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Abstract: The distribution network reconfiguration problem (DNRP) refers to the challenge of
searching for a given power distribution network configuration with better operating conditions,
such as minimized energy losses and improved voltage levels. To accomplish that, this paper
revisits the branch exchange heuristics and presents a method in which it is coupled with other
techniques such as evolutionary metaheuristics and cluster analysis. The methodology is applied
to four benchmark networks, the 33-, 70-, 84-, and 136-bus networks, and the results are compared
with those available in the literature, using the criteria of the number of power flow executions. The
methodology minimized the four systems starting from the initial configuration of the network. The
main contributions of this work are the use of clustering techniques to reduce the search space of
the DNRP; the consideration of voltage regulation banks and voltage-dependent loads in the feeder,
requiring the addition of a constraint to the mono-objective model to guarantee the transferred load
will be supplied at the best voltage magnitude level, and the application of the methodology in real
distribution networks to solve a set of 81 real DNRPs from CEMIG-D (the distribution branch of the
Energy Company of Minas Gerais). Four out of those are presented as case studies to demonstrate the
applicability of the approach, which efficiently found configurations with lower power and energy
losses with few PF runs.

Keywords: branch exchange; cluster analysis; distribution network reconfiguration; evolutionary
metaheuristics; Matpower; OpenDSS; power losses; voltage-dependent load

1. Introduction

The distribution network reconfiguration problem (DNRP) is often employed to im-
prove a distribution network’s operational conditions, which are evaluated through in-
dicators such as power loss summation and voltage deviation [1]. The DNRP is solved
by changing the statuses of switching devices, such as outdoor switches and reclosers, to
obtain a new network configuration under better operational conditions. This new configu-
ration must also comply with the usual system constraints in the DNRP model, including
voltage limits, line capacities, and network radiality. The DNRP is highly combinatorial
for the exponential growth of the number of possible configurations as the number of tie
switches increases. As stated in [2], the development of a very fast technique to estimate
the power losses of the proposed configurations is a challenge for the DNRP. Furthermore,
the DNRP model is nonlinear, mixed-integer, and non-differentiable. These characteristics
point towards the use of metaheuristics as the most suitable class of techniques for the
solution. In this sense, it is worth mentioning that the number of published works tackling
DNRP through metaheuristics is higher than those based on heuristics or mathematical
optimization approaches [1].

Generally, the technical literature has shown the mono-objective formulation for op-
timization as the recurrent alternative since the main objective is the minimization of
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technical losses. Furthermore, the mono-objective form with power loss minimization
remains the single most important objective for the majority of the published works [2–4]
and is the adopted formulation for the present work. However, the multi-objective form is
usually preferred to deal with the network restoration problem. In this problem, the objec-
tives usually include the network reliability indexes [5], the number of switch maneuvers
to the service restoration [6], and the number of disconnected clients [7].

Currently, the distribution networks have incorporated more possibilities for recon-
figuration due to the increasing penetration of distributed energy resources (DER), which
demands more frequent reconfigurations to minimize power losses [8], and the increase in
intelligent electronic devices (IED), such as outdoor vacuum reclosers, which allow remote
operations. In the last decade, the DNR has advanced in several areas. One of the most out-
standing and with several works is the hybrid approaches of reconfiguration in networks
with the presence of DER [9], electric vehicles [10], storages, and soft open points [11].
Other future trends include the analysis of islanding in fault reconfiguration [12], the
improvement of reliability [13], and real-time DNR. These areas show that the DNR is still
relevant in scientific literature, specifically the minimization of power and energy losses,
since using energy more efficiently reduces the environmental impact (e.g., ref. [14] points
out that electricity and heat production account for 25% of greenhouse gas emissions).

The academic literature often addresses the DNRP in benchmark networks, the best
known being the networks with 16, 33, 70, 84, and 136 buses. However, in the context
of the current research, these networks can be considered small when compared to real
distribution systems, which are usually larger in terms of the number of buses and lines.
Furthermore, most works present simplifying assumptions in their methodologies that can
limit the application of DNRP-resolution techniques to real distribution feeders. This work
applies the DNR to real distribution feeders and, thus, addresses some of the simplifications
not addressed in the literature. One of these simplifications is the adopted load model, as
previous studies present little information about the choice of load model and almost all
of them use the constant-power (P) load model for 100% of the loads [1,15]. However, it
is known that real distribution networks have some voltage-dependent loads, as well as
voltage regulation equipment, such as voltage regulator banks (VRBs). In this scenario, the
application of the standard mono-objective model of loss reduction can lead to unfavorable
and even absurd configurations (e.g., by-pass of the VRB), as this work will discuss.

