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Abstract: Data pre-processing is the first step of using SCADA data to study the performance of wind
turbines. However, there is a lack of knowledge of how to obtain more effective data pre-processing
algorithms. This paper fully explores multiple data pre-processing algorithms for power curve
modeling. A three-stage data processing mode is proposed, namely, preliminary data filtering and
compensation (Stage I), secondary data filtering (Stage II), and single-valued processing (Stage III).
Different data processing algorithms are selected at different stages and are finally merged into nine
data processing algorithms. A novel evaluation method based on energy characteristic consistency
(ECC) is proposed to evaluate the reliability of various algorithms. The influence of sliding mode and
benchmark of Binning on data processing has been fully investigated through indicators. Four wind
turbines are selected to verify the advantages and disadvantages of the nine data processing methods.
The result shows that at the same wind speed, the rotational speed and power values obtained by MLE
(maximum likelihood estimation) are relatively high among the three single-valued methods. Among
the three outlier filtering methods, the power value obtained by KDE (kernel density estimation) is
relatively large. In general, KDE-LSM (least square method) has good performance in general. The
sum of four evaluating index values obtained by KDE-LSM from four wind turbines is the smallest.

Keywords: data pre-processing; power curve modeling; wind turbines; energy characteristic consistency

1. Introduction

Renewable energy, such as wind energy, is becoming more and more popular because
it is cleaner and more efficient than traditional energy [1–3]. Wind turbines are the core
equipment that captures wind energy and converts it into electricity. For a long time,
the design and optimization of wind turbines have been the focus of the wind power
industry [4,5]. Many new methods and advanced tools have been used in the design and
analysis of wind turbines, such as the CFD method, which is also widely used in various
blade designs [6–8]. To meet the need for more wind farms, Tang, X. et al. carried out
theoretical and experimental research on low wind speed wind turbines and the power
output is significantly improved through blade optimization [9]. At present, the single-
unit capacity of wind turbines is becoming larger and larger, and many wind turbines
with a diameter of more than 100 m now exist. Even wind turbines more than 200 m in
diameter have been designed. Because large wind turbines are assembled and debugged
on-site, the actual performance can only be accurately obtained after operation. Due to
the harsh working environment of wind turbines, the safety and operating costs of wind
turbines have always been sensitive issues. Understanding the actual performance of wind
turbines is of great help to improve their design and maintenance capabilities [10–12].
In this scenario, the use of SCADA (supervisory control and data acquisition) data is widely
carried out [13–15]. With the extension of service time, the data stored in the SCADA
system is accumulated year-by-year, which not only reflects the current operation status of
wind turbines but also stores their historical service status. Therefore, making full use of
SCADA data information during service is an important way to deepen our understanding
and optimize the control strategy.

Energies 2023, 16, 2679. https://doi.org/10.3390/en16062679 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16062679
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en16062679
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16062679?type=check_update&version=2


Energies 2023, 16, 2679 2 of 24

In recent years, much research on the operation mechanism and maintenance of wind
turbines has been carried out based on SCADA data [16–18]. Moreover, the research based
on SCADA data is continuing with a more vigorous trend. For example, Singh, U. et al.
developed a prediction tool based on time series data to estimate wind power using
SCADA data [19]. Morshedizadeh, M. et al. carried out a case study on rotor overspeed
fault diagnosis of wind turbines based on SCADA data, vibration analysis, and field
detection [20]. Astolfi, D. et al. used SCADA data to discuss the long-term performance
evaluation of wind turbines [21]. Based on SCADA data, Dong, X. et al. built the blade
icing identification model of wind turbines [22]. However, because of random factors in the
external environment, the equipment itself, and the connected power grid, SCADA data
contains random interference information, which leads to its inability to be directly used for
performance evaluation and analysis. Researchers have proposed a variety of SCADA data
pre-processing methods, including data filtering, averaging, single-valued processing based
on kernel density, etc. [23,24]. Yang, W. et al. used the averaging method to pre-process the
data after filtering the outliers of the original SCADA data and evaluated the operation
status of wind turbines [25]. According to the type of abnormal data of wind turbines,
Yao, Q. et al. proposed a new combination method to clean up the anomalous SCADA data.
In the proposed combination method, a pre-processing method for removing outliers of the
power curve based on the operation mechanism is first proposed, and a new data cleaning
method, TTLOF, is presented, which quantifies specific data points and eliminates outliers
by setting parameter thresholds [24]. Marti-Puig, P. et al. evaluated the impact of using
several widely used technologies (such as Quantile, Hampel, and ESD) to remove extreme
values with recommended cut-off values [26]. Long, H. et al. transformed the problem of
wind turbine data cleaning into the problem of image processing, and a three-dimensional
(3D) WPC image was constructed [27]. Wang, Y. et al. designed a combined wind speed
prediction system based on two-stage data pre-processing and multi-objective optimization.
The main function of two-stage data pre-processing is to decompose and reshape the raw
data to reduce noise and chaos disturbance [28]. To use SCADA data for power curve
cleaning, Morrison, R. et al. compared three data pre-processing algorithms [29].

