3, Ra = 5   ×   105

	
28   ×   28 bi-quadratic elements




	
Chamkha & Abu-Nada [42]

	
FVM, CDS, UDS, SOR, SUR

	
Double lid-driven square cavity

	
2D, mixed convection, steady, laminar

	
0.001 ≤ Ri ≤ 10, 0 ≤  χ  ≤ 0.1, H2O-Al2O3 nanofluid

	
Uniform grid, 81   ×   81




	
Nasrin & Parvin [43]

	
FEM

	
Trapezoidal cavity

	
2D, free convection, steady, laminar

	
Ra = 105,  χ  = 0.05, 0.65 ≤ A ≤ 2, 1.47 ≤ Pr ≤ 8.81, Cu–H2O nanofluid

	
40,295 nodes, 10,936 elements




	
Raji et al. [44]

	
FVM, SIMPLIER

	
Square cavity with blocks

	
2D, natural convection, laminar, steady

	
103 ≤ Ra ≤ 108, Pr = 0.71

	
254   ×   254




	
Saha & Gu [45]

	
FVM

	
Triangular enclosure

	
2D, natural convection, unsteady

	
Pr = 0.7, Ra = 105, A = 0.5

	
Triangular grid, 8143 nodes




	
Saha & Gu [46]

	
FVM

	
Triangular enclosure

	
2D, natural convection, unsteady

	
Pr = 0.72, 5.0   ×   104 ≤ Ra ≤ 106, A = 0.5

	
-




	
Teamah & El-Maghlany [47]

	
FVM, CDS, GS, TDMA

	
Square cavity

	
2D, steady, laminar

	
103 ≤ Ra ≤ 107, 0 ≤ Ha ≤ 60, 0 ≤  χ  ≤ 0.06, −10 ≤ q ≤ 10, Pr = 6.2, H2O based Al2O, Cu, TiO2 nanofluids

	
60   ×   60




	
Ahmed et al. [48]

	
Collocated FVM, UDS, CDS, TDMA

	
Inclined lid-driven square cavity

	
2D, mixed convection, laminar, steady

	
10−2 ≤ Ri ≤ 102, 0 ≤   A m   ≤ 1.0, 0 ≤ Ha ≤ 100, 0 ≤  φ  ≤ 90

	
Uniform grid. 81   ×   81




	
Bhardwaj & Dalal [49]

	
FDM, QUICK, SOR, CDS

	
Porous triangular cavity

	
2D, natural convection, laminar

	
103 ≤ Ra ≤ 106, 10−4 ≤ Da ≤ 10−2, Am = 0.05

	
Orthogonal mesh, 41   ×   41




	
Cho et al. [50]

	
FVM, SIMPLEC, TDMA

	
Lid-driven cavity with wavy surfaces

	
2D, mixed convection, laminar, steady

	
0 ≤  χ  ≤ 0.1, 10−2 ≤ Ri ≤ 103, 101 ≤ Gr ≤ 104, 0 ≤   A m   ≤ 0.2, Pr = 6.2, H2O based Cu, Al2O3, TiO2 nanofluids

	
101   ×   201




	
Elsherbiny & Ragab [51]

	
-

	
Inclined rectangular cavities

	
2D, laminar, natural convection

	
102 ≤ Ra ≤ 106, 0.5 ≤ A ≤ 5, 0 ≤  φ  ≤ 180

	
Uniform mesh, 42   ×   42




	
Huelsz & Rechtman [52]

	
LBM

	
Inclined square cavity

	
2D, natural convection, laminar, unsteady

	
Pr = 0.71, −180 ≤  φ  ≤ 180, 103 ≤ Ra ≤ 106

	
103   ×   103




	
Khanafer & Aithal [53]

	
ADINA, FEM, NR

	
Lid-driven square cavity with cylinder

	
2D, steady, laminar, mixed convection

	
Pr = 0.7, 104 ≤ Gr ≤ 106, 0.01 ≤ Ri ≤ 10, Re = 102

	
Non-uniform grid, 19,520 nodes




	
Ramakrishna et al. [54]

	
FEM

	
Trapezoidal cavities

	
2D, free convection, laminar

	
30 ≤  φ  ≤ 90, Pr = 0.015, 7.2, 103 ≤ Ra ≤ 105

	
28   ×   28 bi-quadratic elements




	
Sivasankaran et al. [55]

	
FVM, UDS, CDS

	
Inclined lid-driven square cavity

	
2D, unsteady, laminar, mixed convection

	
Pr = 0.71, 0.01 ≤ Ri ≤ 102, 0 ≤  φ  ≤ 90

	
81   ×   81




	
(b)




	
Ref.

	
CFD Methods and Algorithms

	
Flow Domain

	
Dimension, Type of Flow

	
Parameters and Ranges

	
Meshing




	
Sathitamoorthy & Chamkha [56]

	
FEM

	
Square cavity with thin partition

	
2D, natural convection, steady

	
Pr = 0.7, 100, 103 ≤ Rah ≤ 105

	
20   ×   20 elements, 41   ×   41 grid points




	
Abu-Nada & Chamkha [57]

	
FVM, SOR, SUR, UDS

	
Lid-driven square cavity with wavy wall

	
2D, mixed convection, laminar, steady

	
Pr = 6.57, 0.01 ≤ Ri ≤ 102, 0 ≤  χ  ≤ 0.09, H2O-CuO nanofluid

	
Uniform grid, 81   ×   81




	
Ait-Taleb et al. [58]

	
FDM, SIMPLE, TDMA

	
Rectangular cavities with tiles

	
2D, steady, laminar

	
8.7   ×   103 ≤ Rah ≤ 1.8   ×   105, 4.1   ×   105 ≤ RaH ≤ 1.23   ×   107, Pr = 0.71

	
Non-uniform mesh, 80   ×   40




	
Cheng & Liu [59]

	
Ansys Fluent, FVM, SOR, ADI

	
Lid-driven square and rectangular cavities

	
2D, unsteady

	
Pr = 0.71, 10−2 ≤ Ri ≤ 102, 0.2 ≤ A ≤ 5, 0 ≤  φ  ≤ 90, Re = 102

	
Uniform grid, 640   ×   128, 128   ×   128, 128   ×   640




	
Cho [60]

	
FVM, SIMPLE, TDMA

	
Square cavity with wavy wall

	
2D, natural convection, laminar, steady

	
103 ≤ Ra ≤ 106, 0 ≤  χ  ≤ 0.04, Pr = 6.2, H2O-Al2O3 nanofluid

	
101   ×   201




	
Kalteh et al. [61]

	
FDM, CDS, SUR

	
Lid-driven square cavity with block

	
2D, steady, mixed convection

	
Gr = 102, 0.000625 ≤ Ri ≤ 4, 0 ≤  χ  ≤ 0.05, H2O based Al2O3, TiO2, Ag, CuO nanofluids

	
Regular grid, 80   ×   80




	
Khanafer [62]

	
ADINA, FEM, FSI, ALE

	
Lid-driven square cavity

	
2D, steady, laminar, mixed convection

	
Pr = 0.7, 102 ≤ Gr ≤ 104, 10−4 ≤ Ri ≤ 1.0, 102 ≤ Re ≤ 103

	
Non-uniform, 120   ×   120




	
Muthtamilselvan & Doh [63]

	
FVM, SIMPLE, QUICK, TDMA

	
Lid-driven square cavity

	
2D, steady, mixed convection

	
0 ≤ Rai ≤ 105, Pr = 6.2, 10−2 ≤ Ri ≤ 10, 0 ≤  χ  ≤ 0.06, Cu-H2O nanofluid

	
Uniform grid, 41   ×   41




	
Ramakrishna et al. [64]

	
FEM

	
Porous trapezoidal cavity

	
2D, natural convection, laminar, steady

	
10−5 ≤ Da ≤ 10−3, 30 ≤  φ  ≤ 90, Pr = 0.015, 103

	
28   ×   28 bi-quadratic elements




	
Ray & Chatterjee [65]

	
Fluent, FVM

	
Lid-driven square cavity

	
2D, steady, mixed convection

	
0.1 ≤ Ri ≤ 10, 0 ≤ Ha ≤ 50, 0 ≤ J ≤ 5, Re = 102, Pr = 0.71

	
Non-uniform, 56,126 mixed elements




	
Saha & Gu [66]

	
Fluent, FVM

	
Triangular cavity

	
2D, unsteady, natural convection

	
Pr = 0.72, 105 ≤ Ra ≤ 108, A = 0.2, 0.5, 1.0

	
Non-uniform grid, 400   ×   100




	
Xu & Saha [67]

	
FVM, SIMPLE, QUICK

	
Square cavity with fin

	
2D, unsteady, natural convection

	
Pr = 0.71, 105 ≤ Ra ≤ 109

	
Non-uniform grid, 198   ×   198




	
Cui et al. [68]

	
Fluent, FVM, SIMPLE, QUICK

	
Triangular cavity

	
3D, natural convection, unsteady

	
A = 0.5, Pr = 6.98, Ra = 2.08   ×   106

	
Non-uniform grid, 100   ×   66  ×   45




	
Elsherbiny & Ismail [69]

	
FDM, TDMA, CDS

	
Inclined rectangular cavities

	
2D, laminar, steady

	
Pr = 0.71, 0 ≤  φ  ≤ 180, 103 ≤ Ra ≤ 106, A = 1, 5, 10

	
Uniform grid, 42   ×   42




	
Elsherbiny & Ragab [51]

	
-

	
Inclined rectangular cavities

	
2D, laminar, natural convection

	
Pr = 0.71, 0 ≤  φ  ≤ 180, 102 ≤ Ra ≤ 106

	
Uniform mesh, 42   ×   42




	
Groşan et al. [70]

	
FDM, CDS

	
Porous square cavity

	
2D, steady, natural convection

	
Ra = 10, 100, Le = 1, 10, H2O, aluminum foam, carbon nanotubes

	
227   ×   227




	
Moumni et al. [71]

	
FVM, AB, QUICK, CDS, Euler, RBSOR

	
Double lid-driven square cavity

	
2D, unsteady, laminar

	
1 ≤ Re ≤ 102, Pr = 6.2, 10−2 ≤ Ri ≤ 20, 0 ≤  χ  ≤ 0.2, H2O based Cu, Ag, Al2O3, TiO2 nanofluids

	
Uniform grid, 120   ×   120




	
Saha & Gu [72]

	
Fluent, FVM, QUICK

	
Triangular enclosure

	
2D, natural convection, steady, unsteady

	
105 ≤ Ra ≤ 106, Pr = 0.72, A = 0.2, 0.5, 1.0

	
Non-uniform grid




	
Sheremet & Pop [73]

	
FDM, CDS, SOR

	
Lid-driven square cavity

	
2D, unsteady, laminar, mixed convection

	
Re = 102, Pr = 6.26, 10 ≤ Gr ≤ 105, 10 ≤ Le ≤ 104, N, Nb, Nt = 0.1 to 0.4

	
Uniform grid, 400   ×   400




	
Sojoudi et al. [74]

	
Fluent, FVM

	
Triangular cavity

	
2D, natural convection, unsteady

	
103 ≤ Ra ≤ 106, 0.2 ≤ A ≤ 1, Pr = 0.72

	
15,700 triangular elements




	
Armaghani et al. [75]

	
FVM, SIMPLE

	
L-shaped cavity with baffle

	
2D, steady, natural convection

	
Pr = 0.71, 104 ≤ Ra ≤ 106, 0.1 ≤ A ≤ 0.7, 0 ≤ Bf ≤ 0.3, 0 ≤  χ  ≤ 0.04, Al2O3-H2O nanofluid

	
Uniform grid, 100   ×   100




	
Jmai et al. [76]

	
FVM, QUICK, SOR, multigrid

	
Double lid-driven square cavity

	
2D, unsteady, laminar, mixed convection

	
10−2 ≤ Ri ≤ 102, 0 ≤  χ  ≤ 0.1, Cu–H2O nanofluid

	
Non-uniform grid, 64   ×   64




	
Kareem et al. [77]

	
Fluent, URANS, LES, FVM, SIMPLE

	
Cubic lid-driven cavity

	
3D, unsteady, mixed convection, turbulent

	
Re = 5000, 10,000, 15,000 and 30,000

	
Structured, non-uniform, 1,699,200 grids




	
Kareem et al. [78]

	
FVM, UDS, SIMPLE

	
Lid-driven trapezoidal cavity

	
2D, mixed convection

	
0 ≤  χ  ≤ 0.04, 0.1 ≤ Ri ≤ 10, 102 ≤ Re ≤ 1200, 0 ≤  φ  ≤ 60, 0.5 ≤ A ≤ 2, H2O based Al2O3, CuO, SiO2, TiO2 nanofluids

	
Unstructured, non-uniform 5470 grids




	
Mamourian et al. [79]

	
FVM, SIMPLE

	
Lid-driven square cavity

	
2D, steady, laminar, Mixed convection

	
10−2 ≤ Ri ≤ 102, 0 ≤  χ  ≤ 0.1, Gr = 102, Am = 0.25, Cu–H2O nanofluid

	
Structured non-uniform, 101   ×   201




	
Mejri et al. [80]

	
LBM

	
Triangular cavity

	
2D, natural convection, laminar

	
103 ≤ Ra ≤ 106, 0 ≤   φ   ≤ 315, Ma = 0.1

	
-




	
Rahmati et al. [81]

	
LBM

	
Double lid-driven cavity

	
2D, mixed convection, laminar, steady

	
Gr = 100, Pr = 6.57, 10−2 ≤ Ri ≤ 102, 0 ≤  χ  ≤ 0.06, Cu-H2O nanofluid

	
100   ×   100




	
Rashad et al. [12]

	
FVM, ADI, SIMPLE, UDS, CDS

	
Lid-driven square cavity

	
2D, mixed convection, laminar

	
0 ≤ Ha ≤ 100, 10−3 ≤ Ri ≤ 10, 0 ≤  χ  ≤ 0.01, Cu-H2O nanofluid

	
Uniform grid, 81   ×   81




	
Selimefendigil & Öztop [82]

	
FEM, ALE

	
Lid-driven inclined square cavity

	
2D, steady

	
10−2 ≤ Ri ≤ 102, 0 ≤  χ  ≤ 0.05, 103 ≤ Rai ≤ 106, 0 ≤ Ha ≤ 50, 0 ≤  φ  ≤ 90, 5 ×  102 ≤ E ≤ 106, CuO-H2O nanofluid

	
Non-uniform mesh, 10,916 nodes




	
Selimefendigil & Öztop [83]

	
FEM, FSI, ALE

	
Triangular cavity

	
2D, natural convection, steady

	
104 ≤ Ra ≤ 106, 104 ≤ Rai ≤ 107, 0 ≤ Ha ≤ 40, 0 ≤  φ  ≤ 90, Pr = 7.1, 5   ×   102 ≤ E ≤ 105

	
-




	
Selimefendigil et al. [84]