This work proposes a combination between the branch exchange (BE) [16,17] heuristics
and evolutionary metaheuristics to solve the DNRP. The BE heuristics is coupled to an
iterative loop, inspired by the generation process of an evolutionary algorithm, in which a
solution obtained in the current generation can be improved in subsequent generations. In
brief, the novelty and originality of this work consist of (1) The use of clustering techniques
to reduce the search space of the DNRP; (2) the addition of a constraint to the mono-
objective model to deal with the voltage-dependent loads and VRBs and guarantee the
transferred load will be supplied at the best voltage magnitude level; and (3) the application
of the methodology in real distribution networks to efficiently find configurations with
lower power and energy losses with few PF runs.

This work also draws attention to the importance of reporting the number of power
flows (NPF) for comparison purposes among different techniques. Other metrics, such as
run-time (RT) information, are distorted by the uprated power of computing over the years
and different implementation details such as the programming language, the developer
environment, or the computer operating system. This hindrance in comparing works
that report only run-time information is documented in [1], where many works do not
even report NPF and RT information, which makes them qualified as not comparable.
Table 1 shows the number of works gathered in [1] that report the NPF runs and run-time,
revealing that these metrics could be better reported in the DNRP literature.
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Table 1. Number of works that report the NPF runs and the run-time gathered in [1].

Benchmark Network 33-Bus 70-Bus 84-Bus 136-Bus

No. works reporting NPF 13 3 9 4

No. works reporting RT 32 14 18 12

No. cited works 66 27 29 21

Finally, the main motivation for this research was the development of a fast and effi-
cient procedure for power- and energy-loss minimization in real distribution feeders, con-
sidering characteristics usually not addressed in the literature, such as voltage-dependent
loads and voltage regulator banks. By effectively proposing lower loss configurations
with a low NPF, this work is expected to contribute to the applied theory of DNR in real
distribution feeders, a topic that should be more addressed in literature [1]. As all the
developed code is shared in the Supplementary Material Link, the contribution of other
researchers and distribution utilities is expected.

2. Related Works

In the technical literature, the DNRP was first tackled by Merlin and Back [18] in
1975 as a minimization problem for the power losses of distribution systems. In 1988,
studies [16,17] proposed the branch exchange heuristics, in which the closure of any tie
switch must follow the opening of a sectionalizing switch from the loop formed by the
first closure. The BE heuristics can minimize the power losses of some small networks.
For example, the power losses from the well-known 16-bus network [19] are minimized
with just seven PF executions, including the one for the original configuration [3]. Two
other heuristics methods are commonly cited in the literature: (1) a close-all switch strategy
proposed by Shirmohammadi and Hong [20], starting with all tie switches closed and
opening the branch that has the minimum current; (2) an open-all switch strategy proposed
by McDermott et al. [21].

From the 2000s onwards, larger systems were optimized using metaheuristics tech-
niques, while evolutionary algorithms and their variants were the recurrent strategies [1].
To name a few, we highlight the use of genetic algorithms [19,22,23], differential evolu-
tion [24], particle swarm optimization [25], and artificial immune systems [26]. As noted
in [1], the main drawback of metaheuristics methods is that they cannot guarantee finding
the global optimum.

A few works have combined heuristics and metaheuristics to achieve a smarter hybrid
strategy for solving the DNRP. Some works date back to 2008: Carreño et al. [27] proposed a
local improvement step in a genetic algorithm (GA) and Raju and Bijwe [3] proposed a two-
stage method for the DNRP with the second stage being a BE procedure. In 2009, Queiroz
and Lyra [28] proposed the use of BE as a local search step in GA. In 2012, Gupta et al. [29]
presented a BE method with a loop ranking showing good results for the 84-bus network.
In 2012 and 2013, Zin et al. [4,30] proposed a BE based on the minimum branch current with
good results for the 136-bus network. In 2016, Souza et al. [31,32] applied the CLONALG
and Chu–Beasley for the DNRP, and in 2019, Pegado et al. [25] applied an improved
selective binary-PSO to solve the DNRP. However, these three works present a higher NPF
required to optimize the benchmark networks than most BE/metaheuristics works.

The literature presents some works about clustering techniques (CT) applied to the
DNRP, such as refs. [33,34], which use it to train a neural network to solve the DNRP,
and more recently, refs. [35,36], which apply CT to the time periods according to the time-
varying load demand to tackle the dynamic DNRP. This work proposes a new approach to
cluster the cycles of the network connectivity graph. Works that apply the graph theory to
the DNRP stand out, especially the use of minimum spanning tree algorithms to generate
candidate solutions for population-based metaheuristics [27,37,38]. In 2020, Jakus et al. [39]
also applied the graph theory in DNRP in a hybrid heuristic-genetic algorithm and applied
their methodology in two larger 130.8 kV systems.
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Finally, these four works [3,4,29,30] showed the best results regarding the NPF runs,
as shown in Table 1, and are one of the motivations for this work to propose a methodology
using the BE heuristics coupled with metaheuristics for solving the DNRP in larger real
distribution systems. As noted by the review [1], coupling metaheuristics methods with
heuristics is a good approach to increasing the speed of convergence.