It has become a consensus that data pre-processing is very important in the process
of using wind turbine SCADA data [26,30]. Despite the previous studies, there are still
some issues to be further studied on how to effectively and reliably conduct SCADA data
pre-processing. For example, there are several data pre-processing algorithms, but what are
the differences between them? This problem lacks comprehensive and systematic research.
In addition, the fundamental purpose of data pre-processing for SCADA data is to provide
the reliability of data analysis, but how can the reliability of the data pre-processing itself be
ensured? In our previous study, three evaluation indexes for the pre-processing algorithm
are presented, including (1) the consistency of physical characteristics; (2) the robustness of
the sampling time; (3) the robustness of the sampling frequency [31]. In this paper, a novel
evaluation method based on the energy characteristic consistency (ECC) of wind turbines is
proposed to evaluate the reliability of various data pre-processing algorithms. A three-stage
data processing mode is proposed, namely, preliminary data filtering and compensation
(Stage I), secondary data filtering (Stage II), and single-valued processing (Stage III). Its
main purpose is to improve the reliability of data pre-processing. Different data processing
algorithms are selected at different stages and finally merged into nine data processing
algorithms. Moreover, the nine data processing algorithms are compared and analyzed
from different perspectives. The main contribution of this paper is to make a comprehensive
comparison of the SCADA data of wind turbines, to gain a deeper understanding and
provide a basis for practical application.

In general, the innovative contributions of the paper can be summarized as follows.

• A three-stage data processing mode for power curve modeling of wind turbines
is proposed.

• A novel evaluation method based on the energy characteristic consistency (ECC) of
wind turbines is proposed.
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• The advantages and disadvantages of the nine data processing methods are verified
by four wind turbines.

The remainder of the paper is organized as follows. In Section 2, energy characteristic
consistency (ECC) is introduced and defined. Three performance curves of wind turbines
are projected into three planes in a three-dimensional coordinate system, respectively.
In Section 3, the data relationship for power curve modeling is established. The reason
why the wind speed measured by the nacelle anemometer needs to be compensated is
theoretically proved. A three-stage data processing mode for the power curve modeling
of wind turbines is presented in Section 4. This section also explains why preliminary
data filtering and compensation, secondary data filtering based on Binning, and single-
valued processing based on Binnig are needed. In Section 5, the influence of sliding mode
and benchmark of Binning on data processing has been fully investigated through four
quantitative indicators. Four wind turbines are selected to verify the advantages and disad-
vantages of data processing methods. Finally, Section 6 ends the paper by summarizing the
main achievements.

2. Energy Characteristic Consistency (ECC)

Wind turbines are complex devices that convert air kinetic energy into mechanical
energy and then into electrical energy. With the increasing diameter of wind turbines,
the cost is growing higher and higher. Performance is also expected to be better and
more stable. In the design and operation of wind turbines, the behavior characteristics
of capturing aerodynamic energy are of great concern. There are three curves commonly
used to describe this energy feature: the curve of wind speed–power, the curve of wind
speed–rotational speed, and the curve of rotational speed–power. The relationship between
wind speed and power is generally expressed as

P =
1
2

CpρSv3 (1)

where, P (W) is power, Cp is power coefficient, ρ (kg/m3) is air density, S (m2) is the area
swept by the wind rotor, and v (m/s) is wind speed.

In Equation (1), wind speed and power coefficient are variables. Wind speed is the
description of airflow velocity in nature, which has the characteristics of time-variation
and randomness. The power coefficient is the key parameter to reflect the wind energy
capture ability, and it is related to the aerodynamic structure of wind turbines, as well as
the controlling mode. In another scenario, if the wind turbine structure and control mode
is determined, the power coefficient is essentially affected by wind speed. If the tip speed
ratio is introduced, one has

v =
R
λ

ω (2)

where, ω (rad/s) is the rotational speed of the wind rotor, R (m) is the radius of the wind
rotor, λ is the tip speed ratio.