	
FEM, NR

	
Lid-driven square cavity

	
2D, Mixed convection

	
10−2 ≤ Ri ≤ 102, 0 ≤ Ha ≤ 50, 0 ≤  φ  ≤ 90, 0 ≤  χ  ≤ 0.05, CuO-H2O nanofluid

	
Non-uniform,. 17,408 elements




	
Sojoudi et al. [85]

	
FVM, QUICK, SIMPLE

	
Triangular cavity

	
2D, unsteady, natural convection

	
103 ≤ Ra ≤ 106, 0.2 ≤ A ≤ 1.0, Pr = 0.72

	
15,600 triangular elements




	
Sojoudi et al. [86]

	
FVM, QUICK, SIMPLE

	
Triangular cavity

	
2D, unsteady, natural convection

	
103 ≤ Ra ≤ 106, 0.2 ≤ A ≤ 1.0, Pr = 0.71

	
360   ×   75, 360   ×   90, 360   ×   120 for A = 0.2, 0.5, 1




	
Aparna & Seetharamu [87]

	
FEM

	
Porous trapezoidal cavity

	
2D, natural convection

	
100 ≤ Ra ≤ 2000

	
41   ×   41




	
Alsabery et al. [88]

	
COMSOL, FEM

	
Trapezoidal cavity

	
2D, unsteady, non-Newtonian, laminar

	
104 ≤ Ra ≤ 106, 0 ≤  χ  ≤ 0.2, 0.1 ≤ Pr ≤ 103, 0 ≤  φ  ≤ 21.8, H2O based TiO2, Cu, Al2O3, Ag nanofluids

	
Non-uniform, 4690 elements




	
Al-Weheibi et al. [89]

	
COMSOL, FEM

	
Trapezoidal enclosure

	
2D, natural convection, unsteady, laminar

	
103 ≤ Ra ≤ 106, 0 ≤  χ  ≤ 0.1, 0.25 ≤ A ≤ 1.0

	
6-noded 403,388 elements, 204,436 grids




	
Balla et al. [90]

	
FEM

	
Inclined porous square cavity

	
2D, free convection, laminar

	
0.01 ≤  χ  ≤ 0.3, 101 ≤ Ra ≤ 103, 0 ≤ M ≤ 10, 0 ≤  φ  ≤ 90, H2O based TiO2, Cu, Al2O3, SiO2 nanofluids

	
6-noded triangular grid, 5000 elements, 2601 nodes




	
Cui et al. [91]

	
FVM

	
Prismatic enclosure

	
3D, unsteady, natural convection

	
100 ≤ Ra ≤ 106, Pr = 0.71

	
Non-uniform grid,

100   ×   66   ×   45




	
Das et al. [92]

	
FEM

	
Square & triangular cavities

	
2D, steady, laminar

	
Pr = 0.7, 103 ≤ Ra ≤ 105

	
34   ×   34 biquadratic elements




	
Gangawane [93]

	
Fluent, FVM, SIMPLE, QUICK

	
Lid-driven cavity with triangular block

	
2D, steady, laminar, mixed convection

	
1 ≤ Re ≤ 103, 0 ≤ Gr ≤ 105, Pr = 1, 50, 102, b = 10%, 20%, 30%

	
Unstructured, non-uniform, 26,318 nodes, 9126 elements




	
Ghalambaz et al. [94]

	
FEM, FSI, ALE

	
Square cavity with oscillating elastic fin

	
2D, natural convection, laminar, unsteady

	
Pr = 0.7, 104 ≤ Ra ≤ 107, 10−3 ≤ Am ≤ 0.1, 1 ≤ Tr ≤ 103, 108 ≤ E ≤ 1013

	
27,131 domain elements, 1022 boundary elements




	
Gibanov et al. [95]

	
FDM

	
Lid-driven square cavity with block

	
2D, steady, laminar, mixed convection

	
10−2 ≤ Ri ≤ 10, 0 ≤  χ  ≤ 0.05, Re = 102, Pr = 6.82, Al2O3-H2O nanofluid

	
Uniform grid, 200  ×  200




	
Gibanov et al. [96]

	
FDM

	
Lid-driven inclined square cavity

	
2D, unsteady, mixed convection

	
Ri =1, Re = 102, Pr = 6.26, Da = 10−7, 10−3, 0 ≤ Ha ≤ 102, 0 ≤  χ  ≤ 0.05, 0 ≤  φ  ≤  π , ferrofluid

	
Uniform grid, 200   ×   200




	
Hammami et al. [97]

	
FVM, QUICK, RBSOR

	
Double lid-driven cubic cavity with cylinder

	
3D, unsteady

	
102 ≤ Re ≤ 1500, Pr

	
Staggered grid non-uniform, 80   ×   80   ×   80




	
Hatami [6]

	
FEM, FlexPDE

	
Rectangular cavity with heated fins

	
2D, steady

	
0.03 ≤  χ  ≤ 0.09, H2O based TiO2, Al2O3 nanofluids

	
-




	
Hatami et al. [98]

	
FEM, RSM, FlexPDE

	
Lid-driven T-shaped porous cavity

	
2D, steady, mixed convection

	
Ri = 0.1, Re = 50, Da = 0.001, H2O based TiO2, Cu, Al2O3 nanofluids

	
-




	
Hussain et al. [99]

	
FEM, GE, CN

	
Double lid-driven square cavity

	
2D, steady, mixed convection

	
1 ≤ Re102, 0 ≤  φ  ≤ 45, 0.01 ≤ Ri ≤ 10, 0 ≤  χ  ≤ 0.04, Al2O3-H2O nanofluid

	
Uniform grid, 65,536 elements




	
Javed et al. [100]

	
FEM

	
Trapezoidal porous cavities

	
2D, free convection, steady

	
Pr = 6.2, 10−5 ≤ Da ≤ 10−3, 105 ≤ Ra ≤ 107, 0 ≤ Ha ≤ 60, 0 ≤  χ  ≤ 0.03, Cu-H2O nanofluid

	
6 noded 704 elements, 1000 grids




	
Kareem & Gao [101]

	
Fluent, LES, URANS, SIMPLEC, QUICK

	
Lid-driven cubic cavity with cylinder

	
3D, unsteady, mixed convection, turbulent

	
Pr, Re = 5000, 10,000, 15,000, 30,000, 0 ≤  Ω  ≤ 10

	
Structured, non-uniform cells, 929,160 elements




	
Khanafer & Aithal [102]

	
ADINA, FEM

	
Lid-driven square cavity with cylinder

	
2D, steady, laminar, mixed convection

	
0.01 ≤ Ri ≤ 10, Re = 100, −10 ≤  ω  ≤ 10

	
150   ×   150




	
Khatamifar et al. [103]

	
DNS, SIMPLE, QUICK

	
Rectangular cavity with partition

	
2D, natural convection, unsteady

	
105 ≤ Ra ≤ 109, Pr = 0.71, 0.05 ≤ Tp ≤ 0.2

	
Non-uniform mesh, 300   ×   250




	
Mojumder et al. [104]

	
FEM

	
Lid-driven L-shaped cavity

	
2D, mixed convection, laminar, steady

	
1 ≤ Re ≤ 100, 103 ≤ Gr ≤ 105, 10−5 ≤ Da ≤ 10−3, Pr = 6.2

	
Triangular mesh, 4452 elements




	
Selimefendigil et al. [105]

	
FEM, ALE, FSI

	
Lid-driven square cavity

	
2D, steady

	
0.01 ≤ Ri ≤ 5, 0 ≤ Ha ≤ 50,

102 ≤ Re ≤ 103, CuO-H2O nanofluid

	
Triangular elements, 17,224 grids




	
Selimefendigil et al. [106]

	
FEM, ALE, NR

	
Lid-driven Trapezoidal cavity with cylinder

	
3D, steady, laminar, mixed convection

	
0.5 ≤ Ri ≤ 50, 0 ≤  φ  ≤ 20, 0 ≤  χ  ≤ 0.04, 103 ≤ E ≤ 105, CuO-H2O nanofluid

	
Tetrahedral elements




	
Selimefendigil & Öztop [107]

	
FEM, FSI, ALE

	
Lid-driven triangular cavity

	
2D, mixed convection, steady

	
0.05 ≤ Ri ≤ 50, 0 ≤  χ  ≤ 0.04, Pr = 6.8, 104 ≤ RaI ≤ 108, 500 ≤ E ≤ 105, H2O–CuO nanofluid

	
Non-uniform grid, 26,306 elements




	
Sheremet et al. [108]

	
FDM

	
Triangular cavities

	
2D, natural convection

	
Pr = 0.7, 104 ≤ Ra ≤ 2  ×  105, 102 ≤ Le ≤ 104, 0 ≤ N ≤ 5, Nb = Nt = 0.1

	
Uniform grid, 300   ×   150




	
Yu et al. [3]

	
FDM, UCS, TVD, RK

	
Rectangular cavity

	
2D, unsteady, laminar

	
Pr = 0.025, A = 2, 0 ≤ Ha ≤ 50, 0 ≤ Le ≤ 20

	
Uniform grid, 41   ×   81




	
Aghakhani et al. [109]

	
FDLBM

	
C-shaped cavity

	
2D, laminar, non-Newtonian

	
103 ≤ Ra ≤ 105, 0 ≤ Ha ≤ 40, 0.2 ≤ A ≤ 0.6

	
160   ×   160




	
Astanina et al. [110]

	
FDM

	
Lid-driven square porous cavity

	
2D, steady, mixed convection

	
0.01 ≤ Ri ≤ 10, 0 ≤  χ  ≤ 0.04, 10−7 ≤ Da ≤ 10−3, Da2 = 10−5, Re = 102, Pr = 6.82, H2O–Al2O3 nanofluid

	
Uniform grid, 200   ×   200




	
Alsabery et al. [111]

	
FEM, FEA, NR

	
Double lid-driven square cavity with block

	
2D, steady, laminar, mixed convection

	
1 ≤ Re ≤ 500, 10−2 ≤ Ri ≤ 102, 0 ≤  χ  ≤ 0.04, Pr = 4.623, Le = 3.5   ×   105, Sc = 3.55   ×   104, H2O–Al2O3 nanofluid

	
Uniform triangular grid, 12,232 grids




	
Balootaki et al. [112]

	
LBM-BGK

	
Lid-driven rectangular cavity with block

	
2D, mixed convection

	
10−2 ≤ Ri ≤ 50, Re = 100, Pr = 0.7

	
450   ×   150




	
Bhowmick et al. [113]

	
FEM, SIMPLE, QUICK

	
V-shaped cavity

	
2D, natural convection

	
2.26   ×   105 ≤ Ra ≤ 2.26   ×   109, 0.1 ≤ A ≤ 1.0, Pr = 6.63

	
Non-uniform, 800   ×   150




	
Cho [114]

	
FVM, TDMA, SIMPLE

	
Lid-driven cavity with wavy surface

	
2D, steady, laminar, mixed convection

	
10−2 ≤ Ri ≤ 102, 0 ≤  χ  ≤ 0.04, 1 ≤ Re ≤ 200, Pr = 6.2, 0 ≤ Am ≤ 0.6, H2O–Cu nanofluid

	
101   ×   1001




	
Gangawane et al. [115]

	
Fluent, FVM, SIMPLE, QUICK

	
Lid-driven square cavity with block

	
2D, steady, laminar, mixed convection

	
Ri= 0.01, 1, 10, Pr= 1, 1 ≤ Re ≤ 103

	
Unstructured, 17,874 nodes, 17,598 elements




	
Gibanov et al. [116]

	
FDM

	
Lid-driven square cavity

	
2D, mixed convection, laminar, unsteady

	
10−2 ≤ Ri ≤ 10, 0 ≤  χ  ≤ 0.05, 1.0 ≤ K ≤ 20.0, Re = 100, Pr = 6.82, H2O–Al2O3 nanofluid

	
Uniform grid, 100   ×   100




	
Hussain et al. [117]

	
FEM, CN, GE

	
Double lid-driven square cavity

	
2D, laminar, unsteady, mixed convection

	
0 ≤  χ  ≤ 0.04, 10−2 ≤ Ri ≤ 10, 0 ≤ Ha ≤ 102, 0 ≤  φ  ≤ 90, H2O–Al2O3 nanofluid

	
Non-uniform triangular grid, 65,536 elements




	
Javed & Siddiqui [118]

	
FEM

	
Square cavity with square blockage

	
2D, free convection, steady, laminar

	
105 ≤ Ra ≤ 107, Pr = 0.062,

0 ≤  χ  ≤ 0.06, 0 ≤ Ha ≤ 60, H2O–Cobalt ferrofluid

	
Non-uniform, 6-noded 1776 elements




	
Karbasifar et al. [119]

	
SIMPLEC

	
Lid-driven cubic cavity with cylinder

	
3D, laminar, steady, mixed convection

	
10−2 ≤ Ri ≤ 102,  χ  = 0, 0.1%, 0.2%,  φ  = 0, 15, 45, H2O–Al2O3 nanofluid

	
-




	
Kareem & Gao [120]

	
Fluent, URANS, SIMPLEC, QUICK

	
Lid-driven Cubical cavity with cylinder

	
3D, mixed convection, unsteady, turbulent

	
5000 ≤ Re ≤ 104, −5 ≤ Ω ≤ 5, SiO2-H2O nanofluid

	
929,160 grids




	
Mikhailenko et al. [121]

	
FDM, CDS, Thomas, SOR

	
Rotating square cavity with obstacle

	
2D, laminar, unsteady

	
Pr = 0.7, Ra = 105, 0 ≤  φ  ≤ 180, 0 ≤ Ta ≤ 106, 0.1 ≤ Os ≤ 1.0, 0.0 ≤ ε ≤ 0.9

	
101   ×   101




	
Oglakkaya & Bozkaya [122]

	
DRBEM

	
Lid-driven square cavity

	
2D, mixed convection, unsteady, laminar

	
Pr = 0.71, Re = 102, Am = 0.05, Ha = 0, 25, 50, 0 ≤  φ  ≤ 90, J = 0, 1, 3, 5, 103 ≤ Ra ≤ 105

	
400 grids




	
Razera et al. [123]

	
Fluent, FVM, SIMPLEC

	
Lid-driven square cavity

	
2D, steady, laminar, mixed convection

	
101 ≤ Re ≤ 103,

103 ≤ Ra ≤ 106,

Pr = 0.71

	
Non-uniform, 33,248 volumes




	
Selimefendigil & Öztop [124]

	
FEM, COBYLA

	
Lid-driven trapezoidal cavity

	
2D, mixed convection

	
0.01 ≤ Ri ≤ 25, 0 ≤ Ha ≤ 40, 0 ≤  φ  ≤ 90, 0 ≤  χ  ≤ 0.03, H2O–Al2O3 nanofluid

	
6282, 4685 and 3691 elements for different  φ 




	
Sheikholeslami [125]

	
LBM

	
Lid-driven square cavity with hot sphere

	
3D, forced convection

	
10−3 ≤ Da ≤ 102, 30 ≤ Re ≤ 180, 0 ≤ Ha ≤ 40, H2O–Al2O3 nanofluid

	
81   ×   81   ×   81




	
Sheremet et al. [126]

	
FDM

	
Porous square vented cavity

	
2D, mixed convection, unsteady

	
104 ≤ Ra ≤ 106, Nb = Nt = 10−6, 10−5 ≤ Da ≤ 10−2, 50 ≤ Re ≤ 300, Pr = 6.82, Le = 103, N = 1, H2O–Al2O3 nanofluid

	
Uniform grid, 201   ×   201




	
Taghizadeh & Asaditaheri [127]

	
OpenFOAM, FVM.