3. Mathematical Model

This work uses a mathematical formulation based on [40] and considers the DNRP as
a mono-objective optimization model whose objective is the minimization of active power
losses. However, this work adds an important constraint to this model to deal with feeders
with voltage-dependent loads and voltage regulator equipment. As the power losses will
change with the voltage level, the constraint given by (10) will ensure the best voltage level
for the transferred load on the switching operation.

3.1. Fitness Function

A binary state vector X is defined, for which each element of X, say xkj, denotes the
status of the line connecting buses k to j: 1 (0) for a closed (open) switch existing on that
line. One can mathematically describe it as follows, where Nl is the total number of lines
and Ωl represents the set of all lines in the system.

X =
[

xkj, . . . , xNl

]
xkj ∈ {0, 1} ∀ (k, j) ∈ Ωl

(1)

The objective function to be minimized is formulated as the total power loss (PL) in
the distribution system:

PL = ∑
kjεΩl

xkjGkj

(
V2

k + V2
j − 2VkVj cos θkj

)
(2)

In which:

Gkj is the series conductance of the line between buses k and j for (k, j) ∈ Ωl ;
Vk is the voltage magnitude at bus k;
Vj is the voltage magnitude at bus j; θkj is the angular difference between the voltage
phasors of buses k and j for (k, j) ∈ Ωl .

3.2. Constraints

The constraints of the DNRP are described below:

Active power balance

Psk − Pdk − ∑
j∈ΩBk

xkjPkj = 0 ∀k ∈ ΩB (3)

in which:

Psk is the active power supplied by the substation to bus k;
Pdk is the active power demand of bus k;
ΩB is the set of the system’s buses;
ΩBk is the set of buses connected to bus k;
Pkj is the active power dissipated in the branch between buses k and j, given by (4).

Pkj = V2
k Gkj −VkVj

(
Gkj cos θkj + Bkj sin θkj

)
(4)

in which:

Bkj is the series susceptance of the line between buses k and j.
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Reactive power balance

Qsk −Qdk − ∑
j∈ΩBk

xkjQkj = 0 ∀k ∈ ΩB (5)

in which:

Qsk is the reactive power supplied to bus k;
Qdk is the reactive power demand of bus k;
Qkj is the reactive power dissipated in the branch between buses k and j, given by (6).

Qkj = −V2
k Bkj −VkVj

(
Gkj sin θkj − Bkj cos θkj

)
(6)

Bus voltage limit

Vmin
k ≤ Vk ≤ Vmax

k ∀k ∈ ΩB (7)

in which Vmin
k and Vmax

k are, respectively, the minimum and the maximum values for the
voltage magnitude at bus k. Usually, those values must be within the range of [0.93, 1.05]
p.u., according to the Brazilian regulatory standards [41].

Line current limit
Each line i supports the current flow Ii not exceeding its thermal limit (ampacity) Imax

i ,
in which Ωl is the set of the system branches.

|Ii| ≤ Imax
i ∀i ∈ Ωl (8)

Radial structure of the network
For radial topology, the following two conditions must stand: (1) the number of actives

lines
{

xkj = 1
}

must be equal to NB − 1, where NB is the number of buses according to (9);
and (2) the network must be connected (i.e., a path must exist from the substation to every
bus).

∑
(kj)∈Ωl

xkj = NB − 1 (9)

Voltage magnitude level before/after the maneuver
The constraint given by (10) prevents the worsening of the voltage level due to switch-

ing operations in the real feeders.

VNCA ≥ VNCB (10)

where VNCA and VNCB are, respectively, the voltage magnitude level on the first bus of the
normally closed switches after and before the switching operation. As the switches are
closed and modeled as ideal switches, i.e., Z0 and Z1~0, the voltage level could be taken on
the second switch bus as well.

At first, this constraint may seem unnecessary, since the mono-objective optimization
of power or energy losses usually leads to an overall improvement in voltage levels as
many works have shown [1,24]. This happens due to the 100% constant-power (P) load
model, in which an improvement in the bus voltage level leads to a decrease in the load
current on this bus. However, when dealing with real distribution networks, the load
model is not 100% constant power and some loads are voltage-dependent—e.g., in [42]
the active load coefficients for two CEMIG-D substations are between 34% and 49% for
constant impedance (Z) and 66% and 51% for constant power (P). In this scenario, this
constraint guarantees the transferred load will always be supplied by the best voltage level.

Indeed, the technique known as conservation voltage reduction (CVR) is based on
this principle and its efficacy is dependent on the load model [8]. Although they have the
same objective to reduce losses, the application contexts are different, since here the supply
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voltage level worsening on the transferred load is not desirable. In CVR studies, the voltage
level is usually changed on the substation or the VRBs along the feeder.

