Definition of Regulatory Targets for Electricity Non-Technical Losses: Proposition of an Automatic Model-Selection Technique for Panel Data Regressions
Abstract
:1. Introduction
- NTLs are one of the main problems that electricity distribution utilities face in developing regions such as Latin America and the Caribbean, sub-Saharan Africa, and South Asia;
- The growing electricity demand, combined with complex socioeconomic conditions in countries of continental dimensions, such as Brazil and India, leads to economic and regulatory challenges directly related to the sustainability of distribution systems and the combating of NTLs;
- In Brazil, the ANEEL has formulated several specifications of econometric models for panel data with random effects, all aimed at determining an index that reflects the difficulty of distribution utilities combating NTLs according to the intrinsic characteristics of each distribution area;
- The exhaustive search for combinations of explanatory variables and the complexity inherent in defining NTL regulatory targets in Brazil still require evaluating a considerable number of models through hypothesis and goodness-of-fit tests;
- The literature review covering the last two decades on the use of econometric models using panel data to define regulatory targets for electricity NTLs revealed few studies concerning this issue and exploring automatic model-selection techniques for panel data regressions to define regulatory targets for electricity NTLs.
- RQ1: What are the main limitations of current econometric models for defining the NTL regulatory targets in Brazil?
- RQ2: How should the explanatory variables that have the most significant impact on the NTL phenomenon and that define panel data regressions that can better assist the ANEEL in establishing NTL regulatory targets for the distribution utilities in this country be selected?
- RQ3: To what extent can an automatic model-selection technique for panel data regressions support the definition of regulatory targets for electricity non-technical losses?
- RQ4: Is it possible to demonstrate the applicability of the proposed technique for defining regulatory targets for NTLs in the context of the electricity distribution sector in Brazil, highlighting its differentials compared with the current econometric models adopted by the ANEEL?
2. Research Design and Methodology
3. Proposition of an Automatic Model-Selection Technique for Panel Data Regressions
3.1. Phase 1: Generating Possible Models
3.2. Phase 2: Classification of Models in Panel Data
- yit = dependent variable from unit i at year t;
- αi = effect of the i-th unit on the overall parameter;
- β = vector with regression coefficients;
- xit = explanatory variables in unit i at year t;
- μ = general intercept, time-invariant;
- εit ~ NIID (0, σε) = idiosyncratic deviations.
- The use of the pooled model assumes that the intercept and response parameters do not differ among individuals and are constant over time. In Equation (2), the resulting model is presented.
- The fixed effects model intends to control the effects of the omitted variables, which vary among individuals and remain constant over time. Thus, it assumes that the intercept varies from one individual to another but is constant over time. The fixed effect model is presented in Equation (3), where N-1 dummy variables represent the fixed effects (α). So, the fixed effect model can be fitted by an ordinary least square, and the estimator of β is referred to as the Least Square Dummy Variable estimator (LSDV) [52,53].
- The random effects models consider that the individuals on whom the data are available are random samples from a larger population of individuals. In this case, αi ~ NIID (0, σα) and cov(αi, εit) = 0. The sum αi + εit is a composite error with two components: the white noise εit and the individual specific component αi that does not vary over time. Then, the composite error presents autocorrelation, and in this case, the model fitting should be carried out by the Generalized Least Square (GLS) [50,51].
