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Abstract: Lithium-ion batteries are commonly used in electric vehicles, mobile phones, and laptops
because of their environmentally friendly nature, high energy density, and long lifespan. Despite
these advantages, lithium-ion batteries may experience overcharging or discharging if they are not
continuously monitored, leading to fire and explosion risks, in cases of overcharging, and decreased
capacity and lifespan, in cases of overdischarging. Another factor that can decrease the capacity of
these batteries is their internal resistance, which varies with temperature. This study proposes an
estimation method for the state of charge (SOC) using a neural network (NN) model that is highly
applicable to the external temperatures of batteries. Data from a vehicle-driving simulator were
used to collect battery data at temperatures of 25 ◦C, 30 ◦C, 35 ◦C, and 40 ◦C, including voltage,
current, temperature, and time data. These data were used as inputs to generate the NN models. The
NNs used to generate the model included the multilayer neural network (MNN), long short-term
memory (LSTM), gated recurrent unit (GRU), and gradient boosting machine (GBM). The SOC
of the battery was estimated using the model generated with a suitable temperature parameter
and another model generated using all the data, regardless of the temperature parameter. The
performance of the proposed method was confirmed, and the SOC-estimation results demonstrated
that the average absolute errors of the proposed method were superior to those of the conventional
technique. In the estimation of the battery’s state of charge in real time using a Jetson Nano device, an
average error of 2.26% was obtained when using the GRU-based model. This method can optimize
battery performance, extend battery life, and maintain a high level of safety. It is expected to have
a considerable impact on multiple environments and industries, such as electric vehicles, mobile
phones, and laptops, by taking advantage of the lightweight and miniaturized form of the Jetson
Nano device.

Keywords: lithium-ion battery; state of charge; multilayer neural network; long short-term memory;
gated recurrent unit; gradient boosting machine; vehicle-driving simulator; Jetson Nano device;
real time

1. Introduction

In modern times, environmental pollution has become a major problem. Therefore,
the use of environmentally friendly energy is important. Lithium-ion batteries are the most
popular energy resources in energy-storage systems, electric vehicles, mobile phones, and
laptops [1–3]. They have certain advantages, such as environmental friendliness, high
energy density, high-efficiency charge and discharge, and long life. However, these bat-
teries may experience overcharging and overdischarging when they are not continuously
monitored. Overcharging may cause a fire or explosion, and overdischarging may increase
the internal resistance of the battery, thereby decreasing its capacity and lifespan [4,5]. Fur-
thermore, the internal resistance of the battery varies with temperature. It increases with
decreases in temperature and degrades the battery’s capacity [6]. If the state of charge (SOC)
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is estimated using acquired data without considering the temperature during data acquisi-
tion, the estimation may become inaccurate. Therefore, acquiring data based on appropriate
temperatures and estimating the SOC of batteries can increase SOC-estimation accuracy.
The SOC is an important concept that represents the remaining capacity of a battery. When
the SOC is 100% and 0%, the battery is completely charged and discharged, respectively.
The accurate estimation of the SOC to prevent overcharging and overdischarging would
considerably help to prevent battery damage and accidents.

The SOC-estimation method comprises two main approaches: model-based and data-
driven methods [7–17]. The model-based method involves generating a model that is
suitable for the data and estimating the SOC using the generated model. This method
has high accuracy but requires professional knowledge to generate a model that fits the
battery characteristics. Furthermore, a significant amount of time is required for model
design. However, the data-driven method does not require battery expertise because it
does not involve designing models. Moreover, the data-driven method has a relatively
shorter development time than the model-based method. Machine learning is an important
data-driven method.