4. Proposed Method

This section will detail the developed methodology, starting with a description of the
branch exchange heuristics in Section 4.1. Section 4.2 explains the iterative application of
the BE heuristics, using the concepts from evolutionary algorithms such as elitism and
population repository. Section 4.3 presents a brief explanation of the fitness evaluation
using open-source power flow programs, and finally, Section 4.4 presents the details of the
BE application sequence and the use of clustering techniques to reduce the search space of
BE heuristics.

4.1. The Branch Exchange Heuristics

The BE heuristics consists of exchanging branches that represent the network lines for
others. A practical way to implement the heuristics is to verify, for each normally open
(NO) switch, if there is a normally closed (NC) switch that provides a condition of lower
active power loss when the status of the switches is exchanged—the NO switch is closed
and the NC switch opened.

In this work, the determination of the NC switch that will be opened is performed by
analyzing the branches in the cycle created by closing a normally open (NO) switch. To
extract that cycle, a graph that models the network connectivity is constructed from the
power flow program data format (Matpower [43] or OpenDSS—Open Distribution System
Simulator [44]). For this application, unit weights are assigned to edges representing the
distribution lines. The cycle is determined by applying any algorithm capable of “walking”
on the graph from the nodes of the chosen NO switch. In this work, Dijkstra’s shortest
path algorithm [45] was employed since it was already implemented in the libraries in
which the solution was developed (namely, Boost Graph Library in the Matlab code and
Quickgraph in the OpenDSS customization). In Figure 1, an example is given for Dijkstra’s
algorithm applied to the NO tie switch nodes 21-8. The result will give the following
yellow-colored edges.
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From one of the vertices of the NO tie switch, the BE heuristics verifies the next
branches in the cycle, one by one, following a direction: the BE [16] suggests that operation
must be performed first on the higher-voltage-drop side. So, in this example, the BE starts
analyzing the way starting from the branch (7-8). The initial NO switch (21-8) is closed,
the NC switch (7-8) is opened, and a fitness evaluation is performed. If the system losses
decrease, the procedure continues to the other branches until no improvement is achieved.
In this case, the NC switch that provided the lowest losses will be chosen as the new NO
switch. The other direction of the cycle must be analyzed if no improvement occurs on the
first one.

The procedure is repeated for each network NO switch, which corresponds to the
number of basic cycles [46]. The BE application sequence in each cycle/NO switch will be
detailed in Section 4.4.
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4.2. The Iterative Branch Exchange

The proposed methodology consists of applying the BE heuristics within an iterative
loop, which is inspired by the generation process used in evolutionary algorithms and
population-based metaheuristics. The iterative BE is applied to the initial network configu-
ration (i0). For each cycle/NO switch, if the BE is successful, a new individual is created
and added to the population repository, which initially contains only the initial network
configuration. Since the BE acts as a local search procedure in networks with more than
one cycle, this approach can be classified as an iterative local search.

The elitism concept from evolutionary metaheuristics is also applied. Thus, on the
next generation, the process is repeated, updating the last configuration analyzed (i0) with
the elite individual from the population repository. Figure 2 presents the flowchart of the
proposed methodology, also summarized in Algorithm 1. The iterative BE finishes when
the stopping criteria, i.e., the maximum number of generations, is reached.

Algorithm 1 Iterative Branch Exchange

• The algorithm starts with the original network configuration;
• Apply the BE heuristics to each NO switch;
• Check if new configurations created are radial;
• Evaluate the fitness of the new radial configurations;
• Add the new configurations to the population repository;
• Select the best configuration (elite) from the population repository and go to the beginning,

until reaching one of the stopping criteria.
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4.3. Fitness Evaluation

The fitness evaluation step consists in evaluating the quality of the initial population
and the new individuals created by the iterative BE. As long as the objective is the min-
imization of active power losses, the fitness value for each individual will be the power
loss of its configuration. In the literature, the power losses are usually calculated using the
power flow method, and the total power loss is calculated by summing up the active power
losses in each line, as shown in (2).

In the literature, there are many power flow methods and algorithms, such as the
Newton–Raphson [43] and Forward/Backward Sweep [47] methods. Currently, there are
some open-source programs available, avoiding the cost of developing one from scratch,
such as Matpower [43] and OpenDSS [44]. Matpower implements some traditional PF
methods and the default solver is based on a standard Newton’s method. OpenDSS em-
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ploys a nodal admittance formulation, also referred to as a current injection compensation
method [48].

4.4. BE Application Sequence and Cycle Clusters

In the proposed methodology, the BE heuristics was applied in three different ways
in relation to the order of choice of NO switches: (1) The NO switches with the largest
cycles in the number of edges first; (2) the NO switches/cycles in random order; and (3)
in each cycle cluster. The understanding of the first two is more straightforward and the
explanation of the cycle cluster is given ahead.