SIMPLE

	
Lid-driven square cavity with cylinder

	
2D, laminar, mixed convection

	
0.01 ≤ Ri ≤ 10, 10−5 ≤ Da ≤ 10−2, 0 ≤  φ  ≤ 90, Re = 100, Pr = 0.7

	
Non-uniform, 11,200




	
Zhai et al. [128]

	
FVM, SIMPLE, QUICK

	
Triangular Roof

	
2D, unsteady, natural convection

	
104 ≤ Ra ≤ 107, 0.1 ≤ A ≤ 1.0, Pr = 0.71

	
Non-uniform mesh, 600   ×   600




	
Zhou et al. [129]

	
LBM, OpenMP

	
Double lid-driven cubic cavity

	
3D, mixed convection, laminar, unsteady

	
0.1 ≤ Ri ≤ 102, 0 ≤  χ  ≤ 0.04, H2O–Al2O3 nanofluid

	
101   ×   101   ×   101




	
Alnaqi et al. [130]

	
FDM

	
Square cavity with a fin

	
2D, laminar, steady

	
0 ≤ Ha ≤ 60, 103 ≤ Ra ≤ 106, 0 ≤ Rd ≤ 3, 0 ≤  χ  ≤ 0.06, H2O–Al2O3 nanofluid

	
Uniform grid. 120   ×   120




	
Al-Rashed et al. [131]

	
FVM, SIMPLEC

	
Inclined lid-driven cubical cavity

	
3D, steady, mixed convection, laminar

	
Re, Gr, Pr, 1 ≤ Ri ≤ 102, 0 ≤  φ  ≤ 45, H2O–Al2O3 nanofluid

	
-




	
Barnoon et al. [132]

	
FVM, SIMPLE

	
Lid-driven square cavity with cylinders

	
2D, steady, laminar, mixed convection

	
0 ≤ Ha ≤ 30, 1 ≤ Ri ≤ 102, 0 ≤  φ  ≤ 90, 0.01 ≤  χ  ≤ 0.03, H2O–Al2O3 nanofluid

	
Non-uniform grid, 19,297 elements




	
Bhowmick et al. [133]

	
Fluent, FVM, SIMPLE

	
V-shaped triangular cavity

	
2D, natural convection, unsteady

	
1 ≤ Ra ≤ 108, A = 0.5, Pr = 0.71

	
800   ×   150




	
Cho [134]

	
FVM, SIMPLE, TDMA

	
Lid-driven cavity with wavy wall

	
2D, laminar, mixed convection

	
1 ≤ Re ≤ 300, 0 ≤ Ha ≤ 50, 10−2 ≤ Re ≤ 102, 0 ≤ Am ≤ 0.7, 0 ≤  χ  ≤ 0.04, 0 ≤  φ  ≤ 360, Cu-H2O nanofluid

	
Non-uniform grid, 101   ×   1001




	
Cui et al. [135]

	
FVM

	
Prismatic enclosure

	
3D, unsteady, natural convection

	
100 ≤ Ra ≤ 107, Pr = 0.71, 0.1 ≤ A ≤ 1.5

	
Non-uniform mesh, 138   ×   42   ×   51




	
Hadavand et al. [136]

	
FVM, SIMPLEC

	
Lid-driven sim-circular cavity

	
2D, mixed convection, laminar, steady

	
1 ≤ Ri ≤ 10,  φ  = −90 to 90, 0 ≤  χ  ≤ 0.06, Ag-H2O nanofluid

	
Unorganized triangular grid, 44,896 grids




	
Hamid et al. [137]

	
FEM

	
Trapezoidal cavity

	
2D, steady, non-Newtonian, natural convection, laminar

	
104 ≤ Ra ≤ 105.5, Pr = 20

	
-




	
Jiang & Zhou [4]

	
FVM, QUICK, CDS, PISO

	
Rectangular cavity

	
2D, steady, laminar

	
0 ≤  χ  ≤ 0.25, dp = 13, 36, 50 nm, distilled H2O-Al2O3, PGW-ZnO nanofluids

	
Non-uniform orthogonal grid, 200   ×   50




	
Karatas & Derbentli [138]

	
Experimental research

	
Rectangular cavity

	
3D, unsteady

	
4.5   ×   103 ≤ Rai ≤ 1.13   ×   108, A = 1, 2.09, 3, 4, 5, 6

	
-




	
Lamarti et al. [139]

	
LBM

	
Lid-driven square cavity

	
2D, mixed convection, laminar

	
Pr = 0.71, 102 ≤ Re ≤ 103, 102 ≤ Gr ≤ 106, 1 ≤  ω  ≤ 5

	
100   ×   100




	
Louaraychi et al. [140]

	
FVM, SIMPLER, TDMA

	
Double lid-driven rectangular cavity

	
2D, unsteady, mixed convection

	
1 ≤ Ra ≤ 107, 0.1 ≤ Pe ≤ 500, A = 24

	
Uniform grid, 381   ×   121




	
Mohebbi et al. [141]

	
LBM

	
Γ-shaped enclosure with obstacle

	
2D, natural convection, steady, laminar

	
103 ≤ Ra ≤ 106, 0 ≤  χ  ≤ 0.05, 0.2 ≤ A ≤ 0.6, Al2O3-H2O nanofluid

	
100   ×   100




	
Selimefendigil & Öztop [142]

	
FEM, ALE, NR

	
Lid-driven L-shaped cavity

	
2D, steady, mixed convection

	
0.03 ≤ Ri ≤ 30, 0 ≤  χ  ≤ 180, 104 ≤ RaI ≤ 106, 0 ≤ Ha ≤ 50, CuO-H2O nanofluid

	
Non-uniform, 19,112 elements




	
(c)




	
Ref.

	
CFD Methods and Algorithms

	
Flow Domain

	
Dimension, Type of Flow

	
Parameters and Ranges

	
Meshing




	
Abu-Hamdeh et al. [143]

	
FVM, SIMPLE, CDS, UDS, TDMA

	
Lid-driven porous square open cavity

	
2D, mixed convection, steady

	
102 ≤ Re ≤ 103, 10−3 ≤ Da ≤ 0.1, 103 ≤ Gr ≤ 105

	
Staggered grid, 48   ×   48




	
Afrand et al. [144]

	
SIMPLE

	
Triangular cavity

	
2D, free convection, laminar, steady

	
104 ≤ Ra ≤ 106, 0 ≤ Ha ≤ 40, 0 ≤  φ  ≤ 90, 0 ≤  χ  ≤ 0.06, Al2O3-H2O nanofluid

	
Staggered grid




	
Alsabery et al. [145]

	
FEM

	
Lid-driven square cavity

	
2D, mixed convection, steady, laminar

	
1 ≤ Re ≤ 500, 0.01 ≤ Ri ≤ 100, 0 ≤ Ha ≤ 50, 0 ≤  ϕ  ≤ 0.04, Al2O3-H2O nanofluid

	
Triangular grid, 6402 elements




	
Alsabery et al. [146]

	
FEM

	
Lid-driven cubic cavity with cylinder

	
3D, mixed convection, steady

	
Re = 10, 100, Pr = 4.623, 10−2 ≤ Ri ≤ 102, 0 ≤  χ  ≤ 0.04, Le = 3.5   ×   105, Sc = 3.55   ×   104, Al2O3-H2O nanofluid

	
Non-uniform triangular grid, 175,778 elements




	
Bilal et al. [147]

	
FEM

	
Triangular cavity with cylinder

	
2D, laminar, steady, free convection

	
103 ≤ Ra ≤ 106, 0.2 ≤ Pr ≤ 7

	
Hybrid grid




	
Cho [148]

	
FVM, SIMPLE, TDMA

	
Square cavity with wavy walls

	
2D, natural convection, steady, laminar

	
Pr = 6.2, 102 ≤ Ra ≤ 106, 10−6 ≤ Da ≤ 10−2, 0 ≤  χ  ≤ 0.04, Cu-H2O nanofluid

	
101   ×   1001




	
Ganesh et al. [149]

	
FEM

	
Square Cavity with different obstacles

	
2D, steady, laminar

	
103 ≤ Ra ≤ 106, 0 ≤  χ  ≤ 0.08, 103 ≤ RaE ≤ 106, 103 ≤ RaI ≤ 105

Al2O3-H2O/Ethylene Glycol nanofluid

	
Circular: 6979 elements, Square: 21,916 elements, Triangular: 19,431 elements




	
Haq et al. [150]

	
FEM

	
Lid-driven hexagonal cavity with obstacle

	
2D, steady

	
200 ≤ Re ≤ 500, Pr = 6.2, 10−6 ≤ Ri ≤ 1, 0 ≤ Ha ≤ 20, SWCNT-H2O nanofluid

	
Non-uniform triangular elements




	
Khan et al. [151]

	
FEM

	
Porous trapezoidal cavity

	
2D

	
Pr = 6.2, 102 ≤ Ha ≤ 104, 104 ≤ Ra ≤ 105, 0 ≤  χ  ≤ 0.2%, Fe3O4-H2O ferrofluid

	
-




	
Li et al. [152]

	
FDLBM

	
Triangular enclosure

	
2D, laminar, non-Newtonian, steady

	
103 ≤ Ra ≤ 105, 0 ≤ Ha ≤ 60, 0 ≤  φ  ≤ 90

	
160   ×   160 or 19,600 nodes




	
Liu & Huang [153]

	
DNS, QUICK, SIMPLE, CDS

	
Rectangular cavities with or without fins

	
2D, unsteady, turbulent

	
1.15   ×   108 ≤ Ra ≤ 3.68   ×   109

	
Non-uniform grid, 400   ×   360 cells




	
Rammane et al. [154]

	
TS, MLS, NR, HO-MFA

	
Lid-driven square cavity

	
2D, steady

	
102 ≤ Re ≤ 2   ×   104

	
Mesh free




	
Saha et al. [155]

	
FVM, SIMPLE, QUICK

	
Triangular enclosure

	
2D, unsteady, natural convection

	
Pr = 0.72, 105 ≤ Ra ≤ 109, 0.2 ≤ A ≤ 1.0

	
380   ×   80, 380   ×   100, 380   ×   160 for A = 0.2, 0.5, 1




	
Selimefendigil & Öztop [156]

	
FVM, QUICK, SIMPLE

	
U-shaped corrugated cavity

	
2D, forced convection, laminar, steady

	
102 ≤ Re ≤ 103, 0 ≤ Ha ≤ 50, 10−4 ≤ Da ≤ 5   ×   10−2, CNT-H2O nanofluid

	
Non-uniform grid, 38,874 grids




	
Soomro et al. [157]

	
FEM

	
Lid-driven Triangular cavity with obstacle

	
2D, mixed convection, laminar, steady

	
200 ≤ Re ≤ 600, 0.01 ≤ Ri ≤ 1, 0 ≤ Ha ≤ 20, Pr = 6.2

	
Around 5000 nodes




	
Thiers et al. [158]

	
SEM, NeK5000, GMRES

	
Rectangular cavity

	
2D, unsteady

	
A = 4, Pr = 0.71, Ra = 9   ×   107

	
183   ×   169




	
Aljabair et al. [159]

	
FDM, CDS, UDS, SOR

	
Sinusoidal lid-driven cavity

	
2D, mixed convection, laminar

	
1 ≤ Re ≤ 1000, 0 ≤ Ra ≤ 107, 0 ≤  χ  ≤ 0.07, Cu-H2O nanofluid

	
41   ×   41




	
Alsabery et al. [160]

	
FEM

	
Wavy lid-driven square cavity

	
2D, laminar, steady, mixed convection

	
0.01 ≤ Ri ≤ 10, Re = 100, 0 ≤  ϕ  ≤ 0.04, H2O/Cu-Al2O3 hybrid nanofluid

	
-




	
Çolak et al. [161]

	
OpenFOAM, FVM, SIMPLE

	
Lid-driven cavity with porous

block

	
2D, mixed convection, steady

	
10−1 ≤ Ri ≤ 10, Gr = 105, 10−7 ≤ Da ≤ 10−1, Pr = 6.2

	
Uniform grid, 201   ×   201




	
Eshaghi et al. [162]

	
FEM

	
H-shaped cavity with a baffle inside

	
2D, natural convection, laminar

	
104 ≤ Ra ≤ 106, 2 ≤ Le ≤ 8, 1 ≤ N ≤ 3, −60 ≤  φ . ≤ 60, Cu-Al2O3-H2O hybrid nanofluid

	
-




	
Fayz-Al-Asad et al. [163]

	
FEM

	
Triangular cavity

	
2D, natural convection, steady

	
Pr = 0.71, 104 ≤ Ra ≤ 106

	
6718 elements, 13,112 nodes




	
Hasnaoui et al. [164]

	
LBM, MRT, BGK

	
Rectangular cavity

	
2D, biry mixture

	
Sr = −0.5, 0, 0.5, 0 ≤ Ra ≤ 80, Pr = 0.71, A = 2, Le = 2

	
120   ×   240




	
Hussain et al. [165]

	
FEM

	
Double lid-driven cavity with fins

	
2D, laminar, steady

	
0 ≤ Ha ≤ 100, 0 ≤  φ  ≤ 90,

0.01 ≤ Ri ≤ 1, Pr = 6.2, Re = 100,  χ  = 0.02, Cu-H2O nanofluid

	
33,177 grids




	
Hoston et al. [166]

	
IEFG–RIPM

	
Lid-driven square cavity

	
2D, steady

	
Re = 10,000, 15,000, 20,000, 25,000, 30,000 and 35,000

	
150   ×   150 (Refined at cavity walls)




	
Ibrahim & Hirpho [167]

	
COMSOL, FEM

	
Trapezoidal cavity

	
2D, mixed convection, laminar

	
Ha = 0, 50, Ri = 0.1, 1, 10, Re = 100, Am = 0.25, 0.5, 1

	
91   ×   91




	
Ikram et al. [168]

	
FEM, ALE

	
Hexagonal cavity with rotating modulator

	
2D, forced convection, unsteady, laminar

	
Pr = 0.71, 102 ≤ Re ≤ 103, 103 ≤ Bi ≤ 104, 103 ≤ Ra ≤ 107

	
Non-uniform, 48,548 elements




	
Joe & Perumal [169]

	
OpenFOAM, FVM

	
Rectangular cavity containing cylinders

	
2D, unsteady

	
Pr = 0.72, Re = 1600

	
Unstructured triangular cells




	
Mondal & Mahapatra [170]