In this study, a model was generated using the temperature measured during a
discharge experiment, and the SOC of the battery was estimated using the generated model.
The discharge experiment was conducted using a vehicle-driving simulator that simulates
the output of a real vehicle. The vehicle-driving scenario applied to the simulator was
the highway-fuel-economy test (HWFET) cycle used to measure vehicle-fuel efficiency
in the United States. The SOC estimation models implemented using the acquired data
were multilayer neural network (MNN), long short-term memory (LSTM), gated recurrent
unit (GRU), and gradient boosting machine (GBM). The MNN was used as the most basic
model, and the LSTM was applied because the battery data were time-series data. Owing
to the small size of the datasets acquired by the simulator, GRU was used because of
its advantage for small datasets. In addition, GBM, which has high performance with
structured data, was used. In GBM, the tree is trained up to the Nth tree by reducing the
residuals, which improves accuracy by effectively reducing the bias of individual decision
trees. The results of these models were compared. The experimental process was as follows.
First, the data acquired by the vehicle-driving simulator were classified based on the
measured temperature and used as inputs for the model learning. Subsequently, the SOC
was estimated using the models obtained by the Jetson Nano device, and the results were
transferred to the user. This study presents several contributions. First, the authors utilized
the lightweight and miniaturized form of the Jetson Nano device without depending on
desktop or laptop devices, which can be used in various environments. Second, the paper
compares the estimation performance using various NNs. Third, the authors set up a
vehicle-driving simulator to conduct actual vehicle-driving experiments. Finally, this study
confirms the high accuracy of SOC-estimation performance based on temperature, which
adds to its overall contribution.

2. Vehicle-Driving Simulator and Jetson Nano Device

A vehicle-driving simulator that simulates the actual output of a vehicle was developed
to estimate the SOC of the battery. The configuration of the overall system based on the
vehicle-driving simulator and Jetson Nano device is depicted in Figure 1.
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The simulator comprised two direct-current (DC) motors (each with a speed of 6000 
rpm and a rated voltage of 12 V), one MDD3A motor driver, one DC converter, one Ar-
duino Pro Mini, one remote-controlled car frame, four batteries, and four tyres. Table 1 
lists these items and their specifications. Each battery had a nominal voltage of 3.7 V and 
a rated capacity of 2000 mAh. The four batteries were connected in series and adjusted 
using a DC converter, and the adjusted voltage was used as the input voltage for the sim-
ulator. 

Table 1. Specifications of items used for simulation and Jetson Nano Developer kit. 

Item Motor Driver Micro-Controller Motor Battery 

Specifications MDD3A 
Arduino Pro 

Mini 

DC 12 V 6000 
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0.15 A 

2000 mAh 
3.7 V 

Item GPU CPU Memory Power 

Specifications 128-core maxwell Quad-core ARM 
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4 GB 64-bit 5~10 W 

The output of the simulator represents the Hyundai Avante Sports AD 1.6 model 
(Seoul, Republic of Korea) with 255/40/18 tires driving in the HWFET cycle. The HWFET 
is a highway-driving scenario defined by the United States Environmental Protection 
Agency to measure the fuel efficiency of a vehicle. The motor output simulated the third-
gear ratio of the vehicle, and the speed of the simulator was controlled by the Arduino 
Pro Mini and motor driver. The HWFET is shown in Figure 2. 

Figure 1. Configuration of the overall system based on the vehicle-driving simulator and Jetson
Nano device.

The simulator comprised two direct-current (DC) motors (each with a speed of
6000 rpm and a rated voltage of 12 V), one MDD3A motor driver, one DC converter,
one Arduino Pro Mini, one remote-controlled car frame, four batteries, and four tyres.
Table 1 lists these items and their specifications. Each battery had a nominal voltage of
3.7 V and a rated capacity of 2000 mAh. The four batteries were connected in series and
adjusted using a DC converter, and the adjusted voltage was used as the input voltage for
the simulator.

Table 1. Specifications of items used for simulation and Jetson Nano Developer kit.

Item Motor Driver Micro-Controller Motor Battery

Specifications MDD3A Arduino Pro Mini DC 12 V 6000 rpm
0.15 A

2000 mAh
3.7 V

Item GPU CPU Memory Power

Specifications 128-core maxwell Quad-core ARM
1.43 GHz 4 GB 64-bit 5~10 W

The output of the simulator represents the Hyundai Avante Sports AD 1.6 model
(Seoul, Republic of Korea) with 255/40/18 tires driving in the HWFET cycle. The HWFET
is a highway-driving scenario defined by the United States Environmental Protection
Agency to measure the fuel efficiency of a vehicle. The motor output simulated the third-
gear ratio of the vehicle, and the speed of the simulator was controlled by the Arduino Pro
Mini and motor driver. The HWFET is shown in Figure 2.
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In this method, Jetson Nano Device is used for performance of the SOC estimation.
Jetson Nano is a single-board computer developed by NVIDIA and is one of the most
popular devices for ML inference. It features heterogeneous CPU–GPU architecture, small
form factor, light weight, and low power consumption. Moreover, it has a comprehensive
development environment (JetPack SDK) and libraries developed for embedded applica-
tions, deep learning, and computer vision [18,19]. Table 1 shows the technical specifications
of the Jetson Nano Developer Kit.