Substituting Equation (2) into Equation (1), it can be rewritten as [15]

P =
1
2

CpρS((R/λ)ω)3 (3)

From Equation (1), a wind speed–power curve can be obtained, from Equation (2),
a wind speed–rotational speed curve can be obtained, from Equation (3), a rotational
speed–power curve can be obtained. From any two of these curves, the third curve can
be obtained. In Figure 1, three performance curves are projected into three planes in the
xyz three-dimensional coordinate system, respectively. The wind speed–power curve is
projected into the xoz plane, the wind speed-rotational speed curve is projected into the
xoy plane, and the rotational speed–power curve is projected into the yoz plane. Given
the corresponding points on any two of the three performance curves in Figure 1, the
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corresponding points on the third curve can be obtained by spatial mapping. For example,
if point (ωi, Pi) in the yoz plane and point (vi, Pi) in the xoz plane are determined, the
horizontal coordinates of the two points can be extracted and reconstructed to form point
(vi, ωi) in the xoy plane.
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Figure 1. Wind turbines and performance curves.

Here, the special relationship between the three performance curves of wind turbines
is called energy characteristic consistency (ECC), because they describe the same energy
characteristic of wind turbines from different angles and can be converted to each other.
In other words, the characteristic of reconstructing the third curve from any two other
curves is called ECC. The energy characteristic consistency of wind turbines can also be
illustrated using Figure 2.
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Figure 2. ECC of wind turbines.

3. Data Relationship for Power Curve Modeling

Wind turbines are generally equipped with supervisory control and data acquisition
(SCADA) system, and a large number of wind turbine operating parameters are stored in
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real-time, for example, wind speed, rotational speed, power, and so on. However, whether
these parameters can be used directly needs to be specifically discussed for different
purposes. It is very important to extract the wind speed for establishing the wind speed-
power curve. In the SCADA system, the wind speed stored is usually measured by the
anemometer on the nacelle. In many works of literature, this wind speed is used to establish
the wind speed–power curve after some data pre-processing. If the wind speed measured
by the anemometer on the nacelle is used, Equation (1) can be rewritten as

P =
1
2

CpρS(v2 + ∆v)3 (4)

where, ∆v = v1 − v2, v1 (m/s) is the wind speed at the front of the wind rotor, v2 (m/s) is
the wind speed measured by the nacelle anemometer.

In Figure 3, wind speed v2 is recorded in the SCADA system, while wind speed
v1 is not measured and recorded. The relationship between v1, v2 and ∆v can also be
expressed as

v1 =
P

2ρSv2
2
+ v2 (5)
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By combining Equations (4) and (5), there is

P3 + 6ρSv3
2P2 + (12− 16

Cp
)ρ2S2v6

2P + 8ρ3S3v9
2 = 0 (6)

The following expression can be obtained by solving Equation (6)

CP =
16ρ2S2v6

2P
P3 + 6ρSv3

2P2 + 8ρ3S3v9
2 + 12ρ2S2v6

2P
(7)
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Equation (7) does not give a clear relationship between power and power coefficient,
which can be further simplified. The simplification strategy adopted is mainly reducing
order and parameter substitution. From Equation (7), one has

P = 2ρSv3
2

[σ2 3

√√√√ 2
CP

(

√
1− 16

27CP
− 1) + σ

3

√√√√− 2
CP

(

√
1− 16

27CP
+ 1)]− 1

 (8)

where, σ is a calculation factor (σ = (−1 +
√

3i)/2). It should be noted that the deriva-
tion process from Equation (7) to Equation (8) is complex, and the derivation result is
directly given.

Here, the analytical expression between the power and the wind speed measured
by the nacelle anemometer is presented for the first time. From Equation (8), the relation
between power and the wind speed measured by the nacelle anemometer is also cubic in
theory, but it is complicated to calculate the power coefficient by using this relation. From
the point of view of design and operation, it is preferred to establish the relation curve
between real wind speed (wind speed at the front of the wind rotor) and power. Therefore,
the strategy of wind speed correction is concerned [15]. A method of wind speed correction
may rely on Equation (5).