	
FDM, BiCGStab

	
Trapezoidal cavity

	
2D, mixed convection, steady, laminar

	
Pr = 6.2, N = 5, 0.5 ≤ A ≤ 2, 10−2 ≤ Ri ≤ 102, 102 ≤ Re ≤ 103, 45 ≤  φ  ≤ 90, 0 ≤  χ  ≤ 0.5, 20 ≤ Ha ≤ 40, 1 ≤ Le ≤ 2, Al2O3-H2O nanofluid

	
81   ×   81




	
Mebarek-Oudina et al. [171]

	
FEM

	
Trapezoidal porous cavity with zigzag wall

	
2D, laminar, steady

	
0 ≤ Ha ≤ 100, 0 ≤  φ  ≤ 90, 103 ≤ Ra ≤ 105, 0 ≤  χ  ≤ 0.08, Cu-Al2O3/H2O hybrid nanofluid

	
Triangular grid, 20,296 elements




	
Saha et al. [172]

	
FVM

	
Rectangular cavity with baffles

	
2D, laminar, steady

	
50 ≤ Re ≤ 250

Ri = 0, 2, 4

	
45   ×   51




	
Saha et al. [173]

	
FVM, SIMPLE, QUICK

	
Triangular cavity

	
2D, natural convection

	
Pr = 0.72, 103 ≤ Ra ≤ 106, A = 0.2, 0.5, 1.0

	
360   ×   75, 360   ×   90, 360   ×   120 for A = 0.2, 0.5, 1




	
Shah et al. [174]

	
FEM, NR

	
Lid-driven trapezoidal cavity with obstacle

	
2D, mixed convection, steady, laminar

	
10−2 ≤ Ri ≤ 10, 0.1 ≤ Le ≤ 10, 300 ≤ Re ≤ 500, −10 ≤ N ≤ 10, Pr = 0.71

	
Non-uniform, approx. 3200 elements




	
Shahid et al. [175]

	
MRT-LBM

	
Triangular lid driven cavity

	
2D, mixed convection, unsteady

	
Pr = 0.71, 1, 7, 10−2 ≤ Ri ≤ 102, 104 ≤ Gr ≤ 107

	
-




	
Shahid

et al. [176]

	
MRT-LBM

	
Lid-driven rectangular cavity with obtacles

	
2D, mixed convection, laminar

	
Pr = 0.71, 1, 7, 10−2 ≤ Ri ≤ 102, 103 ≤ Gr ≤ 106, A = 0.2, 0.5, 2, 5

	
Not clearly mentioned for different A




	
Shekaramiz et al. [177]

	
OpenFOAM, FVM, SIMPLE

	
Wavy triangular cavity

	
2D, free convection, steady

	
5   ×   103 ≤ Ra ≤ 2   ×   105, Pr = 4.6, 0 ≤ Ha ≤ 50, 0 ≤  φ  ≤ 90,  χ  = 2%, H2O-Fe3O4 nanofluid

	
16,000 and 12,000 nodes




	
Tizakast et al. [178]

	
FVM, SIMPLER

	
Lid-driven rectangular cavity

	
2D, laminar, unsteady, non-Newtonian

	
RaT ≤ 5   ×   106, Pe ≤ 103, 10−3 ≤ Le ≤ 103, 10−3 ≤ N ≤ 103, 0.6 ≤ n ≤ 1.4

	
Uniform grid, A = 24:381   ×   121




	
Velkennedy et al. [179]

	
FDM, ADI, CDS

	
Rectangular vented cavity

	
2D, laminar, unsteady

	
103 ≤ Ra ≤ 106, Pr = 0.71

	
181   ×   121




	
Xiong et al. [180]

	
FEM

	
Lid-driven triangular cavity

	
2D, mixed convection

	
Pr = 6.2, 0 ≤ Ha ≤ 40, 0 ≤ Re ≤ 103, 0.01 ≤ Ri ≤ 2

	
Uniform triangular mesh




	
Abbas et al. [181]

	
FEM

	
Square cavity with obstacles

	
2D, steady, laminar

	
0 ≤  χ  ≤ 0.04, 10 ≤ Ha ≤ 40, 103 ≤ Ra ≤ 107, Cu-H2O nanofluid

	
59,173 elements




	
Ahmed et al. [182]

	
Coiflet wavelet-homotopy method

	
Lid-driven square porous cavity

	
2D, unsteady

	
Pr = 6.2, 10 ≤ Ri ≤ 102, 10−4 ≤ Da ≤ 10−1, 3 ≤ Le ≤ 106,

Al2O3-Cu/H2O hybrid nanofluid

	
-




	
Alam et al. [8]

	
FEM

	
Semi-circular cavity

	
2D, unsteady, semi-circular cavity, free convection

	
Pr = 23.0, 6.84, 1 ≤ dp ≤ 10, 0 ≤  χ  ≤ 0.05, 0 ≤ Ha ≤ 100, 104 ≤ RaT ≤ 106, ZnO, Fe3O4, Co, Al2O3, Ag nanoparticles, H2O & kerosene as base fluids

	
15,817 elements




	
Ali et al. [183]

	
Comsol, FEM

	
Lid-driven square cavity

	
2D, mixed convection, steady

	
Re = 1, 10, 102, Ha = 0, 10, 25,  χ  = 0, 1%, 5%, Pr = 6.2, Gr = 102, Al2O3-H2O nanofluid

	
Non-uniform, 30,550 nodes, 60,036 elements




	
Alqaed et al. [5]

	
FVM, SIMPLE

	
Rectangular cavity with triangular blades

	
2D, steady, laminar

	
103 ≤ Ra ≤ 105, 0 ≤ Ha ≤ 30,  χ  = 0.3, Al2O3-H2O nanofluid

	
150   ×   450




	
Acharya & Chamkha [184]

	
FEM

	
Hexagonal cavity with parallel fins

	
2D, laminar, steady

	
103 ≤ Ra ≤ 105, 0 ≤ Ha ≤ 100, 0 ≤  χ  ≤ 0.04, Pr = 6.2, Al2O3-H2O nanofluid

	
Non-uniform, 34,502 elements




	
Batool et al. [185]

	
FVM, SIMPLE

	
Lid-driven square cavity

	
2D, steady, laminar

	
100 ≤ Re ≤ 400, micropolar nanofluids

	
Staggered grid




	
Charqui et al. [186]

	
FVM, SIMPLE, TDMA

	
Tall partitioned cavity

	
2D, natural convection, laminar

	
Pr = 0.71, 7, A = 40

	
Uniform mesh, 80   ×   200




	
Cui et al. [187]

	
FVM, SIMPLE

	
Triangular cavity

	
3D, natural convection, unsteady

	
Pr = 0.7, 102 ≤ Ra ≤ 107, 0.1 ≤ A ≤ 1.5

	
Non-uniform mesh, 141   ×   41   ×   51




	
Dahani et al. [188]

	
LBM, MRT, BGK operator

	
Double lid-driven square cavity

	
2D, unsteady

	
0 ≤  φ  ≤ 180, Re = 102, 10−2 ≤ Ri ≤ 102, 102 ≤ Gr ≤ 106, Pr = 0.71

	
Uniform grid, 160   ×   160




	
Esfe et al. [9]

	
Fluent, FVM, SIMPLE

	
U-shaped porous enclosure

	
2D, steady

	
103 ≤ Ra ≤ 105, 0 ≤  χ  ≤ 0.03, Al2O3-H2O nanofluid

	
Approx 1600 cells




	
Geridonmez & Oztop [10]

	
Rbf-Pum

	
Right Isosceles triangular cavity

	
2D, natural convection, steady, laminar

	
0 ≤ Ha ≤ 100, 0.25 ≤ A ≤ 1, Pr = 6.07, Ra = 105, 0 ≤  χ  ≤ 0.02, Al2O3-Cu/H2O nanofluid

	
1,842,025 & 1,741,596 nodes




	
Hirpho & Ibrahim [189]

	
FEM

	
Trapezoidal enclosure

	
2D, mixed convection, non-Newtonian, steady, laminar

	
10−1 ≤ Ri ≤ 102, Re = 100, Pr = 20, 0 ≤  χ  ≤ 0.02, Al2O3-Cu/H2O hybrid nanofluid

	
201   ×   201




	
Khalil et al. [190]

	
Fluent, FVM, RSM

	
Porous trapezoidal cavity with wavy wall

	
2D, steady

	
0 ≤ Ha ≤ 40, 0 ≤ Am ≤ 20, 5   ×   102 ≤ Ra ≤ 2.4  ×  104

	
320   ×   320




	
Liu [191]

	
CDS, SIMPLE, QUICK

	
Rectangular cavity with fins

	
2D, free convection, unsteady

	
0 ≤  φ  ≤ 40, Ra = 1.84   ×   109

	
360   ×   400




	
Noor et al. [192]

	
FEM

	
Lid-driven trapezoidal cavity with obstacle

	
2D, forced convection, steady

	
102 ≤ Re ≤ 700, 10−3 ≤ Ri ≤ 10, 0 ≤ Ha ≤ 102

	
Trangular grid, 4622 nodes. 8929 elements




	
Nouraei et al. [193]

	
FVM, SIMPLE

	
Semi-circular vented cavity

	
2D, mixed convection, laminar, steady

	
10 ≤ Re ≤ 100, 0 ≤  χ  ≤ 0.06,

Cu-H2O nanofluid

	
52,000 grids




	
Polasanapalli & Anupindi [194]

	
LBM

	
Concentric circular annular cavity

	
2D, mixed convection, unsteady

	
104 ≤ Ra ≤ 106, 0 ≤ Re ≤ 104, Pr = 0.71, 0 ≤  φ  ≤ 360, 10−3 ≤ Ri ≤ 103

	
120   ×   120, 180   ×   180




	
Prince et al. [195]

	
COMSOL, FEM

	
Trapezoidal cavity with different surface

	
2D, natural convection

	
Pr = 0.716, 103 ≤ Ra ≤ 106, Materials: Pinewood, plexiglas, dry concrete, glass fiber

	
Rectangle: 6112, Triangle: 10,191, Sinusoidal: 5993 elements




	
Rahaman et al. [196]

	
Fluent, FVM, CDS, SIMPLE

	
Trapezoidal cavity

	
2D, unsteady, natural convection

	
Pr = 0.71, 100 ≤ Ra ≤ 108, A = 0.5

	
Non-uniform, 300   ×   100




	
Roy et al. [197]

	
FEM

	
Square enclosure with blocks

	
2D, unsteady, natural convection

	
Pr = 6.2, 0 ≤ Rd ≤ 3, 0 ≤ χ  ≤ 0.09, 104 ≤ Ra ≤ 106, 0 ≤ Ha ≤ 60, Cu- Al2O3/H2O hybrid nanofluid

	
Triangular 65,740 elements




	
Shah et al. [198]

	
FEM, NR

	
Lid-driven corrugated porous cavity

	
2D, mixed convection, laminar, steady

	
102 ≤ Re ≤ 400, 0 ≤  χ  ≤ 0.05, 10−5 ≤ Da ≤ 10−1, Pr = 6.2, 10−2 ≤ Ri ≤ 100, CuO-H2O nanofluid

	
Approx 8000 elements




	
Tizakast et al. [199]

	
FVM, SIMPLE

	
Lid-driven Rectangular cavity

	
2D, unsteady non-Newtonian, laminar

	
2 ≤ A ≤ 30, 102 ≤ RaT ≤ 107, 10−3 ≤ Le ≤ 103, 0.1 ≤ Pe ≤ 104

	
-




	
Xia et al. [200]

	
UPWIND

	
T-shaped lid-driven cavity

	
2D, mixed convection

	
0 ≤  χ  ≤ 0.03, 0.1 ≤ Re ≤ 10, 0.2 ≤ A ≤ 0.4, Al2O3-H2O nanofluid

	
Uniform mesh, 250,000 cells




	
Zarei et al. [201]

	
FVM, SIMPLE

	
Square cavity with wavy walls

	
2D, steady

	
Ra = 104, 0 ≤ Am ≤ 0.15, 0 ≤  χ  ≤ 0.04, Cu-H2O nanofluid

	
135,008 triangular cells




	
Zhang et al. [202]

	
FVM, SIMPLE

	
Semi-elliptic lid-driven cavity

	
2D, mixed convection, steady, laminar

	
0 ≤  χ  ≤ 0.06, Gr = 5   ×   104, 15   ×   104, 25   ×   104, 4   ×   105, 10−1 ≤ Ri ≤ 10, Pr = 6.2, Ag-H2O nanofluid

	
43,905 triangular grids




	
Akhter et al. [7]

	
FEM

	
square cavity with cylinder

	
2D, steady

	
104 ≤ Ra ≤ 5  ×  106, Pr = 6.2, 0 ≤  χ  ≤ 0.05, 0 ≤ Ha ≤ 102, Cu-Al2O3/H2O hybrid nanofluid

	
24,961 nodes, 49,188 elements




	
He et al. [203]

	
Experimental, FVM, SIMPLE

	
Cubic cavity

	
3D

	
0 ≤ B ≤ 133, 0 ≤  χ  ≤ 0.03, 6.9   ×   105 ≤ Ram ≤ 11.6   ×   105,

Fe3O4-Paraffin nanofluid

	
50   ×   50   ×   50




	
Ikram et al. [204]

	
FEM, ALE

	
Hexagonal cavity with rotating modulator

	
2D, forced convection, unsteady, laminar

	
Pr = 0.71, 102 ≤ Re ≤ 103, 104 ≤ Ra ≤ 106, Bi = 104

	
49,874, 50,672 and 52,601 elements




	
Ouri et al. [205]

	
Comsol, FEM, ANFIS

	
L-shaped cavity with rotating cylinder

	
2D, unsteady

	
200 ≤ Re ≤ 103, 102 ≤ Rew ≤ 103, 0 ≤ Ha ≤ 40, 0 ≤  χ  ≤ 0.02, Ag-MgO/H2O hybrid nanofluid

	
Non-uniform triangular 65,216 elements




	
Sayed et al. [206]

	
FVM, LES, URANS

	
Cubical cavity

	
3D, unsteady

	
Ra = 109, Pr = 0.71, Prt = 0.9

	
166,375 cells











4. Validations


In computational fluid dynamics (CFD), validation is an important aspect of research. It is the process of comparing the numerical results with experimental, benchmark, or numerical results to assess the accuracy of the simulation. Validation is important for several reasons: it helps to ensure that the numerical model is implemented correctly and that the solution is not affected by any errors or bugs in the code; it also allows researchers to compare their results with other studies, and it gives an idea about the accuracy of the numerical model compared with real-world data. One common way to validate CFD simulations is to compare the numerical results with experimental data. This can be conducted by comparing the velocity, temperature, and pressure fields obtained from the simulation with measurements taken in a laboratory experiment. The percentage difference between the numerical and experimental results is used as a measure of the accuracy of the simulation. A percentage difference of less than 5% is generally considered to be a good match between the numerical and experimental results. The above-mentioned studies used different types of validations, and details of some of these are presented below. Providing detailed information about the validation process in a study is important for ensuring the accuracy of the numerical results and for providing a useful resource for future research. Moreover, according to the authors’ knowledge, no such details are available in previous studies. By presenting the details of their validation studies, the authors are providing a valuable resource for future researchers. This information can be used to compare the results of new studies with previous work and to assess the accuracy of new simulations. Additionally, the figures (Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9 and Figure 10) likely provide a visual representation of the validation results, making it easier for readers to understand and interpret the data.