In the scientific literature, cluster analysis is the task of grouping a set of objects in
such a way that objects in the same group (called a cluster) are more similar (in some sense)
to each other than to those in other groups (clusters) [34]. In this work, the cycle clustering
is realized over the network connectivity graph defined in Section 4.1.

A cycle cluster is formed by two or more cycles in which one cycle is inside the other
and therefore they share most of their edges. For example, Figure 3 shows a cycle cluster
from the 136-bus network formed by the switches s145, s146, s154, and s155. Tie switches
from adjacent clusters are also represented in this Figure.
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Figure 3. 136-bus network cycle cluster no. 4. Red nodes = feeder’s head; dashed red lines = NO
lines. Source: Author.

The purpose of clustering the cycles is to reduce the search space of the heuristics, as
the BE is applied in random order to each of the cycles of the analyzed cluster, while all
other clusters are kept constant. The performance improvement with the clustering will be
presented in Section 5 for the 136-bus network.

In this work, the clustering is performed by comparing the edges closest to the sub-
station for each cycle. For instance, if two cycles have the same substation output edges,
they will belong to the same cluster. One way to check this condition is to run any graph-
traversal algorithm (again, the work used Dijkstra’s algorithm) twice for each cycle, from
both nodes of the NO switch to the substation node. Then, the edges returned by the
shortest paths are compared and all the cycles—named by their NO switches—are grouped
according to the substation output edges. For example, Table 2 shows the grouping of 15 of
the 21 NO switches of the 136-bus network, in its initial configuration, into 5 clusters.
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Table 2. NO switches for the 136-bus network grouped into 5 clusters.

Tie Switch No. Branch No. Branch No. Cluster No.

s141 85 39 1
s142 85 39 1

s143 99 39 2
s153 99 39 2

s147 99 85 3
s149 99 85 3
s150 99 85 3
s152 99 85 3

s145 121 75 4
s146 121 75 4
s154 121 75 4
s155 121 75 4

s148 121 85 5
s151 121 85 5
s156 121 85 5

In the initial configuration, the NO switches s136, s137, s138, s139, s140, and s144 do not form clusters according
to the presented criteria.

5. Simulation and Results
5.1. Presentation of the Benchmark Systems

This Section presents the characteristics of the 33, 84, 70, and 136-bus networks with
which the methodology was tested. Table 3 shows the main data about these systems:
the number of buses, lines, and switches, the power losses for the initial and the optimal
configuration, and their reference works. Table 4 shows the simulation parameters used in
the iterative BE algorithm.

Table 3. Overall data of the four test systems.

Benchmark Network 33-Bus 70-Bus * 84-Bus 136-Bus

No. lines/tie switches 37 74 96 156

No. generators/feeders 1 1 11 8

No. NO switches (cycles) 5 5 13 21

Voltage level (kV) 11 12.66 11.4 13.8

Active load (MW) 3.7 3.8 28.3 18.31

Reactive load (MVAr) 2.3 2.7 20.7 7.93

Original losses (kW) 202.69 225.00 531.99 320.36

Optimal losses (kW) 139.55 99.66 469.88 280.19

No. Spanning trees 50,751 28,984 3.52 × 1011 2.27 × 1018

References [19] [49] [50] [51]

* In the literature, this network is also referred to as the 69-bus network with the first branch suppressed.

Table 4. Simulation parameters.

Benchmark Network 33-Bus 70-Bus 84-Bus 136-Bus

Initial Pop. Size 1 1 1 1

Max Pop. Size 1 5 10 10

No. Generations 5 5 5 5

Figures 4–6 show the layouts of the 70-, 84-, and 136-bus networks, respectively.
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5.2. Overall Numerical Results for Benchmark Systems

The proposed methodology presented 100% success, converging to the optimal solu-
tion in all ten simulation runs for the benchmark systems, the 33-, 84-, 70-, and 136-bus
networks. Table 5 presents the results compared with other relevant works in the literature.
For evolutionary metaheuristics works that did not report the NPF runs, it was estimated
with NPF = Np·iTmean, where Np is the population size and iTmean denotes the average
number of iterations (in the worst case, if iTmean is not available it was substituted by G,
the maximum number of generations). It is noteworthy that some works present an NPF
lower than the proposed methodology, although only ref. [4] has also been tested in the
four networks. Moreover, refs. [29,30] do not find the global optimum for the 136- and
84-bus networks, respectively.

Table 5. Comparison of the proposed algorithm results with other relevant works in terms of the
average NPF runs.