3.3. Phase 3: Requirements for Choosing Models
4. Results and Discussion
4.1. Results of Applying the Automatic Model-Selection Technique for Panel Data Regressions
4.2. Use of Akaike Weights
4.3. Models Predictions
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Search Histories in the Web of Science and Scopus Databases
Number | Keyword Search | Retrieved Documents (n) |
---|---|---|
#1 | TS= (“non-technical loss*” OR “non-technical electricity loss*” OR NTL) | 1364 |
#2 | TS= (electricity OR energy OR “power system*”) | 4,086,556 |
#3 | TS= (“model selection”) | 25,522 |
#4 | TS= (“panel data”) | 49,202 |
#5 | #1 AND #2 | 403 |
#6 | #3 AND #4 | 135 |
#7 | #5 AND #3 | 0 |
#8 | #5 AND #4 | 9 |
#9 | #5 AND #6 | 0 |
Number | Keyword Search | Retrieved Documents (n) |
---|---|---|
#1 | TITLE-ABS-KEY (“non-technical loss*” OR “non-technical electricity loss*” OR NTL) | 2283 |
#2 | TITLE-ABS-KEY (electricity OR energy OR “power system*”) | 5,819,182 |
#3 | TITLE-ABS-KEY (“model selection”) | 25,160 |
#4 | TITLE-ABS-KEY (“panel data”) | 51,155 |
#5 | #1 AND #2 | 587 |
#6 | #3 AND #4 | 130 |
#7 | #5 AND #3 | 1 |
#8 | #5 AND #4 | 7 |
#9 | #5 AND #6 | 0 |
References
- Luqman, M.; Haq, M.; Ahmad, I. Power outages and technical efficiency of manufacturing firms: Evidence from selected South Asian countries. Int. J. Energy Econ. Policy 2021, 11, 133–140. [Google Scholar] [CrossRef]
- Tehero, R.; Aka, E.B.; Çokgezen, M. Drivers of the quality of electricity supply. Int. J. Energy Econ. Policy 2020, 10, 183–195. [Google Scholar] [CrossRef]
- Smith, T.B. Electricity theft: A comparative analysis. Energy Policy 2004, 32, 2067–2076. [Google Scholar] [CrossRef]
- Savian, F.S.; Siluk, J.C.M.; Garlet, T.B.; Nascimento, F.M.; Pinheiro, J.R.; Vale, Z. Non-technical losses: A systematic contemporary article review. Renew. Sustain. Energy Rev. 2021, 147, 111205. [Google Scholar] [CrossRef]
- Savian, F.S.; Siluk, J.C.M.; Garlet, T.B.; Nascimento, F.M.; Pinheiro, J.R. Non-technical losses in electricity distribution: A bibliometric analysis. IEEE Lat. Am. Trans. 2021, 19, 359–368. [Google Scholar] [CrossRef]
- Carr, D.; Thomson, M. Non-Technical Electricity Losses. Energies 2022, 15, 2218. [Google Scholar] [CrossRef]
- Price Water House Coopers (PWC). Best Practices and Strategies for Distribution Loss Reduction-Final Report Forum of Regulators; Price Water House Coopers (PWC): London, UK, 2016. [Google Scholar]
- Lewis, F.B. Costly “throw-ups”: Electricity theft and power disruptions. Electr. J. 2015, 28, 118–135. [Google Scholar] [CrossRef]
- Zanetti, M.; Jamhour, E.; Pellenz, M.; Penna, M.; Zambenedetti, V.; Chueiri, I. A tunable fraud detection system for advanced metering infrastructure using short-lived patterns. IEEE Trans. Smart Grid 2019, 10, 830–840. [Google Scholar] [CrossRef]
- dos Santos Benso Maciel, L.; Bonatto, B.D.; Arango, H.; Arango, L.G. Evaluating public policies for fair social tariffs of electricity in Brazil by using an economic market model. Energies 2020, 13, 4811. [Google Scholar] [CrossRef]
- Miranda, M.; Ruffin, C.; Dantas, G.; Pedreira, N.; Guerra, M.; Zamboni, L.; Mendes, P.; Alvares, J. International review of regulatory aspects related to electricity loss in distribution sector. In Proceedings of the International Conference on Applied Energy 2019, Västerås, Sweden, 12–15 August 2019. [Google Scholar]
- Australian Energy Regulator (AER). 2020 Electricity Network Performance Report; Australian Energy Regulator: Melbourne, Australia, 2020. [Google Scholar]
- Ontario Energy Board (OEB). Filing Requirements for Electricity Transmission Applications; Ontario Energy Board: Toronto, ON, Canada, 2022. [Google Scholar]
- Tuttle, D.P.; Gülen, G.; Hebner, R.; King, C.W.; Spence, D.B.; Andrade, J.; Wible, J.A.; Baldick, R.; Duncan, D.; The History and Evolution of the U.S. Electricity Industry; White Paper UTEI/2016-05-2. 2016. Available online: http://energy.utexas.edu/the-full-cost-of-electricity-fce/ (accessed on 8 February 2023).