3. Proposed Temperature-Based SOC-Estimation Method
3.1. Temperature-Based Battery-SOC-Estimation Method

A SOC estimation method was proposed by selecting a suitable model for the mea-
sured temperature; it is shown in Figure 3.
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The proposed method in this study involves data categorization based on the operating
temperature of the simulator and using it to develop models. In particular, the study-
generated models for 25 ◦C, 30 ◦C, 35 ◦C, and 40 ◦C were based on their respective
temperature datasets, and the SOC was estimated using the most appropriate model
selected according to the temperature. To implement the proposed method, the authors
used a vehicle-driving simulator to collect battery data. The estimated SOC was sent to the
user after using the model. The Jetson Nano device followed the same process of applying
the input data to the model for SOC estimation.

The SOC is the remaining capacity of the battery and is an important measure of the
battery’s state [18]. In this study, the Coulomb counting method was used to confirm the
errors and results of the proposed SOC method. It was expressed as follows:

SOC(t) = SOC(0)−
∫ t

0

I(t)
Cn

dt, (1)

where SOC(0) denotes the initial measured capacity of the battery (%), Cn denotes the rated
capacity of the battery (Ah), I(t) denotes the current at time t (A), and SOC(t) denotes the
SOC at time t (%).

3.2. Deep Neural Network Algorithms
3.2.1. Multilayer Neural Network

The MNN is a NN in which one or more hidden layers are added to a single perceptron.
Because the perceptron has a problem that cannot be nonlinearly classified, the MNN can
be used to solve the problem [20]. The structure of the MNN is illustrated in Figure 4.
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The MNN uses feedforward and backpropagation for learning, calculates the output
value through feedforward, and corrects the error through backpropagation. In this study,
the SOC-estimation model employed used voltage, current, temperature, and time param-
eters as input data and the SOC result as output data. The rectified linear unit (ReLU)
function was used as the activation function in the MNN. Compared with the sigmoid
function, ReLU has the advantages of nonvanishing gradient and fast convergence [21].
The equation for ReLU is as follows:

f (x) =
{

x, f or x > 0
0, otherwise

. (2)

An Adam optimizer was used. It is a first-order gradient-based optimizer algorithm
that combines momentum and root-mean-squared propagation (RMSprop); it is easy to
implement and efficient because of its small amount of calculation [22]. The equation for
Adam is as follows:

m0 = 0, v0 = 0, t = 0, (3)

gt = ∇θ ft(wt−1), (4)

mt = β1mt−1 + (1− β1)gt, (5)

vt = β2vt−1 + (1− β2)g2
t , (6)

m̂t =
mt(

1− βt
1
) , v̂t =

vt(
1− βt

2
) , (7)

wt = wt−1 − α
m̂t√
v̂t + ε

, (8)

where m0, v0, and t are initialized to 0; gt denotes the gradient of the network; mt denotes
the first moment vector; vt denotes the second moment vector; and β1 and β2 are the
exponential decay rates for the moment estimates and have the following values: β1 = 0.9
and β2 = 0.999. At the start of the learning process, mt and vt were close to 0. Bias
correction was applied to m̂ and v̂ to render them unbiased. Herein, wt denotes the update
of the weight, and α denotes the learning rate. The value of α is 0.001, and that of ε is 10−8.