Work/Year Methodology/Algorithm 33-Bus 70-Bus 84-Bus 136-Bus

Carreño et al. [27]/2008 Chu–Beasley GA 24 - 291 600

Raju and Bijwe [3]/2008 Sensitivity/BE 11 - 24 -

Braz and Souza [22]/2011 GA 252 3283 - -

Gupta et al. [29]/2012 Loops Ranking/BE/close-all - 14 32 54 (1)

Zin et al. [30]/2012 Minimum Branch Current/BE 9 17 - (2) 99

Wang and Gao [23]/2013 Non-revisiting GA 482 539 1380 -

Zin et al. [4]/2013 (3) Minimum Branch Current/BE 20/24 30/33 65/61 -(3)/142

Souza et al. [31]/2016 (4) CLONALG/Chu–Beasley GA 71.5 - 185.0 808.5

Souza et al. [32]/2016 (4) Opt-aiNet 71.5 - 168.5 841.5

Pegado et al. [25]/2019 (5) IS-BPSO (6) 900.0 - 3600.0 -

Alonso et al. [26]/2022 (4) Enhanced Artificial Immune System 132.0 - 232.0 1550.0

This work Iterative BE 24.0 26.0 64.6 146.1
(1) The reported solution is not the global optimum, with a power loss of 280.323 kW. (2) The work does not
find the global optimum for the 84-bus network. (3) The work presents two methods: PA1/PA2. The PA1 does
not find the global optimum for the 136-bus network. (4) The NPF runs was not reported, so it is estimated by
NPF = Np·iTmean. (5) The NPF runs was not reported, so it is estimated by NPF = Np·G. (6) IS-BPSO: Improved
Selective Binary Particle Swarm Optimization.

The results achieved are important to the field for showing that it is possible to
minimize these networks starting from their original configuration—a feat that refs. [33]
and [34] did not achieve. The results also show the superiority in the NPF runs of the
methodology over the population-based evolutionary metaheuristics, which enables its
application in larger real systems, as presented in Section 6.

5.3. Numerical Results—BE Application Order

Table 6 presents the results in terms of the NPF executions for two ways of applying
the BE heuristics. In (1) the iterative BE is first applied to the largest cycles in the number
of edges. In (2), the iterative BE is applied to the cycles in random order. The results show
the effectiveness of the iterative BE in solving the DNRP for small-sized networks, such as
the 33-, 70-, and 84-bus networks.
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Table 6. Variation in parameters for the proposed algorithm (average NPF executions in 10 runs).

BE Sequence 33-Bus 70-Bus 84-Bus

(1) largest cycles first 24.0 26.0 83.0

(2) random cycle order 25.2 38.6 64.6
Values in bold represent the best results.

5.4. Numerical Results—Cycle Cluster

This Section presents the numerical results for the cycle cluster. The cycle cluster
was an approach to overcome the challenge of minimizing the 136-bus network, since, as
presented in Section 5.3, the iterative BE minimized the 33-, 70-, and 84-bus networks effec-
tively, but not the 136-bus network applying the two BE application sequences proposed in
the last Section. When a cycle cluster, such as the one in Figure 3, is created, the algorithm
performs an iterative BE internally in each cluster, choosing the NO switches in random
order, while all other clusters are kept constant.

Measurement of the cycle cluster performance is complex since the number and size
of clusters vary according to the analyzed individual [29]. However, the performance
improvement can be shown by comparing the NPF between setup no. 2, from Section 5.3,
with the BE sequence in random cycle order and setup no. 3, with cycle clustering. In
addition, the number of successes in ten algorithm runs also demonstrates the performance
improvement, since only two successes are obtained with setup no. 2. In the other eight
runs, the algorithm became stuck in local minima. These results are summarized in
Table 7. Due to the performance improvement in solving the 136-bus network, the authors
encourage the use of CT in larger networks from the literature. Furthermore, future work
should test computationally cheaper algorithms for graph traversal.

Table 7. The performance improvement with the cycle cluster for the 136-bus network.

Setup No. 2 Random
Cycle Order

Setup No. 3 Cycle
Clustering

Max Pop. Size 50 10

No. Generations 50 5

NPF in ten runs 1091.9 146.1

No. successes in ten runs 2 10

6. Case Studies: CEMIG-D Real Feeders

Unlike the benchmark networks that assume the existence of a tie switch in each
distribution line, in real distribution feeders the total number of switches is much smaller
than the number of line segments, and the distance between the switching devices is also
greater. Nevertheless, the combinatorial analysis of all possibilities for these systems is very
prohibitive. The upper bound is the binomial coefficient given by (11), where the number
of NC and NO switches is shown in Table 8.

C(Nno, Nl) =

(
Nno
Nl

)
=

Nl!
Nno!(Nl − Nno)!

(11)

Nl is the total number of switches (Nno + Nnc);
Nno is the number of NO switches;
Nnc is the number of NC switches.
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Table 8. CEMIG-D feeders and substations numbers.

Feeder
/Sub.

No.
NO
sw.

No. NC
sw.