- Comisión Nacional de Energía (CNE). Resolución Exenta n° 699; CNE: Santiago, Chile, 2015. [Google Scholar]
- Dammert, A.; Carpio, R.G.; Molinelli, F. Regulación y Supervisión del Sector Eléctrico; Fondo Editorial de la Pontificia Universidad Católica del Perú: Lima, Peru, 2008. [Google Scholar]
- Droguett, L.A.L. Rentabilidad de las Empresas de Distribución y su Relación con las Fijaciones Tarifarias; Pontifícia Universidad Catolica de Chile: Santiago, Chile, 2004. [Google Scholar]
- Organismo Supervisor de la Inversión de Energía y Mineria (OSINERGMIN). Fundamentos Técnicos y Económicos del Sector Eléctrico Peruano; OSINERGMIN: Lima, Peru, 2011. [Google Scholar]
- Presidencia de la República de Guatemala. Acuerdo Gubernativo n°256 de 1997-Reglamento de la Ley General de Electricidad; Presidencia de la República de Guatemala: Guatemala City, Guatemala, 1997. [Google Scholar]
- Autorità di Regolazione per Energia Reti e Ambiente (ARERA). Revisione dei Fattori Percentuali Convenzionali di Perdita e del Meccanismo di Perequazione delle Perdite sulle Reti di Distribuzione-Orientamenti Finali; Documento per la Consultazione 202/2015/R/EEL; ARERA: Milan, Italy, 2015. [Google Scholar]
- Marín, J.C. Un nuevo modelo de retribución para la distribución eléctrica. Cuad. Energía 2016, 47, 141–147. [Google Scholar]
- Comision de Regulacion de Energia y Gas (CREG). Resolución n°15 de 2018. Ministerio de Minas y Energía; Comision de Regulacion de Energia y Gas: Bogota, Colombia, 2018. [Google Scholar]
- Autoridad Nacional de los Servicios Públicos (ASEP). Reglamento de Distribución y Comercialización de Energía Eléctrica Titulo V: Régimen de Suministro; ASEP: Panama City, Panama, 2020. [Google Scholar]
- Jiménez, R.; Serebrisky, T.; Mercado, J. Power Lost: Sizing Electricity Losses in Transmission and Distribution Systems in Latin America and the Caribbean; Inter-American Development Bank (IDB): Washington, DC, USA, 2014. [Google Scholar]
- Savian, F.S.; Siluk, J.C.M.; Garlet, T.B.; Nascimento, F.M.; Pinheiro, J.R.; Vale, Z. Non-technical losses in Brazil: Overview, challenges, and directions for identification and mitigation. Int. J. Energy Econ. Policy 2022, 12, 93–107. [Google Scholar] [CrossRef]
- Chaves, A.C.; Tavares, A.; Ferreira, D.; Tommaso, F.; Dantas, G.; de Barros Alvares, J.E.; Takeuchi, J.T.; Câmara, L.; Mendes, P.F.; Maestrini, M.; et al. As Perdas Não Técnicas no Setor de Distribuição Brasileiro: Uma Abordagem Regulatória; GESEL/UFRJ/CPFL/ANEEL: Rio de Janeiro, Brazil, 2020. [Google Scholar]
- Zanardo, R.P.; Siluk, J.C.M.; Savian, F.S.; Schneider, P.S. Energy audit model based on a performance evaluation system. Energy 2018, 154, 544–552. [Google Scholar] [CrossRef]
- Agência Brasileira de Energia Elétrica (ANEEL). Perdas de Energia Elétrica na Distribuição (01/2021); Agência Brasileira de Energia Elétrica: Brasília, Brazil, 2021. [Google Scholar]
- Agência Nacional de Energia Elétrica (ANEEL). Nota Técnica No. 106/2015–Metodologia de Tratamento Regulatório Para Perdas não Técnicas de Energia Elétrica; SGT/SRM/ANEEL: Brasília, Brazil, 2015. [Google Scholar]
- Simões, P.F.M.; Souza, R.C.; Calili, R.F.; Pessanha, J.F.M. Analysis and short-term predictions of non-technical loss of electric power based on mixed effects models. Socio-Economic Plan. Sci. 2020, 71, 100804. [Google Scholar] [CrossRef]