3.2.2. Long Short-Term Memory

The LSTM is a RNN in which a past output value affects a current input value [23].
The RNN has advantages in predicting time-series data. However, the problem of the
vanishing gradient occurs with increases in learning time. The LSTM solves the problem by
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adding the cell state and three gates (forget, input, and output) to the RNN. The structure
of the LSTM is shown in Figure 5.
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The equations of the LSTM are as follows:
Step (1) Forget gate

ft = σ
(

w f ·[Ht−1, xt]
)
+ b f ; (9)

Step (2) Input gate
it = σ(i ·[Ht−1, xt]) + bi, (10)

C̃t = tanh(wC ·[Ht−1, xt]) + bC; (11)

Step (3) Cell-state update

Ct = ft ·Ct−1 + it · C̃t; (12)

Step (4) Output gate
Ot = σ(wO ·[Ht−1, xt]) + bO, (13)

Ht = Ot ·tanh(Ct); (14)

where Ht−1 denotes the data of the previous cell; xt denotes the current input data; w
denotes the weight; b denotes the bias; ft denotes the forget-gate value; C̃t denotes the
value of the previous cell calculated using tanh; Ct denotes the updated value of the cell
state; Ot denotes the value of the output gate; and Ht denotes the output.

For the LSTM model employed for the SOC estimation, the Adam optimizer and tanh
activation function were used. Compared with the sigmoid function, tanh demonstrates
better performance for the gradient-vanishing problem, and when using the ReLU in the
LSTM, the data diverge as the output value of the previous cell increases. The tanh function
is expressed as follows:

tanh(x) =
1− e−x

1 + e−x . (15)

3.2.3. Gated Recurrent Unit (GRU)

The GRU is a RNN that simplifies the LSTM. The GRU improves the shortcomings asso-
ciated with long learning times due to the complex structure of the LSTM and demonstrates
excellent performance for small datasets [24,25]. The GRU uses update and reset gates to
determine the data of previous cells. The structure of the GRU is illustrated in Figure 6.
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The equations of the GRU are as follows.
Step (1) Reset gate

rt = σ
(

W(r)xt + U(r)ht−1

)
; (16)

Step (2) Update gate
zt = σ

(
W(z)xt + U(z)ht−1

)
; (17)

Step (3) Candidate hidden state

h̃t = tanh
(

W(h)xt + rt ◦U(h)ht−1

)
; (18)

Step (4) Hidden state/output

ht = zt ◦ h̃t + (1− zt) ◦ ht−1 ; (19)

where rt denotes the value of the reset gate; zt denotes the value of the update gate; w and
u denote the weights; ht−1 denotes the output of the previous cell; xt denotes the input data
of the current cell; h̃t denotes the candidate value of the hidden state; and ht denotes the
output. The GRU represents ht by selecting the necessary parts of h̃t and ht−1.

3.2.4. Gradient Boosting Machine

Ensemble learning is a technique for generating multiple classifiers and deriving more
accurate predictions by combining them. Rather than using one robust model, it is a method
of combining several weak models to help form more accurate predictions [26–30]. As one
of the ML techniques, boosting is an algorithm that increases prediction or classification
performance by sequentially combining several weak learners. The GBM regression method
can be described as an ensemble of decision trees. The structure of the GBM is illustrated in
Figure 7. Rather than building one tree, GBM predicts the outcome based on the regression
model, which uses weak decision trees. This method of compiling decision trees to reflect
residuals helps minimize errors in each of the next steps. This process should be repeated
until the number of periods set by the hyperparameter is reached or the residual value is
no longer reduced. The value from the second prediction tree was closer to the actual value
than the first prediction tree, and the residual was lower. Therefore, prediction accuracy is
improved as the utilization increases and the residual decreases.
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The equations of the GBM are as follows.

F0(x) = argmin
α

N

∑
i=1

L(yi, α), (20)

rim = −
[

∂L(yi, F(xi))

∂F(xi)

]
F(x)=Fn−1(x)

, (21)

γn = arg min
γ

N

∑
i=1

L(yi, Fn−1(xi) + γgn(xi)), (22)

Fn(x) = Fn−1(x) + vγngn(x). (23)

where L(.) is the loss function; F0(x) is the initial model; rim is the residual; gn is the tree
model of the n-th learning; γn is the optimal coefficient to update the model; v is the
learning rate (default value is 0.1); and Fn is a model that has been learned n times.

4. Experimental Process and Results
4.1. Experimental Process

The experimental procedure was as follows. First, four lithium-ion batteries were
fully charged with a constant voltage of 4.2 V; in particular, the batteries used in this
study were lithium-ion-polymer full-cell batteries. The cathode was Li (NiCoMn)O2, and
the anode was graphite. The capacity of the fully charged battery was 100% SOC. After
charging, the batteries were stabilized for 1 h and then connected in series to provide
a voltage of 12 V via a DC converter. Finally, the external temperature of the batteries
was adjusted using a thermostat, and the discharge experiment was conducted using the
vehicle-driving simulator.