For a square lid-driven cavity with mixed convection flow, the variation of the average Nusselt number with different Gr for a fixed Pr of 0.71 was studied through numerical simulations or experiments. In the case of mixed convection, as the Gr increases, the Nuavg is expected to decrease. This is due to the lid-driven motion of the cavity. Details of the results are presented in Figure 4.



Based on the validation data presented in Figure 4a–c, the following correlations (Equations (6)–(8)) are proposed. It is worth noting that all these correlations exhibit a maximum percentage error of less than 10%, which indicates a strong relationship between the provided data and the proposed equations.


    N u  ¯  = 0.97 +   0.0141 ∗ R e ∗ P r   1 +       G r   756.05       1.12     ,     10  2  ≤ Gr ≤   10  4  ,    Re  = 100 ,    Pr  = 0.71  



(6)






    N u  ¯  = 1.13 +   0.0099 ∗ R e ∗ P r   1 +       G r   2577.39       2.7     ,     10  2  ≤ Gr ≤   10  4  ,    Re  = 400 ,    Pr  = 0.71  



(7)






    N u  ¯  = 1.595 +   0.068873 ∗ R e ∗ P r   1 +       G r   4971.05       4.85     ,     10  2  ≤ Gr ≤   10  4  ,    Re  = 1000 ,    Pr  = 0.71  



(8)







In a square cavity with natural convection flow, the variation of Nuavg with different Ra for a fixed Pr of 0.71 is studied throughout the literature. We know as Ra increases, the strength of natural convection increases, and the Nuavg increases. However, the relationship between Nuavg and Ra can be complex, as the flow pattern and heat transfer mechanisms in the cavity can vary with changing Ra. In general, for a square cavity with natural convection flow and Pr = 0.71, the variation of the Nuavg with Ra can be explained by different values of Ra. For low Ra < 104, the heat transfer is dominated by conductive heat transfer, and Nuavg is relatively constant and low. However, for intermediate Ra (104 < Ra < 108), the heat transfer is dominated by a combination of conduction and convection, and Nuavg increases rapidly with Ra due to the onset of natural convection. Such findings are explained in Figure 5.



Based on the results displayed in Figure 5a,b, a novel correlation is introduced for the computation of Nuavg, which is presented below. The correlation (Equation (9)) exhibits a high level of consistency with the aforementioned findings, with an error range of 1.4% to less than 10%. In a few instances, the maximum error is found to be approximately 13%, but this is attributed to the researcher’s recording of low Nuavg values.


    N u  ¯  = 0.44 +   35.68 ∗ P r   1 +       R e   5558557.57       − 0.41     ,     10  3  ≤ Ra ≤   10  6  , Pr = 0.71  



(9)







As shown in Figure 6, for a fixed Pr = 0.71 and low Gr = 100 in mixed convection flow in a square lid-driven cavity, Nuavg always increases with increasing Re. This is because at low Gr, the buoyancy forces are weak, and the flow is dominated by the lid-driven motion. As Re increases, the flow becomes more vigorous, resulting in increased mixing and enhanced heat transfer.



Based on the findings depicted in Figure 6, a novel correlation for computing Nuavg is introduced and presented below. The proposed correlation (Equation (10)) exhibits a strong association with the provided data, with a minimum and maximum error of 0.01% and 7.30%, respectively. However, for some of the given data, a higher percentage of error is observed, which is not attributable to the correlation, but rather is due to poorly recorded research data obtained by the researcher.


    N u  ¯  = 0.9969 +   18.3538 ∗ P r   1 +       R e   1390.5345       − 0.93     ,   1 ≤ Ra ≤   10  3  , Pr = 0.71  



(10)







We know that an increase in the aspect ratio leads to an increase in the heat transfer rate. This is because an increase in the aspect ratio leads to an increase in the surface area available for heat transfer. As a result, there is more area for the fluid to exchange heat with the solid surfaces, leading to a higher heat transfer rate. Additionally, an increase in the aspect ratio can also promote greater fluid mixing and circulation, which further enhances the heat transfer rate. We also know that Nuavg increases with increasing Ra for a porous square cavity case. At low Ra, the flow is dominated by conduction, and the heat transfer is primarily governed by thermal conduction. As Ra increases, the buoyancy forces become more significant, resulting in increased flow circulation and mixing. This enhanced mixing leads to an increase in the heat transfer rate and Nuavg. Such findings are presented in Figure 7 and Figure 8, that is observed by a different researcher.



Based on the results depicted in Figure 7, a new correlation for determining Nuavg is proposed and put forward. The correlation (Equation (11)) demonstrates a high level of accuracy, with a minimum error of 0.08% and a maximum error of 9.93%. These findings suggest that the correlation has significant potential for future use.


    N u  ¯  = 1.04 +   0.57   1 +       R a   12499.08       − 0.76     ,   3 ×   10  3  ≤ Ra ≤ 2 ×   10  4   



(11)







Figure 9 presents the variation of Nuavg with different nanoparticle concentrations (C) for Al2O3 nanofluid. It is observed that Nuavg slightly decreases with the increase in C. The decrease in Nuavg with increasing C may be due to several factors, such as the nanoparticles may aggregate at high concentrations, leading to a decrease in effective surface area and, thus, a decrease in convective heat transfer.



Based on the outcomes presented in Figure 9, a new correlation is suggested for computing Nuavg. This correlation (Equation (12)) demonstrates a robust concurrence with the results of earlier studies, with an error range of 0.01% to a maximum of 5.41%.


    N u  ¯  = 27.06 +   4.38   1 +      C  0.03       4.9     , 1 % ≤ C ≤ 3 %  



(12)







Figure 10 shows that the Nuavg increases with increasing Ra for a fixed Pr = 100, which indicates an enhancement of convective heat transfer. However, the rate of increase depends on the power-law index n. It is also seen that Nuavg slightly increases with the increase in n. It indicates that the non-Newtonian behavior of the fluid has a small effect on the convective heat transfer in the fluid.



Based on the data depicted in Figure 10, two correlations (Equations (13) and (14)) are proposed with minimum and maximum errors of 0.06% and 3.41%, and 0.01% and 7.69%, respectively. These correlations demonstrate excellent agreement with the provided data.


    N u  ¯  =   0.01105 ∗ P r   1 +      n  4.3431       1.5247     , 0.1 ≤ n ≤ 2.0 ,    Ra  =   10  4  ,    Pr    = 100  



(13)






    N u  ¯  =   0.061826 ∗ P r   1 +      n  0.1494       0.851     , 0.1 ≤ n ≤ 2.0 ,    Ra  =   10  5  ,    Pr    = 100  



(14)








5. Heat Transfer Analysis


According to the above-mentioned literature, the flow behavior inside the cavities can be classified into the following categories: effect of the applied boundary conditions to walls such as temperature difference, localized heat sources, magnetic field, or inlet flow to the cavity through a specific port(s). The other types of cavities use internal fins or cylinders to drive the flow inside the cavity. Some of the above-mentioned references (Given in Table 1) are discussed below:



5.1. Square Cavity


In the study by Abbas et al. [181], the effect of using Cu-water nanofluid on heat transfer enhancement was investigated inside a square cavity, using two circular heated obstacles and applying a constant magnetic field. They found that Nuavg improved with the rise of Ra up to a certain point and then showed a negligible variation. However, for lower values of Ra, Nu decreased with Ha. Additionally, the increase in nanoparticle concentration resulted in a decrease in the heat transfer rate for each value of Ha. The study also found that the increase in magnetic field intensity led to a decrease in the rate of heat transfer because of the high sensitivity of Cu nanoparticles to the applied magnetic field. In the study by Roy et al. [197], the flow behavior inside a square cavity filled with MHD hybrid Cu-Al2O3/H2O nanofluid was investigated. A cold elliptical block and a hot square block were inserted inside the cavity, and all four walls were set at the same temperature as the elliptical object. The results of the study confirmed that the local Nu increased with Ra and decreased with an applied magnetic field. Additionally, the presence of nanoparticles enhanced the heat transfer rate. The study also found that Ha had a stronger effect on local and average Nu at high values of Ra. Furthermore, high Rd led to an improvement in the rate of heat transfer. In the study by Zarei et al. [201], the flow of a Cu-H2O nanofluid inside a square cavity with a wavy left wall and straight other walls was investigated, with a uniform heat flux applied to the left vertical wall and a constant temperature on the right vertical wall, while the other boundaries were adiabatic. They found that increasing the nanoparticles concentration and decreasing the wavelength and amplitude of the wavy wall led to an increase in Nuavg. In the study by Akhter et al. [7], the flow of a hybrid nanofluid Cu-Al2O3/H2O inside a square cavity was investigated. A heat-conductive circular solid was placed at the center of the cavity. The bottom and top boundaries of the cavity were partially heated and cooled, respectively. Their results confirmed that the heat transfer was enhanced with the Ra and decreased with the Ha. They also found that the thermal performance increased linearly with an increase in χ. For the nanoparticles volume fraction of 1% and 5%, there was an increase in heat transfer by 47.74% and 106.78%, respectively, as compared to the base fluid.




5.2. Rectangular Cavity


The study by Wee et al. [2] found that the rate of heat transfer in a rectangular cavity full of air is significantly higher when the cavity is in a vertical position with upwards transfer compared to a horizontal position with the downward transfer. Al-Farhany & Turan [39] found that using a rectangular porous cavity with left and right boundaries at various temperatures and insulated top and bottom walls, the flow inside the cavity was driven by buoyancy, and the results showed that the highest Nuavg occurred at zero inclination for high Ra, while for low Ra, the maximum Nuavg was found at 60 degrees inclination. Additionally, the results showed that as the aspect ratio and Le increase, Nuavg decreases and Sh increases. Elsherbiny & Ragab [51] studied an inclined rectangular cavity with a hot spot at the bottom wall and insulated surfaces. They found that as the aspect ratio increases, Nuavg decreases, and when the local heat source position was at the middle or quarter position of the bottom wall, the maximum Nuavg occurred at specific aspect ratio values. Moreover, they found that Nuavg increases with increasing tilt angle (φ) from 0 to 75 degrees, then starts to decrease until 150 degrees and remains constant up to 180 degrees. Elsherbiny & Ismail [69] studied an oblique rectangular cavity with two local heat sources at the bottom wall and insulated surfaces. They found that Nuavg increases until φ’s reaches 60 degrees and then starts to decrease until it reaches a minimum value at 180 degrees. They also found that at a tilt angle of 150 degrees, the effect of Ra on Nuavg is very low, and at 180 degrees, Nuavg becomes independent of Ra. Additionally, they observed that Nuavg decreases by 23% when the aspect ratio reaches 10. Hatami [6] numerically investigated the free convection and flow of nanofluids in a rectangular cavity with two heated fins installed on the cold lower and upper walls while the vertical walls were insulated. They found that Nuavg was higher for higher volume fractions of Al2O3 and similarly for lower volume fractions of TiO2. Additionally, they observed that Nuavg increases as the height of the fins increases. Yu et al. [3] studied numerically the effect of the magnetic field and electric source on the flow characteristics and heat and mass transfer of electrically conducting fluid inside a rectangular cavity. It was found that with the increase in the density of the magnetic field, the oscillatory flow became more stable, and heat transfer by convection and mass transfer was reduced. Moreover, it was also found that the magnetic field had no effect on Nuavg, which only varied with dimensionless heat generation or absorption coefficient, while Sh remained equal to one.



Jiang and Zhou’s [4] study examined the impact of nanofluids on surface tension in a rectangular cavity. They applied a temperature difference across the vertical walls and a free surface on the upper surface. They found that for distilled water-Al2O3 nanofluid, a rise in nanoparticles volume fraction led to convective flow being dominated by the fluid’s thermophysical properties and the surface tension temperature coefficient. For PGW-ZnO nanofluid, an increase in nanoparticle concentration resulted in convective flow being mainly controlled by the surface tension temperature coefficient. Karatas and Derbentli’s [138] study investigated free convection flow in a partially heated rectangular cavity with various aspect ratios. They kept the temperature of the vertical cold boundary constant, and the temperature of the hot boundary was a time-periodic temperature. They observed that Nuavg increased from 2.64 to 16.44 as the aspect ratio decreased from 6 to 1. Thiers et al. [158] explored the impact of local thermal disturbances (one on the cold side and the other on the hot side) on the flow instability in a rectangular enclosure with an aspect ratio of 4.0. They considered the left boundary as a hot boundary, while right boundary as a cold boundary, and the top and bottom walls as adiabatic. Their research showed that the highest heat transfer enhancement occurred when the local disturbance area was located at Lh= 0.7 and/or Lc = 0.3. Hasnaoui et al. [164] studied thermo-solutal convection in a rectangular cavity. They found that the flow became unstable for Sr = 0 and −0.5 and remained unstable until R = 20. They also observed that the rate of heat transfer was strongly impacted by thermo-diffusion in the range of R, leading to instabilities. Alqaed et al. [5] performed a numerical simulation to study the natural convection heat transfer and entropy generation of alumina-water nanofluid flow in a rectangular cavity. They installed two hot triangular blades on the bottom wall, and the two sidewalls were adiabatic, whereas the upper wall was set at a low temperature and the bottom wall was set at a high temperature. They found that a rise in Ra led to an increase in Nuavg and entropy generation, but it decreased Be, and the increment in Ha also led to reducing Be for higher Ra. They reported that the maximum values of Nuavg, entropy generation, and Be occurred at a cavity inclination of 30 degrees. Liu [191] examined the convection heat transfer behavior inside a rectangular cavity with an adiabatic fin fixed on each of the side walls. The top and bottom boundaries were adiabatic, while the left boundary was cold, and the right boundary was hot. The study found that Nuavg increased by 5% for the finned cavity as compared to the non-finned one. Additionally, Nuavg for both cases increased with the angle of inclination until 5 degrees and then decreased.



Sasaguchi et al. [14] studied the heat transfer analysis numerically in a rectangular cavity containing water. All boundaries were insulated and cold (−10 °C), including the internal presence of single or double cylinder inside the cavity. The study found that the solidification speed for a single cylinder was faster than double cylinders for a temperature equal to 0 °C, while the solidification was faster for the double cylinders for a temperature higher than 4 °C. Liu & Huang [153] investigated the effect of adding thin fins to the middle of the high and low-temperature walls of a rectangular cavity, with the top and bottom walls being considered as insulated walls. They applied a linear temperature distribution to the hot and cold side walls. The study found that the effect of the adiabatic horizontal thin fin led to a change in the convective flow attached to the middle of the sidewall. Nuavg correlated well with Ra0.25 for all three thermal heating conditions examined. However, when the slope of the applied linear temperature distribution was negative to both the right and left walls, Nuavg was lower than the other two heating conditions.