- Castro, N.; Chaves, A.C.; Ferreira, D.V.; Tommaso, F.; Ozorio, L.; Maestrini, M.; de Miranda, M.; Brandão, R.; Eduardo, J.; Mendes, P.; et al. Análise das Propostas de Alterações Metodológica para Determinação das Metas Regulatórias das Perdas não Técnicas, na Distribuição de Energia Elétrica–NT46/2020. In TDSE Texto de Discussão do Setor Elétrico N° 94 outubro de 2020; UFRJ—Grupo de Estudos do Setor Elétrico: Rio de Janeiro, Brazil, 2020. [Google Scholar]
- Ahrens, A.; Hansen, C.B.; Schaffer, M.E. Lassopack: Model selection and prediction with regularised regression in Stata. Stata J. 2020, 20, 176–235. [Google Scholar] [CrossRef] [Green Version]
- Zou, H. The adaptive LASSO and its oracle properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [Google Scholar] [CrossRef] [Green Version]
- Agência Nacional de Energia Elétrica (ANEEL). Nota Técnica No. 46/2020–Proposta de Consulta Pública Para Revisão da Metodologia e Atualização dos Parâmetros dos Submódulos 2.2/2.2A (Receitas Irrecuperáveis) e 2.6 (Perdas de Energia) dos Procedimentos de Revisão Tarifária-PRORET; Agência Nacional de Energia Elétrica (ANEEL): Brasília, Brazil, 2020. [Google Scholar]
- Hausman, J.A. Specification Tests in Econometrics. Econometrica 1978, 46, 1251–1271. [Google Scholar] [CrossRef] [Green Version]
- Croissant, Y.; Millo, G. Panel-Data Econometrics in R: The plm Package. J. Stat. Softw. 2008, 27, 1–43. [Google Scholar] [CrossRef] [Green Version]
- Leite, D.; Pessanha, J.; Simões, P.; Calili, R.; Souza, R. A stochastic frontier model for definition of non-technical loss targets. Energies 2020, 13, 3227. [Google Scholar] [CrossRef]
- Aigner, D.J.; Lovell, C.A.K.; Schmidt, P. Formulation and estimation of stochastic frontier production functions. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Wang, H.J.; Horncastle, A.P. A Practitioner’s Guide to Stochastic Frontier Analysis Using Stata; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Behr, A. Production and Efficiency Analysis with R; Springer: Berlin, Germany, 2015. [Google Scholar]
- Konno, H.; Yamazaki, H. Mean-absolute deviation portfolio optimisation model and its applications to Tokyo stock market. Manag. Sci. 1991, 37, 519–531. [Google Scholar] [CrossRef] [Green Version]
- Makridakis, S. Accuracy measures: Theoretical and practical concerns. Int. J. Forecast. 1993, 9, 527–529. [Google Scholar] [CrossRef]
- David, L.; Desboulets, D. A review on variable selection in regression analysis. Econometrics 2018, 6, 45. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Tibishirani, R. Best Subset, Forward Stepwise, or LASSO? Analysis and Recommendations Based on Extensive Comparisons. Stat. Sci. 2020, 35, 579–592. [Google Scholar] [CrossRef]
- Berstsimas, D.; King, A.; Mazumder, R. Best subset selection via a modern optimisation lens. Ann. Stat. 2016, 44, 813–852. [Google Scholar]
- Calcagno, V.; Mazancourt, C. glmulti: An R package for easy automated model selection with generalised linear models. J. Stat. Softw. 2010, 34, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.F.P.; Pessanha, J.F.M. Identificação de indicadores para previsão de insolvência das distribuidoras de energia elétrica por meio de regressão logística para dados em painel. Contabilometria. Braz. J. Quant. Methods Appl. Account. 2022, 9, 73–91. [Google Scholar]
- Martins, F.; Almeida, M.F.; Calili, R.; Oliveira, A. Design Thinking applied to smart home projects: A user-centric and sustainable perspective. Sustainability 2020, 12, 10031. [Google Scholar] [CrossRef]