The discharge experiment was conducted until the motor of the vehicle-driving sim-
ulator stopped, and the data acquired through the experiment were defined as one cycle
of the battery data. The acquired data comprised voltage, current, temperature, and time
parameters. Six cycles of the battery data were used for the experiment, according to the
temperature set during the operation of the vehicle driving simulator. The acquired data
were then used as inputs for MNN, LSTM, and GRU, and the SOC was estimated using the
generated models. The SOC-estimation model was created using Tensorflow and Keras
based on Python.

4.2. MNN, LSTM, GRU, and GBM Models for SOC Prediction

In the study, the MNN model for the SOC prediction was applied first. The input
parameters were obtained from the discharge experiment and comprised voltage, current,
temperature, and time parameters. Five voltage values, five current values, one time value,
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and one temperature value were used as the inputs to the MNN. For the SOC prediction
(Table 2), the MNN had a structure of 12-256-128-1 and comprised layers in the following
order: one input layer, two hidden layers, and one output layer. The number of epochs was
15,000. The ReLU activation function and Adam optimizer were used. The learning was
considered complete when the mean squared error (MSE) was less than 10−6. The structure
of the MNN for the SOC prediction is shown in Figure 8.

Table 2. Hyper parameters of the MNN for SOC estimation.

Input_Layer Hidden_Layer 1 Hidden_Layer 2 Output_Size Activation Function Epochs

12 256 128 1 Relu/Adam 15,000
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In this study, the LSTM model for SOC prediction was applied second. The input
parameters were the same as those in the MNN model. For the SOC estimation, the LSTM
had a structure of 12-256-128-64-1 and comprised layers in the following order: one input
layer, three hidden layers, and one output layer. The number of epochs was 5000. The tanh
activation function and Adam optimizer were used. Figure 9 shows the structure of the
LSTM for SOC prediction.
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Next, the GRU model was used for the SOC prediction. The input parameters were
the same as those in the MNN model. For the experiment, the GRU had a structure
of 12-256-128-64-1 and comprised layers in the following order: one input layer, three
hidden layers, and one output layer. The number of epochs was 200. The tanh activation
function and Adam optimizer were used. Figure 10 shows the structure of the GRU for
SOC prediction.
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In Figures 8–10, t denotes the time data, V denotes the voltage data, I denotes the
current data, and T denotes the temperature data.

Finally, the estimation of the SOC using the GBM model was performed. The input
parameters are same as those in the MNN model. For the experiment, the number of
decision trees was 200, the trees’ maximum depth was 5, the learning rate was 0.2, and
another parameter was the default value. Note that 80% of the data were used as training
data, and 20% were used as test data. The train_test_split() function of the sklearn library
was used. The structure of the GBM for the SOC prediction is shown in Figure 11.
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The gradient boosting regression is a supervised learning algorithm that uses residuals
to overcome the weaknesses of previous models and generate new models by linearly
combining them. The gradient boost starts with a single leaf. Moreover, the target estimated
value predicted by the single-leaf model is the average of all the target values. The difference
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between the predicted value in the single leaf and the actual value is called a pseudo
residual. Gradient boosting may cause overfitting; to prevent this, it is necessary to
multiply by the learning rate. The learning rate is a hyperparameter that helps to ensure
high accuracy in GBM learning processes.

4.3. Experimental Results

The SOC was estimated using the suitable MNN, LSTM, GRU, and GBM models
according to the temperature measured during the discharge experiment. The SOC was
estimated using the conventional method for comparison and to confirm the performance
of the proposed method. For SOC estimation, the conventional method selects one model
generated using all the measured parameters. In Figure 12A–D, we present the SOC-
estimation results obtained for the MNN, LSTM, GRU, and GBM models. Each figure
shows the results obtained using the proposed, conventional, and Coulomb counting
methods. Tables 3–6 are the SOC errors obtained using each model. The estimated error
was calculated using the mean absolute error (MAE), as follows:

MAE =
1
n

n

∑
i=1
|xi − x̂|, (24)

where n denotes the total number of parameters; xi denotes the target value; and x̂ denotes
an estimate.