Joe and Perumal [169] studied the influences of rotating cylinders on the mixing and distribution of temperature within a rectangular cavity. They found that the best results were obtained when the cylinders were close to the middle line and rotated in the same direction. This resulted in improved mixing and a more uniform temperature distribution. Saha et al. [172] studied free convection flow inside a rectangular cavity with isothermally heated baffles. They concluded that the flow velocity and heat transfer interaction efficiency were highest for the case of plane baffles, where fluid was blended more effectively as the length of the baffles increased. They also found that the maximum value of Nuavg was achieved at Re = 250 for plane baffles. Additionally, they found that the heating efficiency increased with Re and Ri and decreased as the length of the baffles increased. Velkennedy et al. [179] investigated the air-flow behavior inside a ventilated rectangular cavity with two outlets and one inlet. The inlet vent was positioned on the bottom of the right wall, and the outlets were put on the top wall. Both vertical walls were considered hot walls, and the bottom wall was adiabatic. They found that the rate of heat transfer to the right wall was reduced at the upper part of the cavity due to the introduction of a cold partition. However, they also found that the heat transfer rate increased significantly with the introduction of the cold partition for lower Ra, and this difference was reduced for higher Ra. Ait-Taleb et al. [58] studied the flow behavior inside a building block that generally contains three air cavities in the horizontal orientation and two in the vertical orientation. They found that by keeping the temperatures of the upper and lower walls the cold outside and hot inside, respectively, the hollow block with two air cells deep in the vertical direction allowed for a significant reduction in heat transfer between the inside and outside of the building. Charqui et al. [186] numerically investigated the heat transfer and free convection flow inside a tall thin partitioned cavity, where the left and right parts were filled with air and water, respectively. They found that even though the partition was thin, air and water behaved differently. The temperature of the inside wall had less effect by solar flux than the heat flux through the partition. The wall opposite to sunlight was kept at 20 degrees Celsius, and the temperature of the other surface was varied between 0 degrees Celsius to 50 degrees Celsius. The other surfaces were assumed to be adiabatic.




5.3. Other Cavity Types


Alam et al. [8] investigated the effect of various types of nanofluids on thermal behavior inside a semicircular cavity that was exposed to a periodic magnetic field. They used nanoparticles such as ZnO, Fe3O4, Co, Al2O3, and Ag and base fluids such as water and kerosene. The bottom surface was exposed to non-uniform parabolic heating, while the circular surface was set at a fixed cold temperature. They found that the highest value of Nuavg was obtained for Co-kerosene nanofluid by 588.197% for χ = 5%. They also found that for a specific value of χ, there was a slight rise in Nu with the augmentation of Ra. The study also revealed that the variable magnetic field and the Brownian motion of nanoparticles had a significant effect on heat transmission enhancement. Additionally, the findings indicated that a non-uniform magnetic field showed higher heat transmission than a uniform case. Acharya & Chamkha [184] studied the thermal and fluid flow behavior of Al2O3-H2O nanofluid inside a hexagonal enclosure. The enclosure had three parallel fins inside, with the right and left fins being cooled and the middle one being heated. The top lid was partially heated, while the bottom boundary was fully heated, and the other boundaries were assumed to be adiabatic. The study also applied a horizontal magnetic field to the cavity. The results presented that the local Nu and Nuavg increased with the increase in Ra, and the u-shaped fins gave the highest outcomes. Additionally, local Nu and Nuavg decreased with Ha. The study found that the increase in the fin’s height led to an increase in the rate of heat transfer, and the central position of the fins was the optimized position that gave the highest rate of heat transfer. Esfe et al. [9] studied the effect of using Al2O3-H2O nanofluid in a U-shaped porous cavity on heat transfer and fluid flow. They found that Nuavg reduced with the increase in Ra and χ. However, Nuavg decreased when Da increased from 0 to 60, indicating that the porous structure had an impact on the heat transfer enhancement. Overall, the study provided insights into the utilization of nanofluids and porous structures to improve heat transfer in U-shaped cavities. Geridonmez & Oztop [10] studied the influence of an oblique partial periodic magnetic field on the free convection of hybrid Al2O3-Cu/H2O nanofluid inside an isosceles triangular cavity. They considered three cases with different wall temperatures and magnetic field orientations and found that the heat transfer rate was reduced with an increase in Ha and that a horizontal magnetic field provided a higher rate of heat transfer than the other cases. Hirpho and Ibrahim [189] studied the mixed convection of a hybrid nanofluid (Al2O3-Cu/H2O) in a trapezoidal cavity with a partially heated bottom wall, cold left and right walls, and an adiabatic top lid. They found that the local Nu number increased with the rise of χ, the Casson fluid parameter, and Ri. This indicates that the rate of heat transfer in the cavity is improved by the presence of nanoparticles, the non-Newtonian behavior of the fluid, and the buoyancy forces.



Khalil et al. [190] examined the free convection in a trapezoidal cavity with a wavy bottom wall filled with pure water and saturated metal foam as a porous medium. The top and side boundaries were kept at a cold temperature while the bottom surface was heated. The study found that Nuavg increased as the number of waves and amplitude of the bottom wall’s waves increased. Additionally, Nuavg improved when the cold temperature of the sides and top walls was decreased. Furthermore, an increase in Ha resulted in an increase in Nuavg. Nouraei et al. [193] explored mixed convection of an H2O-Cu nanofluid in an open semicircular cavity. The circular section was partially heated along 45 degrees at four different angles, and all other positions were insulated. The study found that the local Nu number increased from the inlet to the outlet along the curved surface for a Re of 100. Additionally, the results showed that the maximum Nulocal was obtained for χ = 0.06 for all cases. Prince et al. [195] investigated the conjugate natural convection inside a trapezoidal cavity with a thick base and different surface corrugations, such as flat, sinusoidal, and triangular surfaces. The base was made of different materials, such as pinewood, plexiglas, dry concrete, and glass fiber. The base was set isothermally hot while the top wall was kept isothermally cold, and the side walls were adiabatic. The study found that there was a considerable improvement in convection heat transfer for high Ra up to the value of Ra > 104. Moreover, the glass fiber showed the highest Nuavg and the lowest dimensionless fluid temperature. For Ra ≤ 104, the conduction heat transfer mode would be dominant. This suggests that the corrugated surface of the cavity base and the material of the base can significantly enhance the heat transfer rate, but the effect becomes less significant for lower Ra. Rahaman et al. [196] studied the natural convection of air inside a valley-shaped trapezoidal cavity, where the top and bottom walls were considered hot and cold, respectively, and both the side walls were adiabatic. The study found that Nu was small at the beginning for stratified air and gradually increased in the transitional phase when the stratification was broken and became fixed for Ra ≤ 106. After that, Nu exhibited oscillatory behavior for Ra ≥ 107.



He et al. [203] discussed the effect of a magnetic field on a phase change nanocomposite inside a cubical cavity filled with. The nanocomposites were obtained by adding Fe3O4 nanoparticles into paraffin. The left wall was set as a hot boundary while the other walls were insulated. The study found that, without applying a magnetic field and with a uniform distribution of the nanoparticles in the paraffin, the rate of heat transfer was increased. However, when a magnetic field was applied, the melting rate of paraffin was reduced. Ikram et al. [204] studied the heat transfer behavior inside a hexagonal enclosure equipped with different types of rotating modulators. A uniform heat flux was applied to the bottom inclined wall while the top was exposed to ambient temperature. The other two vertical walls were insulated. The results presented that the increase in Re from 100 to 1000 improved heat transfer by 57.1%. An inverse relationship between thermal storage capacity and thermal effectiveness was also observed, which means that as the thermal storage capacity increases, the thermal effectiveness decreases. Ouri et al. [205] studied the effect of convective heat transfer in an L-shaped vented cavity that contained an inner rotating cylinder. The cold fluid entered the cavity through the top lid, while the lower wall was hot, and the remaining boundaries were adiabatic. Their findings showed that Nuavg, the average Nusselt number, increased by 180% for the highest Re and 19% and 8% for cylinder rotational speeds of 1000 and −1000, respectively. In addition, the spatial Nuavg, which is the Nusselt number at different points within the cavity, showed an increase by varying the cylinder size up to 86% and 33.5% at cylinder rotational speeds of 1000 and −1000, respectively.




5.4. Lid-Driven Cavity


5.4.1. Square Cavity


In a study by Moallemi & Jang [11], the hydraulic and thermal behaviors in a square cavity were examined when a shearing force was applied by moving a glass sheet on the top wall and combined with the buoyancy force from heating the bottom wall. The results showed that the influence of buoyancy was clearer on heat transfer for higher values of Pr with constant Re and Gr. Additionally, for a minimum level of buoyancy, forced convection heat transfer was dominant and independent of Ri. The study also found that as buoyancy increased, the heat transfer mechanism transitioned from forced convection to mixed convection, with Nuavg being a function of Pr. In a study by Chamkha & Abu-Nada [42], the mixed convection of a water-Al2O3 nanofluid flow in single and double lid-driven square cavities was examined using different nanofluid viscosity approaches. The top lid-driven wall was kept at a constant hot temperature, while the bottom lid-driven wall was set at a cold temperature. The results showed that at moderate and large Ri, the increase in χ led to an improvement in the rate of heat transfer for single and double-lid-driven cavities for both the Pak and Cho correlation and the Brinkman model. Additionally, in the single lid-driven cavity and for small Ri, Pak and Cho’s correlation predicted a reduction in Nuavg. However, for other conditions, an increase in Nuavg was predicted by the Pak and Cho correlation, which was larger than the Brinkman model for all values of χ. In a study by Ahmed et al. [48], a numerical examination of MHD mixed convection flow in an oblique lid-driven square enclosure with an opposite temperature gradient was conducted. The sinusoidal temperature distribution was applied to the right and left walls, the top wall was considered as a moving boundary, and a zero velocity was considered for the bottom wall. The results showed that the increase in Ha had no effect on heat transfer on both vertical walls. Additionally, the rate of heat transfer enhanced with Ha and ϕ increased in the case of opposing buoyancy-driven convection. For forced convection, Nulocal increased on the left wall while it decreased on the right wall when the amplitude ratio of the sinusoidal temperature increased. In the study by Muthtamilselvan & Doh [63], the authors numerically investigated the heat transfer behavior of a Cu-H2O nanofluid flowing in a lid-driven square cavity. They found that Ri had a small effect on heat transfer except for Ri = 4, where a non-linear relationship between the Nusselt number and the volumetric solid fraction was observed. They also found that for non-uniform heating, a sinusoidal behavior of local heat transfer was attained, and a maximum heat transfer occurred in the middle of the bottom wall. In the study by Pekmen & Tezer-Sezgin [209], the authors investigated the mixed convection flow behavior inside a lid-driven square cavity filled with porous media with the application of a magnetic field. The top wall was hot and moving, the bottom wall was cold and fixed, and the vertical walls were adiabatic. They found that as Ha increased, Nuavg decreased due to the retarding effect of the Lorentz force. Additionally, they observed that as Da decreased, the heat transfer became more conductive even as Re increased.



In the study by Ray & Chatterjee [65], the authors discussed the influences of an external magnetic field on an electrically conducting fluid inside a lid-driven square cavity with a conducting cylindrical body inserted. The top wall was moving and fixed at a cold temperature. They found that a rise in Ri led to an enhancement in the rate of heat transfer and fluid temperature, while the presence of a magnetic field reduced the heat transfer rate. Moumni et al. [71] conducted a study on heat transfer and mixed convection flow and behavior in a square cavity with double lid-driven filled with different types of nanofluids. They found that adding nanoparticles to the fluid led to an improvement in the heat transfer rate, with copper and silver nanoparticles showing the highest heat transfer rate due to their high thermal conductivity. They also found that the rate of heat transfer raised with the increase in Ri and Re for constant nanoparticles concentration. Selimefendigil and Öztop [210] conducted a study on the effect of two rotating cylinders on mixed convection of ferrofluid flow inside a square cavity. They found that the enhancement of the Nuavg was 181.5% for a negative angular speed ratio (Ω = −400) and 181.6% for a positive angular speed ratio (Ω = 400). They also found that the rise in the angular speed ratio caused an increase of 91.7% in Nuavg and that an 88.9% enhancement in Nuavg was achieved when the diameter ratio of the cylinders was changed from 2 to 0. Sheremet and Pop [73] conducted a numerical analysis on the mixed convection of a nanofluid flow inside a lid-driven square cavity where both the top and bottom walls were moving in opposite directions. The top and bottom walls were considered hot and cold walls, respectively. Their results showed that the heat transfer mechanism depends strongly on Ri and the moving parameter. They also found that Nu slightly increased with Le except in the counter-direction of moving horizontal walls, where Nu decreased with Le. Jmai et al. [76] conducted research on the effect of a partially heated wall on mixed convection Cu/H2O nanofluid flow inside a lid-driven square cavity. Each vertical side wall contains a heat source of high temperature, and both the upper and lower boundaries can move in the same and opposite directions and are considered cold. Their results showed that for all speed ratios, Nu increased as Ri decreased. The maximum value of Nu = 54.41 was observed when the speed ratio = −2 and Ri = 0.01.



Rashad et al. [12] conducted a study on MHD mixed convection Cu–water nanofluid flow in a lid-driven square cavity. The upper and lower walls were moving opposite to each other and were considered adiabatic. The right vertical wall was partially heated, and the left wall was partially cold; the other parts of the vertical boundaries were adiabatic. Their results revealed that the highest heat transfer occurred when the size of the heat source was as small as possible and placed at the middle position of the walls. They also concluded that heat transfer decreased with the increase in Ri. The presence of a magnetic field was found to reduce the convective heat transfer, and the presence of nanoparticles led to a decrease in the Nu. Selimefendigil et al. [84] conducted a numerical analysis to study the effect of Ri, Ha, magnetic field inclination angles, and the combination of upper and lower diagonal domains on the hydraulic and thermal behavior inside a lid-driven square cavity. They found that Nuavg decreased by 80.14% when Ri increased from 0.01 to 100 for inclinations angles of 90 and 0 degrees. They also found that increasing the magnetic inclination angle of the upper triangular domain led to a higher average heat transfer compared to increasing the magnetic field in the lower triangular domain. Selimefendigil & Öztop [82] studied the mixed convection inside a lid-driven square cavity with nanofluid. The cavity had elastic side walls, where the left boundary was moving upward and fixed at a constant temperature, while the right wall was a hot one. They concluded that the rate of heat transfer is increased with increasing Ri, Ha, and nanoparticles concentration. However, the rate of heat transfer is decreased with the increasing inclined angle of the magnetic field. Additionally, the study found that the influence of elasticity on the heat transfer rate is considerable, where it increased with increasing elasticity. In the study by Gangawane [93], mixed convection heat transfer was numerically explored in a top lid-driven square cavity with a triangular heated block and constant heat flux. The top wall was moving while the other walls were kept stationary, and the upper and lower boundaries were adiabatic while the vertical boundaries were at ambient temperature. Nuavg increased up to a Recr between 190–220 and then began to decrease, particularly for Gr greater than 50. In the study by Gibanov et al. [95], Al2O3-H2O nanofluid flow was numerically studied in a lid-driven square cavity. The upper wall was hot and moving, while the bottom wall was fixed and cold. Nuavg was found to decrease with an increase in Ri and the backward step ratio.