- Breusch, T.S.; Pagan, A.R. A Simple Test for Heteroskedasticity and Random Coefficient Variation. Econometrica 1979, 47, 1287–1294. [Google Scholar] [CrossRef]
- Hsiao, C.; Appelbe, T.W.; Dineen, C.R. A General Framework for Panel Data Analysis—With an Application to Canadian Customer Dialed Long Distance Service. J. Econom. 1993, 59, 63–86. [Google Scholar] [CrossRef]
- Hsiao, C. Analysis of Panel Data, 2nd ed.; Econometric Society Monograph 36; Cambridge University Press: New York, NY, USA, 2003. [Google Scholar]
- Greene, W.H. Econometric Analysis, 7th ed.; Prentice Hall: Hoboken, NJ, USA, 2012. [Google Scholar]
- Baltagi, B. Econometric Analysis of Panel Data, 2nd ed.; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Breusch, T.S.; Godfrey, L.G. A Review of Recent Work on Testing for Autocorrelation in Dynamic Economic Models; Discussion Paper n. 8017; University of Southampton: Southampton, UK, 1980. [Google Scholar]
- Wooldridge, J. Econometric Analysis of Cross Section and Panel Data, 2nd ed.; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Myung, I.J. The importance of complexity in model selection. J. Math. Psychol. 2000, 44, 190–204. [Google Scholar] [CrossRef] [Green Version]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Bozdogan, H. Model Selection and Akaike’s Information Criterion (AIC): The General Theory and its Analytical Extensions. Psychometrika 1987, 52, 345–370. [Google Scholar] [CrossRef]
- Bozdogan, H. Akaike’s Information Criterion and Recent Developments in Information Complexity. J. Math. Psychol. 2000, 44, 62–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagenmakers, E.-J.; Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 2004, 11, 192–196. [Google Scholar] [CrossRef] [PubMed]
Phase | Stage | Research Question [Section] |
---|---|---|
Motivation (Why?) | 1. Problem definition and the rationale for the research | Why should we propose an automatic model-selection technique for panel data regressions to better assist the ANEEL in establishing NTL regulatory targets for Brazilian distribution utilities? [Section 1]. |
Conceptualization and development (What and how?) | 2. State of research on the central themes and identification of research gaps and unsolved problems | What is the state of research on econometric models for establishing NTL regulatory targets? And on the automatic model-selection techniques for panel data regressions? What are the main limitations of the current models adopted by the ANEEL for defining NTL regulatory targets? [Section 1]. |
3. Definition of the research design and methodology | How could an automatic model-selection technique for panel data regressions aiming to establish regulatory NTL targets be developed and validated in the context of the electricity distribution sector in Brazil? [Section 2]. | |
4. Development of an automatic model-selection technique for panel data regressions to better assist the ANEEL in establishing regulatory NTL targets for distribution utilities | How should the explanatory variables that have the most significant impact on the NTL phenomenon and define panel data regressions that can better assist the ANEEL in defining NTL regulatory targets for Brazilian distribution utilities be selected? [Section 3]. | |