Combination
(Nno , Nl)

No.
Buses

No. MV
Clients

No. LV
Clients

No.
Transformers

MV
Network (km)

PSAU13 9 129 3.83 × 1013 18,445 6 12,434 1029 282.43

IIGD 58 439 3.27 × 1076 43,048 62 54,564 968 184.28

IIGU115 14 124 5.27 × 1018 18,523 6 13,269 731 270.20

CETU 23 318 6.15 × 1034 31,280 22 19,042 1509 636.97

Alternatively, a lower limit, which also gives an idea of the search space size for the
DNRP, can be obtained with the number of spanning trees from a graph given by the
Kirchhoff Matrix-Tree Theorem [38]. This theorem states that the number of spanning trees
from graph G is given by any co-factor of the Laplacian matrix of G. This number is shown
in Table 3 for the benchmark networks.

The proposed methodology was also implemented in a C#/OpenDSS [44] customiza-
tion and was effective in minimizing the energy losses of CEMIG-D feeders. The OpenDSS
power flow files were created from the database all Brazilian utilities are required to an-
nually send to the regulatory agency. Document [52] establishes the parameters to model
the feeders for the calculation of energy losses for Brazilian utilities. A requirement is
to model the active loads as a mixed ZIP model with 50% constant power (P) and 50%
constant impedance (Z). This load model and the existence of VRBs in the feeders required
the addition of the constraint given by (10) and, thus, ensured that the transferred load
would be supplied by a better voltage level. Section 6.3 presents a counter-example that
details the motivation for the addition of this constraint.

The result from the OpenDSS customization is a list of switching operations sorted in
a descending order of monthly energy loss reduction, in which the best switching operation
was implemented in the field. Table 8 presents the characteristics of the four CEMIG-D
feeders/substations, such as the number of NO and NC switches, buses, and both medium-
and low-voltage clients.

Table 9 presents the energy loss reduction from these four reconfiguration cases over
one month. For the calculation of the monthly energy losses, the methodology in [52]
establishes that three daily power flows must be calculated, representing one business day,
one Saturday, and one Sunday. In the OpenDSS, a daily power flow uses a load shape
object for each load in the circuit, allowing a sequential-time power flow calculation. A load
shape object consists of a series of multipliers, typically ranging between 0 and 1.0, applied
to the load demand value and represents its variation over some period, in this case, a day.
The results of the three daily power flows are weighted by the number of occurrences of
each type of day in the month and summed together, thus obtaining the energy losses in
a month [52]. Table 9 presents the estimation of the annual energy savings for the three
reconfigurations carried out in the field. It must be taken into account that the dynamic
of the actual distribution systems points to, at least, a quarterly review of the planning
studies for energy loss minimization. In Table 9, the cost of performing the switching
operations was not considered due to its low cost. For operations carried out by field
teams, the estimated cost is USD100.00 per device, but some operations can be performed
by remote control on IEDs. Finally, it also shows the voltage magnitude improvement with
the reconfiguration, showing the voltages on NC switches before and after the maneuver.
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Table 9. Energy loss reduction and voltage level improvement for CEMIG-D reconfiguration cases.

Energy (MWh/Month) Voltage Level NC sw.

Feeder
/Sub.

No. PF
Runs

From
Sub.

Losses
Before

Losses
After

Losses
Red.

Losses
Red. (%) (USD/Month) (1) After

(kV)
Before
(kV)

Volt.
Inc. (%)

PSAU13 26 2201 138.1 131.6 6.5 4.7 325 8.101 8.038 0.78

IIGD 158 14,842 554.5 550.4 4.1 0.8 205 8.217 8.166 0.63

IIGU115 (2) 24 2354 285.2 280.5 4.7 1.6 - 8.292 8.161 −1.58

CETU 64 5197 236.8 224.4 12.4 5.3 620 8.177 7.921 3.23
(1) Energy price considered: USD50.0/MWh. (2) Maneuver not implemented due to constraint given by (10).

6.1. Case Study no. 1: PSAU13 Feeder (Pouso Alegre City)

This is a typical case of load balancing. After the switching operation, represented
in Figure 7 by the closing of NO switch no. 44055 (yellow circle) and the opening of NC
switch no. 44169 (green circle), the total load is split between the two circuits. One load
block gains access to the substation through switch no. 44055 at a distance of 1.99 km closer.
In Figure 7, the other NO switches are represented by red circles.
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In Figure 8, the switch operation is highlighted in a plot over the Google Earth map.
The red circles highlight the NO and NC switches and the red line represents the feeder
trunk before switching, while the light blue line represents the feeder trunk after the
switching operation.
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6.2. Case Study No. 2: IIGD Substation (Ipatinga City)

This case presents a reconfiguration of an entire substation with more than 40,000 buses,
which justifies the greatest NPF executions in Table 9. The best switching operation [close
the NO switch no. 319112—yellow circle; open the NC switch no. 139164—green circle,
in Figure 9] proposes feeding the loads through a shorter electrical path. Moreover, the
switching operation was carried out by remote-controlled reclosers.
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6.3. Case Study No. 3: IIGU115 Feeder (Belo Oriente City/MG)