Energies 2023, 16, x FOR PEER REVIEW 12 of 18 
 

 

Table 5. Hyperparameters of the GBM for SOC estimation. 

Number of Trees Tree Max Depth Learning Rate Criterion 
200 5 0.2 Friedman_mse 

Table 6. The SOC errors obtained using the MNN model generated by the proposed and conven-
tional methods. 

Temperature Method Battery 1 Battery 2 Battery 3 Battery 4 Average 

25 °C Model 
Proposed 2.00% 2.46% 1.97% 1.87% 2.07% 

Conventional 3.77% 1.54% 4.19% 2.21% 2.93% 

30 °C Model 
Proposed 1.65% 1.63% 2.40% 2.03% 1.93% 

Conventional 1.86% 1.53% 2.33% 2.15% 1.97% 

35 °C Model 
Proposed 2.09% 2.77% 3.89% 2.53% 2.82% 

Conventional 8.45% 8.16% 11.52% 7.81% 9.00% 

40 °C Model 
Proposed 0.98% 2.22% 2.00% 2.24% 1.86% 

Conventional 4.30% 4.12% 2.39% 5.04% 3.96% 
 

 
(A) 

 
(B) 

Figure 12. Cont.



Energies 2023, 16, 2639 12 of 17

Energies 2023, 16, x FOR PEER REVIEW 13 of 18 
 

 

 
(C) 

 
(D) 

Figure 12. (A) The SOC-estimation results for the MNN using the proposed and conventional meth-
ods; (B) the SOC-estimation results for the LSTM using the proposed and conventional methods; 
(C) the SOC-estimation results for the GRU using the proposed and conventional methods; (D) the 
SOC-estimation results for the GBM using the proposed and conventional methods. 

Table 6 shows the SOC errors obtained using the MNN model generated by the pro-
posed and conventional methods. The proposed method achieved minimum and maxi-
mum errors of 0.98% and 3.89%, respectively. The best average error, according to the 
temperature, was 3.89%, obtained from the model at 40 °C. The total average error of the 
proposed method was 2.17% and that of the conventional method was 4.46%. 

Table 7 represents the SOC errors obtained using the LSTM model generated by the 
proposed and conventional methods. The proposed method achieved minimum and min-
imum errors of 0.93% and 3.31%, respectively. The best average error in terms of temper-
ature was 1.82%, obtained from the model at 40 °C. The total average error of the proposed 
method was 2.19% and that of the conventional method was 4.60%. 

Table 7. The SOC errors obtained using the LSTM model generated by the proposed and conven-
tional methods. 

Temperature Method Battery 1 Battery 2 Battery 3 Battery 4 Average 

25 °C Model 
Proposed 2.26% 2.83% 1.87% 2.06% 2.26% 

Conventional 3.97% 1.69% 5.00% 2.58% 3.31% 

Figure 12. (A) The SOC-estimation results for the MNN using the proposed and conventional
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Table 3. Hyperparameters of the LSTM for SOC estimation.

Input_Layer Hidden_Layer 1 Hidden_Layer 2 Hidden_Layer 3 Output_Layer Activation Function Epochs

12 256 128 64 1 Tanh/Adam 5000

Table 4. Hyperparameters of the GRU for SOC estimation.

Input_Layer Hidden_Layer 1 Hidden_Layer 2 Hidden_Layer 3 Output_Layer Activation Function Epochs

12 256 128 64 1 tanh/Adam 200

Table 5. Hyperparameters of the GBM for SOC estimation.

Number of Trees Tree Max Depth Learning Rate Criterion

200 5 0.2 Friedman_mse
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Table 6. The SOC errors obtained using the MNN model generated by the proposed and conventional
methods.