Validation (How can the applicability of the proposed technique be demonstrated?) | 5. Demonstration of the applicability of the proposed automatic model-selection technique for panel data regressions in the context of the electricity distribution sector in Brazil | Is it feasible to demonstrate the applicability of the proposed methodological approach to establish regulatory NTL targets for Brazilian distribution utilities? [Section 4]. Could the research results demonstrate the applicability of the proposed approach in the context of the electricity distribution sector in Brazil? [Section 4]. |
6. Discussion of the research results and managerial implications | What are the differentials of the automatic model-selection techniques for the panel data regressions compared with the state of research on econometric models for establishing NTL regulatory targets and the current models adopted by the ANEEL for this purpose? [Section 5]. |
Variable | Code | Expected Sign | Correlation |
---|---|---|---|
Density of residents per dormitory | Admd | + | 70% |
High school dropout rate | Eem | + | −18% |
Percentage of people below the poverty line | Pob3 | + | 48% |
Percentage of households with general piped water network | Rga | − | −4% |
Percentage of urban households with garbage collection | Lixo.u | − | −13% |
Social inequality index | Gini2 | + | 13% |
Percentage of people living in subnormal households | Sub2 | + | 67% |
General default in the SFN credit sector | Inad | + | 40% |
Default by private individuals in the SFN credit sector | Inad.pf | + | 42% |
Intentional homicide | Homi_dolo | + | 26% |
Police interventions and war operations | Int_pol | + | 20% |
Vehicle theft | Furto_v | + | −18% |
Vehicle robbery | Roubo_v | + | 16% |
Robbery | Latro | + | 13% |
Assault by firearm | Agraf | + | 32% |
Homicide (deaths due to aggression) | Vio | + | 40% |
Homicides (violent deaths) | H.mvci | + | 37% |
Low-income consumer units/BT consumer units | Ucbr.Mb1UCbr | − | 22% |
Low-income market/B1 total market | Mbr.Mb1Mbr | − | 11% |
Low-income market/Total BT market | Mbr.Mbt | − | 17% |
Concession area GDP per capita | PIB.PC | − | −19% |
Time in years | Time | Not applicable | −6% |
Negative Correlation | Positive Correlation |
---|---|
Furto_v | Eem, Ucbr.Mb1UCbr, Mbr.Mb1Mbr and Mbr.Mbt |
# | Code | Variable Title | Model Amounts |
---|---|---|---|
1 | Inad | General default in the SFN credit sector | 28 |
2 | Inad.pf | Private individual defaults in the SFN credit sector | 24 |
3 | Lixo.u | Percentage of urban households with garbage collection | 19 |
4 | Pob3 | Percentage of people below the poverty line | 17 |
5 | Gini | Social inequality index | 15 |
6 | Time | Time in years | 14 |
7 | Admd | Density of residents per dormitory | 11 |
8 | Furto_V | Vehicle theft | 7 |
9 | PIB.PC | Concession area GDP per capita | 4 |
10 | Vio | Homicide (deaths due to aggression) | 2 |
11 | Mbr.Mb1Mbr | Low-income market/B1 total market | 1 |
# | (Intercept) | Pob3 | Inad | Inad.pf | AIC | R²-Adjusted | DELTA AIC | AKAIKE Weight | p-Value BP Test |
---|---|---|---|---|---|---|---|---|---|
1 | 0.01 | 0.38 | 1.33 | −2749.87 | 0.17 | 0.57 | 0.43 | 0 | |
2 | 0.01 | 0.33 | 1 | 0.53 | −2750.44 | 0.17 | - | 0.57 | 0 |
Time | Pob3 | Inad.pf | AIC | R²-Adjusted | DELTA AIC | AKAIKE Weight | p-Value BP Test |
---|---|---|---|---|---|---|---|
0.0 | 0.34 | 1.21 | −2817.83 | 0.1 | - | 1 | 0 |
Distribution Utility | Region * | Random Effect Model (#1) | Random Effect Model (#2) | Fixed Effect Model | NTLs | Size ** |
---|---|---|---|---|---|---|
AES-SUL | S | 8% | 8% | 8% | 11% | L |
AMAZONAS | N | 125% | 124% | 124% | 124% | L |