The study by Khanafer and Aithal [102] investigated the effects of a rotating cylinder on mixed convection flow in a lid-driven square cavity. Their results demonstrated that the presence of the cylinder led to an increase in Nuavg and that clockwise rotation led to an increase in Nuavg, while counter-clockwise rotation led to a decrease in Nuavg with an increase in rotational speed. The study by Selimefendigil et al. [105] examined the effects of the magnetic field, Ri, E, Ha, nanoparticle concentration, and the presence of a flexible wall on the MHD flow of a nanofluid inside a square cavity. They found that Nuavg increased with the increase in Ri and observed 74.35% of heat transfer enhancement for Ri = 5. They also found that 66.5% heat transfer enhancement was obtained for E = 104 N/m2 as compared to the case E = 2.5 × 105 N/m2. Additionally, if Ha is reduced from 50 to 0, there will be an improvement in the rate of heat transfer by 54.55%. If the nanoparticles concentration increased from 0 to 0.04, there would be an improvement in heat transfer by 33.87%. The existence of a flexible wall led to an enhancement in heat transfer by 13.2%. Gibanov et al. [96] investigated mixed convection ferrofluid flow in a square cavity with a lid-driven with a moving, cold upper wall and a hot bottom wall and found that Nuavg at the heated wall increases with the increase in Ha and the thickness of porous media. Hussain et al. [99] examined the effect of an inclination angle on the heat transfer in a double lid-driven square cavity filled with Al2O3-H2O nanofluid, with two fixed heat sources at the bottom wall. They confirmed that heat transfer is improved with the increase in nanoparticles concentration and Ri. Additionally, an increase in inclination angle caused an increase in Nuavg because of the left heat source, but the inverse behavior was noticed for the right heat source. Alsabery et al. [111] studied the conjugate mixed convection of H2O-Al2O3 nanofluid flow inside a square cavity with a double lid driven containing a solid inner object. The top wall was kept at a constant cold temperature and moved to the right, while the bottom wall moved to the left and was kept at a fixed high temperature. The vertical walls were insulated. The study found that the presence of nanofluid enhanced the rate of heat transfer, but at low Re and high Ri, it had an inverse effect on the Nu.



Astanina et al. [110] studied mixed convection of Al2O3-H2O nanofluid flow in a square cavity with a lid-driven, including two layers of porous media at the bottom with different thermal properties, permeability, and porosity. The lower wall was kept at a hot temperature, and the top moving wall was considered cold. The other walls were adiabatic. The study found that heat transfer enhanced with an increase in Ri for constant Re. It also found that Nuavg reduced for different ranges of porous layer thicknesses when Ri > 1. Gangawane et al. [115] studied mixed convection flow in a square cavity containing a heated triangular block placed at the center of the cavity. The top wall was moving and insulated, while the lower wall was fixed and insulated as well, and the vertical wall was exposed to ambient temperature. The triangular block was considered isothermal and at a higher temperature than the ambient temperature. The results showed that there was a 50% increase in heat transfer when the size of the block increased from 10% to 30%. Gibanov et al. [116] studied the effect of Ri, the thickness of the lower wall, thermal conductivity ratio, and nanoparticle concentrations of Al2O3-H2O nanofluid flow inside a lid-driven square cavity. The top lid was moving and hot, while the bottom wall was considered cold. The other vertical walls were insulated. The study found that the increase in thermal conductivity ratio and nanoparticle ratio led to an increase in heat transfer rate, while the increase in Ri and thickness of the bottom wall reduced heat transfer. Razera et al. [123] studied the effect of a fin on mixed convection flow inside a lid-driven square cavity. A lower wall was considered as the first position for the fin and then located on the side walls. The fin surface was considered a hot spot with high temperature, while the vertical and lower walls were set to be adiabatic. The upper moving surface was considered to be cold. The results showed that the fins on the right wall gave the highest Nusselt number while the fins on the lower wall gave an intermediate performance between the three cases. Hussain et al. [117] investigated the influence of an inclined magnetic field on the mixed convection H2O-Al2O3 nanofluid flow inside a double-lid driven square cavity. The top and bottom walls were moving in opposite directions, and both walls were insulated. The left vertical wall was at a hot temperature, and the right one was considered to be cold. The results presented that Nuavg increased with the increase in χ and decreased with the increase in Ri. Furthermore, Nuavg reduced with the increase in Ha and the inclination angle of the magnetic field.



Taghizadeh & Asaditaheri [127] studied heat transfer by convection through an inclined lid-driven square cavity containing a circular porous cylinder placed at the center of the cavity. The lower and upper walls were considered hot and cold walls, respectively, and the vertical walls were considered adiabatic. The upper wall was moving at a steady speed, and the other walls remained fixed. They found that for all inclination angles, the increase in Da enhanced heat transfer when Ri = 0.01. For Ri ≥ 1, the rate of heat transfer decreased. For Ri = 5 and 10, heat transfer was more affected by the angle of inclination of the cavity, which weakens buoyancy forces and decreases the Nusselt number. Barnoon et al. [132] studied entropy generation and mixed convection of nanofluid flow in a lid-driven square cavity. The cavity was subjected to a magnetic field from the bottom wall, and a velocity was applied to the upper lid. They examined the effect of insulated and isothermal two rotating cylinders inside the cavity. They found that the increase in Ha led to reducing the heat transfer rate. The presence of an isothermal cylinder gave a higher rate of heat transfer than the existence of an insulated cylinder. However, in general, the cylinders inside the cavity-enhanced the rate of heat transfer, and the increase in angular speed of the cylinder led to a rise in the rate of heat transfer. Additionally, the fraction of nanofluid equal to 3% with a tilt angle of 0 of the cavity produces a higher rate of heat transfer. Lamarti et al. [139] explored mixed convection flow inside a square cavity with a periodically oscillating top lid. They discovered that the local Nusselt number starts high for high Re and drops rapidly. They also found that for a constant Gr, Re had a large effect on Nuavg and that forced convection became dominant. Alsabery et al. [145] investigated the influence of a magnetic field on mixed convection of nanofluid flow in a square cavity with a lid driven with a thick triangular wall placed in the lower left corner. They found that the rate of heat transfer increased with the increase in Re and Ri. The maximum Nu occurred at Re = 500 and χ = 0.02. Alsabery et al. [160] studied the influence of hybrid nanofluid H2O-Cu-Al2O3 flow inside a square lid-driven cavity with two vertical wavy walls containing a square block. The left wall was kept at a high temperature, the right wall was cold, and the top and bottom walls were adiabatic. They found that Nuavg increased with the increase in Ri and that Nu increased with the increase in χ.



Hussain et al. [165] explored the effect of fins and inclined magnetic fields on square cavities filled with H2O-Cu nanofluid with single and double-lid driven. The upper lid had a hot temperature, and the lower wall had a cold temperature, while the other walls were insulated. Two adiabatic vertical fins were installed on the upper wall, and an inclined magnetic field was applied to both cavities. They found that with the presence of fins, the convective heat transfer decreased with an increase in Ha and Ri. Additionally, Nuavg decreased with an increase in the number of fins. Ahmed et al. [182] studied the flow and heat transfer behavior in a porous lid-driven square cavity filled with Al2O3-Cu/water hybrid nanofluid. The horizontal walls were moving at a constant speed, considered adiabatic, and the vertical walls were stationary. The left wall was hot, and the right one was cold. They found that the thermophoresis parameters had a very small effect on Nuavg. Furthermore, Le had no effect on heat transfer enhancement, and Da had very little effect on the variation of Nuavg. Ali et al. [183] examined mixed convection nanofluid flow inside a square cavity with lid-driven. The top wall was cold and moving horizontally in both directions, while the hot bottom wall was fixed and partially heated. A rotating flat plate was inserted in the cavity, and a magnetic field was subjected to the cavity. The other remaining parts of the walls were set to be adiabatic. The results confirmed that the highest rate of heat transfer occurred when the flat plate length was a quarter of the length of the cavity side (L). The improvement is more than 137.04% as compared to the case of 0.15 L, and it will be 208.89% for the case without the plate. It was also discovered that the heat transfer rate increased by 123.02% for rotational speed = 100, plate length 0.25 L, and nanoparticles concentration = 0.05, as compared with base fluid water. Batool et al. [185] studied heat and mass transfer analysis of a square cavity with lid-driven containing micropolar nanofluids under the influence of magnetic field and buoyancy force. A speed was applied to the upper wall, and the bottom wall was considered hot. The rate of heat transfer became faster at the maximum vortex viscosity parameter. Moreover, an optimized heat transfer mechanism was noticed from the bottom to the top wall, reducing the Brownian motion parameter. Dahani et al. [188] studied mixed convection and surface radiation in a square cavity with double lid-driven. One of the moving walls was considered hot, and the other was set to be cold, while the stationary walls were considered adiabatic. At Ri = 100, the contribution of radiation to the total Nu far outweighs that of convection. To minimize heat transfer, a combined effect of large Ri and angle of inclination close to 180° and non-emissive walls should be considered.




5.4.2. Rectangular Cavity


The study by Balootaki et al. [112] investigated the influence of mixed convection flow in a lid-driven rectangular cavity with a hot-moving upper surface and insulated other surfaces. The presence of a cold obstacle inside the cavity was also considered. The results demonstrated that rising the cavity inclination improves the heat transfer rate under forced convection, and the Nusselt number increases with increasing Rayleigh number for different inclination angles. The study by Louaraychi et al. [140] examined mixed convection flow in horizontal rectangular cavities with single- and double-lid driven using both numerical and analytical methods. It was found that the mixed convection parameter Ra/Pe3 can be used to distinguish between three convection regimes: natural, mixed, and forced convection. The results showed that when forced convection is dominant, Nuavg remained constant for small values of Ra and slightly increased during mixed convection heat transfer. Beyond this range, a fast linear increase in Nuavg was observed for dominant natural convection heat transfer. Additionally, Nuavg increased with the Peclet number (Pe) due to the shear effect. Tizakast et al. [178] conducted a numerical and analytical study on the double-diffusive mixed convection of a non-Newtonian power-law fluid in a closed rectangular cavity. The study found that the flow intensity and heat and mass transfer were insensitive to an increase in the parameter A for values of A greater than or equal to 24. The results also showed that non-Newtonian double-diffusive mixed convection is controlled by the parameters RaT, Pe, Le, and power-law index n. Additionally, the study found that an increase in Le had no effect on heat transfer, while a high buoyancy ratio increased both heat and mass transfer. Tizakast et al. [199] conducted a numerical and analytical study on the Rayleigh-Bénard double-diffusive mixed convection flow inside horizontal rectangular cavities subjected to uniform heat and mass fluxes along the sliding horizontal walls, with the other walls fixed and insulated. They confirmed that the heat and mass transfer and flow intensity became insensitive to the aspect ratio, A, for values of A greater than or equal to 28. For a Prandtl number greater than or equal to 10, the flow behavior became independent of Pr. The study concluded that Newtonian Rayleigh–Bénard double-diffusive mixed convection is controlled by the parameters Pe, RaT, Le, buoyancy ratio N, and power-law index n.




5.4.3. Triangular Cavity


Selimefendigil & Öztop [107] conducted research on the mixed convection of nanofluid flow in a triangular cavity with lid-driven. They found that for negative and positive x-direction motion, Nuavg decreased by 41.02% and 38.77% for Ri, equal to 50 and 0.05, respectively. Additionally, Nuavg decreased by 55% when Ra increased from 104 to 107. Furthermore, the study found that an enhancement of 22.95% was obtained for Nuavg for the highest nanoparticle concentration. Soomro et al. [157] conducted a study on the convection heat transfer inside a lid-driven triangular cavity subjected to a horizontal constant magnetic field. The upper moving wall was set as hot, while the side inclined walls were adiabatic, and a cold temperature cylinder was placed at the center of the cavity. The study found that Nuavg increased with the increase in Ri at a high flow shear rate. Additionally, Nuavg increased with the increase in Re when high viscous forces were present. Shahid et al. [175] conducted a study on the mixed convection flow inside a heated lid-driven right-angle isosceles triangular cavity. The horizontal top side of the cavity was moving horizontally and kept adiabatic, the vertical wall was hot, and the inclined wall was cold. The results of the study showed that natural convection became more dominant than forced convection as Gr increased, and this led to an increase in Nuavg. Additionally, for small values of Ri, the forced convection was more dominant due to the effect of shear forces generated by the moving lid. Xiong et al. [180] studied mixed convective heat transfer of MHD fluid flow in a lid-driven triangular cavity subjected to heating by a thick triangular wall. The top wall was moving to the right with a high temperature, while the inclined sidewalls were adiabatic. Cold obstacles were placed near the side walls and along the left and right side inclined walls with a temperature lower than the top wall temperature. The results showed that the expansion of Ha led to a reduction in heat transfer. Additionally, for higher Ri, the heat transfer was enhanced due to the increase in shear rate. The study also found that for the left side obstacle, the heat transfer rate increased due to an increase in Re, while the opposite behavior was observed for Ha and Ri. For the right obstacle, the heat transfer rate was strengthened along the upper wall due to the emergence of Re, while a reverse process was followed for Ha and Ri.




5.4.4. Cubical Cavity


The study by Karbasifar et al. [119] focused on the heat transfer process of mixed convection Al2O3-H2O nanofluid flow in a lid-driven cubical cavity containing a hot elliptical centric cylinder. The results showed that Nuavg decreased as Ri increased for fixed χ and ϕ. Additionally, Nuavg raised with the increase in χ for constant Ri and ϕ. It was also found that Nuavg increased slightly when ϕ increased for constant Ri. The study also found that Nuavg increased with the increase in Re and χ. In the study by Kareem & Gao [120], they explored the effect of a SiO2-H2O nanofluid on turbulent mixed convection inside a cubical cavity with a heated top wall and a cold bottom wall. They found that the presence of the nanofluid improved the heat transfer effectiveness, with the highest Nuavg being observed for a rotational speed of −5. Additionally, the rotational velocity of the cylinder had a stronger effect on the bottom wall than on the top wall. Al-Rashed et al. [131] studied the flow of H2O-Al2O3 nanofluid in an oblique lid-driven cubical cavity, including a hot elliptical centric cylinder. They found that raising the concentration of nanoparticles led to an increase in heat transfer coefficients, and Nu decreased with the increase in Ri for constant χ and inclination angle. Additionally, increasing the inclination angle slightly increased Nu for constant Ri. Alsabery et al. [146] investigated the mixed convection H2O-Al2O3 nanofluid flow inside a cubical chamber containing a heat-conducting cylinder. The right vertical wall was partially heated, the left vertical wall was considered cold, and the other walls were insulated. They found that increasing χ led to an improvement in heat transfer for a fixed Re = 10.