This case is presented as a counter-example to explain the motivation for the addition
of the voltage constraint given by (10). By running the algorithm without this constraint, the
solution would propose the following maneuver: [close the NO switch no. 130817—yellow
circle; open the NC switch no. 48676—green circle, in Figure 10].
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Figure 10. IIGU115 feeder plot. The red triangle represents the VRB; red circles = NO switches; green
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Table 10 shows the voltage level at peak load hour (6 pm), on the NC switches before
and after the proposed maneuver. Thus, the reduction in energy losses would occur due to
the 0.017 p.u. voltage level reduction on the normally closed switches due to the bypassing
of VRB no. 141495—red triangle in Figure 10.

Table 10. The simulated voltage level at the NC switches before and after the proposed maneuver.

Sw. no. 48676 Voltage level before maneuver (p.u.): 1.041

Sw. no. 130817 Voltage level after maneuver (p.u.): 1.024

Discussion: Since the real feeder usually includes voltage-dependent loads, the voltage
level constraint given by (10) guarantees that the transferred load will be supplied at an
equal or higher voltage level, preventing the undesirable side-effect of the VRBs being
bypassed by other electrical paths, as shown in this case study. In addition, the voltage
level constraint avoids the VRB bypass caused by its own bypass switches, since in the
modeling of real feeders they are usually represented, as exemplified in Figure 11.
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modeling of real feeders they are usually represented, as exemplified in Figure 11. 
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Figure 11. The VRB no. 93553 and its bypass switches no. 122504 and no. 122506, normally opened,
are represented in green color. The arrows represent the power flow direction. Source: Author.
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6.4. Case Study No. 4: CETU Substation (Caeté City/MG)

This case presents a reconfiguration of another substation with more than 30,000 buses.
The methodology discovered the possibility of feeding the loads through a more robust
and reliable network. After the switching operation [close the NO switch no. 302068; open
the NC switch no. 257774, in Figure 12, the loads are fed by protected 150.00 mm2 cables
instead of conventional 4/0 AWG cables (107.20 mm2).
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Discussion: The case studies demonstrate both the reduction in energy losses and the
improvement of the voltage level in real distribution feeders (Table 9). In most reconfigu-
ration cases, the reduction in losses results from feeding through thicker conductors (e.g.,
“bottleneck” elimination) and/or feeding by shorter electrical paths.

Taking into consideration the size of real feeders and substations, the amount of NO
and NC switches, and therefore the size of the search space as presented in Table 8, the
iterative BE proved to be suitable for minimizing losses on real distribution networks
within a reasonable NPF. A contribution to the low NPF is the fact that the methodology
does not require the creation of an initial population of candidate solutions, which usually
requires special algorithms as well as the expenditure of computational resources for the
fitness evaluation of this population. So far, it has been applied to 81 reconfiguration cases
for CEMIG-D with a total simulated energy loss reduction of more than 3.600 MWh/year.
The current characteristics of the modern distribution systems, such as the number of DERs
and IEDs in the grid, point to at least a quarterly review of the planning studies for energy
loss minimization.

As the switching operations are performed within the same substation, the short-
circuit level does not change. In addition, the reliability indexes (e.g., SAIDI, SAIFI) are
often improved after the operation, because the loads are supplied by networks closer
to the substation or conventional distributed networks changed by protected or isolated
ones, as shown in case study no. 4. For future work, the inclusion of reliability indexes
in the mathematical optimization model will be considered. In this way, the execution of
maneuvers into more reliable networks will be prioritized.

7. Conclusions

This work demonstrated that the association of branch exchange heuristics with
evolutionary metaheuristics concepts is a practical combination to solve the DNRP. The
use of iterative BE proved to be capable of optimizing 33-, 70-, 84-, and 136-bus networks
using only the original configuration as a starter solution. The results in the NPF runs
for these networks are on the same order of magnitude as those in other works about
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BE heuristics and are significantly better than the approaches with population-based
evolutionary metaheuristics. One of the advantages of this methodology over population-
based evolutionary metaheuristics is that it does not demand the creation of an initial
population of candidate solutions, which enables its application in larger real systems and
even in real-time reconfiguration.

The methodology was applied to real 13.8 kV distribution feeders and entire substa-
tions with more than 43,000 buses from CEMIG-D. The work considered the existence of
voltage-dependent loads and presented the undesirable effect of voltage regulator bank
by-passing and the way this problem was tackled through the addition of the voltage-level
constraint on the NC switches. The four case studies showed that a lower loss configura-
tion was discovered with a low number of PF runs, thus enabling the methodology to be
employed by distribution utilities to reconfigure real distribution feeders.
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