Temperature Method Battery 1 Battery 2 Battery 3 Battery 4 Average

25 ◦C
Model

Proposed 2.00% 2.46% 1.97% 1.87% 2.07%

Conventional 3.77% 1.54% 4.19% 2.21% 2.93%

30 ◦C
Model

Proposed 1.65% 1.63% 2.40% 2.03% 1.93%

Conventional 1.86% 1.53% 2.33% 2.15% 1.97%

35 ◦C
Model

Proposed 2.09% 2.77% 3.89% 2.53% 2.82%

Conventional 8.45% 8.16% 11.52% 7.81% 9.00%

40 ◦C
Model

Proposed 0.98% 2.22% 2.00% 2.24% 1.86%

Conventional 4.30% 4.12% 2.39% 5.04% 3.96%

Table 6 shows the SOC errors obtained using the MNN model generated by the
proposed and conventional methods. The proposed method achieved minimum and
maximum errors of 0.98% and 3.89%, respectively. The best average error, according to the
temperature, was 3.89%, obtained from the model at 40 ◦C. The total average error of the
proposed method was 2.17% and that of the conventional method was 4.46%.

Table 7 represents the SOC errors obtained using the LSTM model generated by the
proposed and conventional methods. The proposed method achieved minimum and
minimum errors of 0.93% and 3.31%, respectively. The best average error in terms of
temperature was 1.82%, obtained from the model at 40 ◦C. The total average error of the
proposed method was 2.19% and that of the conventional method was 4.60%.

Table 7. The SOC errors obtained using the LSTM model generated by the proposed and conventional
methods.

Temperature Method Battery 1 Battery 2 Battery 3 Battery 4 Average

25 ◦C
Model

Proposed 2.26% 2.83% 1.87% 2.06% 2.26%
Conventional 3.97% 1.69% 5.00% 2.58% 3.31%

30 ◦C
Model

Proposed 1.96% 1.72% 2.40% 1.72% 1.95%

Conventional 1.88% 1.60% 2.85% 2.02% 2.09%

35 ◦C
Model

Proposed 2.12% 2.96% 3.31% 2.54% 2.73%
Conventional 8.63% 8.24% 12.41% 8.09% 9.34%

40 ◦C
Model

Proposed 0.93% 2.13% 2.07% 2.17% 1.82%
Conventional 3.97% 3.55% 2.07% 5.00% 3.65%

Table 8 presents the SOC errors obtained using the GRU model generated by the
proposed and conventional methods. The proposed method achieved minimum and maxi-
mum errors of 1.43% 2.96%, respectively. The best average error in terms of temperature
was 1.43%, obtained from the model at 30 ◦C. Table 5 summarizes the average battery errors
obtained using the generated models. The average errors of the proposed and conventional
methods were 2.13% and 4.40%, respectively.

Table 8. The SOC errors obtained using the GRU model generated by the proposed method.

Temperature Method Battery 1 Battery 2 Battery 3 Battery 4 Average

25 ◦C
Model

Proposed 2.80% 3.79% 1.51% 1.79% 2.47%
Conventional 3.33% 3.22% 3.96% 2.19% 3.18%
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Table 8. Cont.

Temperature Method Battery 1 Battery 2 Battery 3 Battery 4 Average

30 ◦C
Model

Proposed 0.60% 1.31% 1.44% 2.36% 1.43%
Conventional 1.07% 1.10% 3.14% 2.05% 1.84%

35 ◦C
Model

Proposed 2.21% 3.28% 4.46% 1.88% 2.96%
Conventional 8.61% 8.44% 12.66% 7.76% 9.37%

40 ◦C
Model

Proposed 1.07% 2.15% 1.88% 1.52% 1.66%
Conventional 4.21% 4.65% 2.52% 4.63% 4.00%

Table 9 presents the SOC errors obtained using the GBM model generated by the pro-
posed and conventional methods. The proposed method achieved minimum and maximum
errors of 1.27% and 2.61%, respectively. The best average error in terms of temperature was
1.67%, obtained from the model at 30 ◦C. Table 6 summarizes the average battery errors
obtained using the generated models. The average error of the proposed method was lower
by more than 2.46% than that of the conventional method for the all models.

Table 9. The SOC errors obtained using the GBM model generated by the proposed method.