5.4.5. Other Types of Cavities


Abu-Nada and Chamkha [57] numerically investigated the mixed convection flow of CuO-H2O nanofluid in a cavity with a wavy wall with a lid-driven. The top wall was hot and moving, while the cold bottom wall was wavy. They found that for all values of Ri, Nu was maximum at the left top corner of the cavity and then decreased along the heated lid until it reached zero at the middle position of the lid. After that, Nu increased slightly at the second half of the wall and then vanished at the right side of the cavity. Hatami et al. [98] investigated the behavior of nanofluid flow inside a T-shaped lid-driven porous cavity. The top moving wall was cold, while the bottom wall was hot, and the other walls were insulated. They found that both Nulocal and Nuavg increased with the increase in Ri and Re. Additionally, they observed that increasing Da and χ led to an increase in Nuavg. Selimefendigil et al. [106] studied mixed convection nanofluid flow inside a trapezoidal cavity with an adiabatic stationary cylinder. Both the left and right walls were flexible walls. The top wall was moving and considered cold, while the bottom was stationary and considered hot. The other walls were considered adiabatic. They found that heat transfer increased by 9.8% when the value of elastic modulus was raised from 103 to 105 when the elastic wall inclination was equal to 0 degrees. Additionally, they observed that Nuavg increased linearly with the increase in χ, and the heat transfer was enhanced by 25.30% at the highest χ as compared to the base fluid. Cho [134] analyzed heat transfer and entropy generation of Cu-H2O nanofluid in a lid-driven cavity and subjected it to an oblique magnetic field. The left wall was a hot moving wall, the right wavy wall was cold, and the other walls were insulated. Their results showed that Nu increased with the increase in χ or wave amplitude of the wavy surface. Additionally, during the natural convection-dominated regime, Nu had a higher value for the magnetic field inclination of 90° and 270°, while the opposite behavior was observed for the inclination of 0° and 180°. During the forced convection-dominated regime, Nu had a higher value for the magnetic field inclination of 135° and 315°, while the opposite behavior was observed for the inclination of 90° and 270°. Hadavand et al. [136] studied mixed convection H2O-Ag nanofluid flow inside a semi-circular cavity with a lid-driven. The left side of the cavity was heated by injecting hot water, while the upper lid was cold and moving. Other surfaces were considered adiabatic. Their results showed that the best heat transfer behavior was observed for Ri = 1, χ = 0.06, and ϕ = −45°, 0°, −90°, 45°, and 90°.



Selimefendigil and Öztop [142] conducted a study on the influence of a magnetic field on mixed convection nanofluid flow in an oblique L-shaped cavity. They found that Nuavg increased by 42.2% and 39.9% for water and nanofluid, respectively, when the cavity inclination angle was changed from 180° to 150°. They also found that Nuavg was reduced by 11% when an elastic wall was used instead of a solid wall at a specific Ri = 0.03. Additionally, Nuavg was reduced by approximately 42% for both fluid and nanofluid for the lowest and highest Ra. Haq et al. [150] examined the heat transfer behavior in a hexagonal cavity filled with water and subjected to a magnetic field. They discovered that the heat transfer could be improved by using a cylinder with variable thermal conditions in the middle of the cavity and by increasing Ha. The Nusselt number at the heated surface decreased as Ri decreased for a specific Re = 300 and Ha = 10. Noor et al. [192] studied the forced convection of MHD flow inside a trapezoidal cavity with a circular object inside. They found that Nu decreased near the heated top lid and remained constant along the horizontal direction of the top lid. Additionally, they found that at low Ri, Nu had a higher value at the top hot-moving wall. Conversely, at high Ri, Nu decreased abruptly along the heated part of the top lid for both heated and cold conditions of the circular object. Polasanapalli and Anupindi [194] studied the mixed heat transfer behavior in an air-filled concentric annular cavity with the inner surface being hot and the outer surface being cold. They considered four different rotational conditions of cylinders: counter-rotating cylinders, co-rotating cylinders, outer rotating cylinders, and inner rotating cylinders. They found that the rate of heat transfer is lower for the differentially heated cavity, regardless of the rotational velocity of the cylinders. Shah et al. [198] studied the mixed convection flow of CuO-H2O nanofluid in a lid-driven corrugated porous cavity with a cylindrical object inside. The object had three different surface conditions: adiabatic, cold, and hot. Internal heat generation/absorption and uniform heat were applied to the vertical wall, and the bottom was insulated. They found that Nu increased as Re increased. The highest Nu was attained for χ = 0.05. Xia et al. [200] studied the mixed convection flow of H2O-Al2O3 nanofluid inside a T-shaped lid-driven cavity with a hot obstacle at different positions. The top lid was moving to the right and had a cold temperature, while all the other walls were adiabatic except the hot obstacle, which was considered hot. Their results showed that as Ri increased, the heat transfer decreased. Additionally, they found that an increase in χ helped to increase the rate of heat transfer. Furthermore, an increase in aspect ratio caused a reduction in the rate of heat transfer. Zhang et al. [202] investigated Ag-water nanofluid flow inside a semi-elliptic lid-driven cavity. The top moving lid was cold, while the curved bottom wall was hot. Their results showed that the presence of nanoparticles with high circulation led to an increase in the rate of heat transfer. Additionally, the heat transfer rate enhanced with the increase in Gr for lower Ri.






6. Conclusions


Heat transfer analysis inside cavities has been investigated by many authors. Different geometries have been adopted for the enclosed cavity in order to enhance heat transfer and improve the flow behavior inside the cavity. A high percentage of published articles worked on rectangular and square cavities, while the other geometries were triangular, trapezoidal, semi-circular, etc. Furthermore, some articles discussed the flow behavior of two adjacent rectangular domains that are used in building blocks or some types of windows. Two main hydraulic boundary conditions are applied: fixed and moving boundaries (lid-driven), while several thermal boundary conditions are applied, starting with temperature difference, heat flux, cold and hot fins, and other types of objects, etc. Moreover, the effect of sinusoidal and triangular surfaces and flexible boundaries are also considered. In addition, several articles have studied the influence of magnetic fields and different fluids types on heat transfer.



Through the review of natural convection, the findings revealed that Nu increased with the rise of Ra and nanoparticles concentration. Moreover, Nu decreased with the increase in Ha. The effect of objects inside the cavity varied with the boundary conditions applied to the surface of the object and conditions of it whether it was fixed or moving. Moreover, Nu decreased with the increase in Da considering porous material inside the cavity. The cavity with forced convection is discussed by many authors. In addition to the previous mentioned boundary conditions and types of cavities, a moving boundary is applied (lid-driven cavity). This type of condition will move the flow inside the cavity from natural convection to forced convection or mixed convection between two types.



During the lid-driven cavity, there will be an interchange relationship between forced, and natural convection depending on the applied boundary conditions and types of fluids that have been used. Some results demonstrate that buoyancy will be dominant for high values of Pr while forced convection controls the flow process inside the cavity. The influence of adding different nanoparticles led to an increase in Nu and rate of heat transfer with the rise in nanoparticles concentration. In a few cases, nanofluid had an inverse effect on Nu at low Re when Ri is high. The majority of published articles demonstrated that the increase in Ri led to a decrease in Nu and the rate of heat transfer. In the case of elastic boundaries, some results presented that the heat transfer raised with an increase in Ri. In most cases, the rate of heat transfer improved with the increase in Ha. Some articles referred to a rise in Nu with the increase in Ha, with some boundaries being elastic and the cavity being filled with porous media. The existence of some objects inside the cavity had helped to increase in heat transfer rate. For example, rotating cylinders, flat plates, triangular blocks, rectangular blades, etc., led to an increase in Nu.



Finally, this configurative systematic review focuses on the importance of heat transfer enhancement or degeneration in relation to various factors such as the shape of the cavity, the presence of fins/cylinders/blocks/blades, and the use of fluids/nanofluids/hybrid-nanofluids and/or porous media. The review also proposes future research directions based on an extensive literature review. The review includes details of the flow domain, dimensions, type of flow, parameters and their ranges, meshing, CFD methods, and algorithms, which are presented in tabular form. Additionally, the review provides extensive details on CFD validation. The authors believe that this is the first time such detailed information has been presented in a review and that it will be valuable for future researchers.




7. Future Work


In conclusion, research on heat transfer behavior in cavities has been highlighted since around 1965, and much research is still being carried out by researchers. However, several key points are not highlighted yet and can be considered as future research, and such key points are mentioned below:




	
Most of the studies focused on laminar natural/mixed/forced convection flow, but very few studies considered turbulent flow regimes.



	
Most recently, rotating blades or plates inside the cavity received attention from researchers. Still, no work is conducted considering the design, shape, and aerodynamic behavior of blades.



	
Will it be possible to develop a general form of correlation for the average Nusselt number?



	
Very little research is found considering the LES and DNS modeling in cavities for transient/turbulent flow regimes. This area should be considered a high-interest area in the future.



	
The choice of turbulence models has not been highlighted yet by researchers. It can be an important study.



	
Different types of shapes are considered in the literature, but more research is suggested to find an optimum design of the physical domain that can give maximum heat transfer enhancement.



	
Very little or limited research work is conducted considering the presence of nanoplastic or microplastic in fluids inside a cavity. It is highly considered research for future studies.



	
Study the hydraulic and thermal behavior of two immiscible fluids (for example, air and water) inside a cavity.
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Nomenclature




	A
	Aspect ratio



	AB
	Adams-Bashforth method



	ADI
	Alternate Direct Implicit scheme



	ALE
	Arbitrary-Lagrangian–Eulerian approach



	Am
	Amplitude



	ANFIS
	Adaptive Neuro-Fuzzy Interface System



	b
	Size of blocage (%)



	B
	Dimensionless magnetic induction



	BGK
	Bhatnagar–Gross–Krook



	BiCGStab
	Biconjugate gradient stabilized method



	C
	Concentration



	CDS
	Central differencing schemes



	CN
	Crank-Nicolson



	COBYLA
	Constrained Optimization BY Linear Approximations



	Cp
	Specific heat



	DADI
	Dynamic alternating direction implicit scheme



	DRBEM
	Dual reciprocity boundary element method



	DNS
	Direct numerical simulation



	dp
	Nanoparticles diameter



	E
	Young’s modulus



	f
	Fluid



	FDM
	Finite difference method



	FEM
	Finite element method



	FVM
	Finite volume method



	FSI
	Fluid-structure interaction



	GE
	Gaussian Elimination method



	Gr
	Grashof number



	GrC
	Mass transfer Grashof number



	GrT
	Heat transfer Grashof number



	GS
	Gauss-Seidel method



	h
	Cavity height



	Ha
	Hartmann number



	HO-MFA
	High-order mesh-free approach



	IEFG–RIPM
	Improved element-free Galerkin–reduced integration penalty method



	J
	Joul heating parameter



	K
	Thermal conductivity ratio



	Kl
	Low conductivity material



	LB
	lattice Boltzmann method



	LES
	Large Eddy Simulation



	Le
	Lewis number



	Lh
	Vertical distance between bottom of the cavity and the hot disturbance area



	Lc
	Vertical distance between bottom of the cavity and the cold disturbance area



	M
	Magnetic parameter



	Ma
	Mach number



	MLS
	Moving least squares



	MRT
	Multiple-Relaxation-Time



	MWCNT
	Multi wall carbon nanotubes



	n
	Flow behavior index for a power-law fluid



	nf
	Nanofluid



	N
	Buoyancy ratio



	Nb
	Brownian motion



	Nt
	Thermophoresis parameter



	NR
	Newton-Raphson method



	Nu
	Local Nusselt number



	     N u  ¯    
	Average Nusselt number (Nuavg)



	NuL
	Average Nusselt number based on the cavity length



	NuymL
	The mean of the local Nusselt numbers



	Os
	Ostrogradsky number



	Pe
	Peclet number



	PCM
	Phase change material



	Pr
	Prandtl number



	Prt
	Turbulent Prandtl number



	q
	Heat generation or absorption



	QUICK
	Quadratic upstream interpolation for convective kinematics



	R
	Internal to external Rayleigh numbers ratio



	Ra
	Rayleigh number



	RaT
	Generalized thermal Rayleigh number



	RaI
	Internal Rayleigh number



	RaE
	External Rayleigh number



	Ram
	Magnetic Rayleigh number



	RaL
	Average Rayleigh number based on the cavity length



	Rayml
	The mean of the local Rayleigh numbers



	Rbf-Pum
	Radial basis function-based partition of unity method



	RBSOR
	Red and black SOR method



	Rd
	Radiation parameter



	Re
	Reynolds number



	Rew
	Rotational Reynolds number



	Ri
	Richardson number



	RK
	Runge-Kutta method



	RSM
	Response surface methodology



	s, np
	Solid or nanoparticles



	Sc
	Schemidt number



	SEM
	Spectral element method



	Sh
	Sherwood number



	SIMPLE
	Semi-implicit method for pressure-linked equations



	SOR
	Successive over-relaxation



	SUR
	Successive under relaxation



	Sr
	Soret parameter



	Ta
	Taylor number



	TDMA
	Tri-diagonal matrix algorithm



	TFM
	Triangular factorization method



	Tp
	Partition thickness



	Tr
	Thermal conductivity ratio,



	TS
	Taylor series



	UCS
	Upwind compact Scheme



	UDS
	Upwind difference Scheme



	URANS
	Averaged Navier–Stokes



	x
	Horizontal coordinate



	y
	Vertical coordinate



	  φ  
	Inclination angle



	  χ  
	Nanoparticles volume fraction



	  ε  
	Emissivity



	  λ  
	Number of undulation



	  κ  
	Thermal conductivity



	  ϕ  
	Phase deviation



	  ρ  
	Density



	  Ω  
	Rotational speed



	  ω  
	Oscillation frequency



	  ϖ  
	Angular frequency



	  μ  
	Dynamic viscosity
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Figure 1. Flow chart of the study selection process. 
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Figure 2. Word Cloud Map. 
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Figure 3. Percentage of different types of cavities. 
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Figure 4. Variation of Nuavg with different Gr for Pr = 0.71 (Case: Mixed convection flow inside a square lid-driven cavity) [31,33,34,53,55,93,105,106,124,139,142,188,189,207,208,209,210,211]. 
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Figure 5. (a,b): Variation of Nuavg with different Ra for Pr = 0.71 (Case: Natural convection flow in a square cavity) [2,7,9,18,52,71,75,79,89,94,99,103,149,162,163,179,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267]. 
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Figure 6. Variation of Nuavg with different Re for Pr = 0.71 and Gr = 102 (Case: Mixed convection flow in a square lid-driven cavity) [12,18,42,48,50,53,73,95,96,110,115,116,117,150,157,178,180,183,192,198,199,208,268,269,270,271,272,273,274,275,276,277,278]. 
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Figure 7. Variation of Nuavg with different Ra for A = 40 [186,279,280,281,282,283,284]. 
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Figure 8. Variation of     N u  ¯    for Ra = 103 (Case: Porous square cavity) [20,285,286,287,288]. 
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Figure 9. Variation of     N u  ¯    for different nanoparticles concentration (C) of Al2O3 nanofluid [118,165,204,289,290,291,292,293]. 
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Figure 10. Variation of relative average Nusselt number for different Ra (Case: Non-Newtonian Power-law Fluids) with Pr = 100 [109,152,178,199,218,273,294,295,296,297]. 
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