AMPLA | SE | 32% | 31% | 31% | 30% | L |
BANDEIRANTE | SE | 19% | 19% | 19% | 13% | L |
CAIUA | SE | 2% | 2% | 2% | 2% | S |
CEAL | NE | 55% | 54% | 53% | 36% | L |
CEB | MD | 8% | 8% | 8% | 9% | L |
CEEE | S | 28% | 28% | 28% | 26% | L |
CELESC | S | 4% | 4% | 4% | 9% | L |
CELG | MD | 8% | 8% | 8% | 10% | L |
CELPA | N | 46% | 46% | 45% | 39% | L |
CELPE | NE | 22% | 21% | 21% | 18% | L |
CELTINS | N | 7% | 6% | 7% | 4% | L |
CEMAR | NE | 22% | 21% | 22% | 11% | L |
CEMAT | MD | 12% | 12% | 12% | 10% | L |
CEMIG | SE | 12% | 12% | 11% | 14% | L |
CEPISA | NE | 43% | 42% | 43% | 30% | L |
CERON | N | 43% | 42% | 43% | 50% | L |
CFLO | S | 1% | 0% | 0% | 0% | S |
CHESP | MD | 3% | 3% | 3% | 7% | S |
CJE | SE | 3% | 2% | 2% | 0% | S |
MOCOCA | SE | 3% | 2% | 2% | 7% | S |
SANTA CRUZ | SE | 3% | 2% | 2% | 5% | S |
NACIONAL | SE | 1% | 1% | 1% | 1% | S |
COCEL | S | 4% | 3% | 3% | 5% | S |
COELBA | N | 12% | 11% | 11% | 12% | L |
COELCE | NE | 8% | 8% | 7% | 14% | L |
COOPERALIA | S | 6% | 6% | 6% | 6% | S |
COPEL | S | 4% | 4% | 4% | 4% | L |
COSERN | NE | 7% | 6% | 7% | 3% | L |
CPEE | SE | 5% | 5% | 5% | 6% | S |
PIRATININGA | SE | 6% | 6% | 6% | 9% | L |
CPFL PAULISTA | SE | 7% | 6% | 6% | 10% | L |
CSPE | SE | 5% | 4% | 4% | 11% | S |
DEMEI | S | 7% | 6% | 6% | 3% | S |
DMED | SE | 5% | 4% | 4% | 3% | S |
EBO | NE | 8% | 8% | 9% | 3% | S |
EVP | SE | 1% | 0% | 0% | 1% | S |
BRAGANTINA | SE | 2% | 2% | 2% | 2% | S |
JOAO CESA | SE | 2% | 1% | 2% | 2% | S |
EFLUL | S | 3% | 3% | 3% | 3% | S |
ELEKTRO | SE | 5% | 4% | 4% | 8% | L |
ELETROACRE | N | 26% | 25% | 26% | 27% | L |
ELETROCAR | S | 5% | 5% | 5% | 6% | S |
ELETROPAULO | SE | 13% | 12% | 13% | 10% | L |
SANTA MARIA | SE | 10% | 9% | 9% | 3% | S |
EMG | SE | 4% | 4% | 3% | 4% | L |
ENERSUL | MD | 15% | 15% | 16% | 7% | L |
ENF | SE | 4% | 4% | 3% | 0% | S |
EPB | NE | 16% | 16% | 17% | 8% | L |
ESCELSA | SE | 23% | 23% | 22% | 17% | L |
ESE | NE | 14% | 14% | 14% | 8% | L |
FORCEL | S | 1% | 1% | 1% | 5% | S |
HIDROPAN | S | 1% | 0% | 0% | 4% | S |
IENERGIA | S | 8% | 8% | 8% | 9% | S |
LIGHT | SE | 49% | 48% | 48% | 51% | L |
MUXFELDT | S | 2% | 2% | 2% | 0% | S |
RGE | S | 6% | 6% | 6% | 7% | L |
SULGIPE | NE | 12% | 11% | 11% | 9% | S |
UHENPAL | S | 4% | 4% | 3% | 0% | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia, E.; Calili, R.; Pessanha, J.F.; Almeida, M.F. Definition of Regulatory Targets for Electricity Non-Technical Losses: Proposition of an Automatic Model-Selection Technique for Panel Data Regressions. Energies 2023, 16, 2519. https://doi.org/10.3390/en16062519
Correia E, Calili R, Pessanha JF, Almeida MF. Definition of Regulatory Targets for Electricity Non-Technical Losses: Proposition of an Automatic Model-Selection Technique for Panel Data Regressions. Energies. 2023; 16(6):2519. https://doi.org/10.3390/en16062519
Chicago/Turabian StyleCorreia, Eduardo, Rodrigo Calili, José Francisco Pessanha, and Maria Fatima Almeida. 2023. "Definition of Regulatory Targets for Electricity Non-Technical Losses: Proposition of an Automatic Model-Selection Technique for Panel Data Regressions" Energies 16, no. 6: 2519. https://doi.org/10.3390/en16062519
APA StyleCorreia, E., Calili, R., Pessanha, J. F., & Almeida, M. F. (2023). Definition of Regulatory Targets for Electricity Non-Technical Losses: Proposition of an Automatic Model-Selection Technique for Panel Data Regressions. Energies, 16(6), 2519. https://doi.org/10.3390/en16062519