Temperature Method Battery 1 Battery 2 Battery 3 Battery 4 Average

25 ◦C
Model

Proposed 1.86% 2.45% 1.74% 1.66% 1.92%
Conventional 3.38% 1.92% 3.35% 2.78% 2.86%

30 ◦C
Model

Proposed 1.28% 1.57% 2.05% 1.76% 1.67%
Conventional 1.54% 1.38% 2.11% 1.63% 1.66%

35 ◦C
Model

Proposed 2.20% 2.58% 2.61% 1.99% 2.35%
Conventional 8.46% 8.36% 10.58% 7.83% 8.80%

40 ◦C
Model

Proposed 1.27% 1.98% 1.91% 1.92% 1.77%
Conventional 4.66% 3.88% 3.33% 4.92% 4.20%

Figure 13 and Table 10 show the average MAEs, which were calculated based on the
temperature and used to determine the average errors. It was confirmed that the proposed
method outperformed the conventional method.
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Table 10. Average battery errors produced using the generated models.

Method
Errors of Proposed Methods Errors of Conventional Methods

MNN LSTM GRU GBM MNN LSTM GRU GBM

Average
Error 2.17% 2.19% 2.13% 1.93% 4.47% 4.60% 4.60% 4.38%
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Table 11 presents the time taken to estimate the SOC using MNN, RNN, GRU and
GBM. The experimental results demonstrate that the GBM outperformed the other models
in terms of training duration, with a time of 00:00:01.48. However, the LSTM model had the
longest training duration, of 2:09:10.01, with the MNN and GRU models taking 00:13:31.05
and 00:01:16.30, respectively.

Table 11. The SOC estimation times for MNN, RNN, GRU, and GBM.

Model MNN LSTM GRU GBM

Time 00:13:31.05 2:09:10.01 00:01:16.30 00:00:01.48

Online SOC Estimation by GRU

The SOC was estimated in real time using the data and expressed using graphs.
Table 12 represents the real-time SOC-estimation error obtained using the Jetson Nano
device and the vehicle-driving simulator; the real-time graphs of the SOC are shown in
Figure 14. First, the input parameters were obtained using the vehicle-driving simulator,
and the acquired data were then transferred to the Jetson Nano device as the input of the
generated model for the SOC prediction.

Table 12. Real-time SOC-estimation errors using the GRU model.

Network Type Battery 1 Battery 2 Battery 3 Battery 4

35 ◦C GRU 2.26% 2.83% 1.87% 2.06%
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Figure 14. Real-time SOC estimation using the GRU model.

5. Conclusions

This study developed a method for estimating the SOC by selecting a suitable model
according to the temperatures measured during an experiment. For the SOC estimation,
a discharge experiment was conducted using a custom vehicle-driving simulator. The
data acquired during the experiment were classified according to temperature and used as
inputs for the MNN, LSTM, and GRU models. Finally, the SOC was estimated using the
model generated from the data by the Jetson Nano device.

During the experiment, four temperatures were measured, and the SOC was estimated
using the MNN, LSTM, and GRU models, according to temperature. Most of the proposed
methods exhibited fewer errors than the conventional methods. The proposed MNN
method achieved an average error of 2.17%, which was superior to the 4.46% obtained by
using the conventional MNN method. The LSTM method achieved an average error of
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2.19%, which was better than that obtained using the conventional MNN method (4.46%).
The proposed GRU method demonstrated an average error of 2.15%, which was better than
that obtained using the conventional GRU method (4.40%). The GBM method achieved an
average error of 1.93%, which was better than that obtained by using the conventional GBM
method (4.38%). The experimental results regarding computational time demonstrate that
the GBM outperformed the other models in term of training time (00:00:01.48). These results
suggest that the GBM algorithm can be an efficient tool for time-sensitive applications that
require rapid model training and deployment.

The battery data were obtained using the Jetson Nano device for real-time SOC
prediction. The SOC was expressed through a graphical user interface. The GRU model
based on the data from the model at 35 ◦C was used for the real-time SOC estimation, and
the average error for the SOC estimation was 2.25%.

In future research, the authors plan to incorporate a model-update function for SOC
prediction using measured data, along with the ability to select a suitable model based on
measured temperatures. Moreover, they plan to utilize Jetson Nano to enable real-time
SOC predictions, with the addition of a GBM model, since the boosting model has time-
related benefits, such as faster learning and improved scalability. In future research, the
authors plan to apply several boosting models with the aforementioned advantages for
SOC estimation. It is anticipated that the proposed method will have practical applications
for solving SOC problems for real battery systems.
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the published version of the manuscript.
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