4. Data Pre-Processing Methods and Process
4.1. Data Pre-Processing Methods

To establish the wind turbine power curve, the data processing can be divided into
three levels, namely preliminary data filtering and compensation, secondary data filtering
based on Binning partition, and single-valued processing of data based on Binning partition,
as shown in Table 1. Preliminary data filtering is mainly used to eliminate some obvious
abnormal data. For example, data sets with zero or negative power will be deleted, data
sets with negative rotational speed will be deleted, data sets with less than cut-in wind
speed will be deleted, and data sets with more than cut-in wind speed will be deleted.
It should be noted that the wind speed of the nacelle anemometer is lower than the actual
inflow wind speed, so it should be compensated before eliminating the data set which is
lower than the cut-in wind speed. The specific operation for the preliminary data filtering
can be written as 

if Pi < 0, delete xi
else if vi < vin, delete xi
else if vi > vout, delete xi
else if ωi < 0, delete xi
else xi = xi

(9)

where, xi = {ωi, vi, Pi, . . .}.

Table 1. Data pre-processing methods.

Preliminary Data Filtering
and Compensation

Secondary Data Filtering Based
on Binning

Single-Valued Processing Based
on Binnig

Preliminary
data filtering


P ≥ 0
v > vin
v < vout
ω ≥ 0

Quartile
method [Qn1 − 1.5WQn, Qn3 + 1.5WQn]

Average method
(AVE) X = 1

n

n
∑

i=1
xi

PauTa
criterion [µn − kσn, µn + kσn]

Least square
method (LSM)

m
∑

i=1
δi =

m
∑

i=1
[ϕ(xi)− yi]

2

Wind data
compensation v1 = P

2ρAv2
2
+ v2

KDE
method f̂ (x) = 1

nh

n
∑

i=1
K( x−Xi

h )

Maximum
likelihood

estimation (MLE)
L =

N
∏
i=1

fxi (xi, θ)
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In Table 1, three methods are listed for secondary data filtering based on Binning,
namely the quartile method, PauTa criterion, and kernel density estimation (KDE) method.
The quartile method is a statistical analysis method. The basic idea is to arrange all the
data from small to large. The number just arranged in the first 1/4 position is called the
first quartile, the number arranged in the last 1/4 position is called the third quartile,
and the number arranged in the middle is called the second quartile, that is, the median
value. PauTa criterion is also called 3σ method. It determines an interval according to a
certain probability and believes that the error exceeding this interval is not random error
but gross error, and the data containing this error should be eliminated. Kernel density
estimation is used to estimate unknown density functions in probability theory. It is one of
the non-parametric test methods. Furthermore, three methods are listed for single-valued
processing based on Binning, namely the average method (AVE), least square method
(LSM), and maximum likelihood estimation method (MLE).

To speed up the processing speed and improve the reliability of data processing, the
data are processed using the Binning method. In the case of the wind speed–power curve,
there are two modes for Binning. One is to deal with the wind speed using Binning and
then eliminate the corresponding unreliable power data. The other is to process the power
using Binning and then eliminate the corresponding unreliable wind speed data. From
another scenario, Binning can be divided into shoulder-to-shoulder Binning (SSB) and
discrete sliding Binning (DSB). After secondary data filtering, more unreliable data are
eliminated as shown in Table 2.

Table 2. Data pre-processing methods.

Scatter Plot Based on Raw Data Preliminary Data Filtering
and Compensation

Secondary Data Filtering Based on
Binning Partition
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In Table 2, after preliminary data filtering, some abnormal data or non-working data 
are eliminated. After the wind speed data compensation, whether the wind speed–power 
scatter distribution or the wind speed–rotational speed scatter distribution, their upper 
contour is more regular. There are several power values corresponding to a certain wind 
speed in the power curve scatters of wind turbines. Conversely, there are several wind 
speed values corresponding to a given power. This is because the wind speed has a 
random character, changing from time to time. Therefore, not every scatter is the real 
performance. From the perspective of probability statistics, when the sample is large 
enough, it is possible to find its true performance from a number of scatterers. In the 
process of data processing, it is necessary to use some methods to further eliminate some 
unreliable data. Here, it is called secondary data filtering based on Binning partition. 

4.2. Secondary Data Filtering Principle 
In this section, taking the wind speed–power curve as an example, the principles of 

the three data filtering methods will be introduced. 
• Quartile method 

The quartiles rank all values from small to large and divide them into four parts. Each 
part contains 25% of the data. The greater the interquartile range, the more discrete the 
data are. Conversely, the less discrete the data are. The quartile method is suitable for data 
sets with a small number of outliers and has a certain ability to resist interference. 

Using Binning method, the wind speed can be divided into several intervals. In the 
nth interval, the wind speed data set is marked with 1 2 3{ , , , }ni n n nv v v= ⋅⋅⋅v . Then, the power 
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In Table 2, after preliminary data filtering, some abnormal data or non-working data 
are eliminated. After the wind speed data compensation, whether the wind speed–power 
scatter distribution or the wind speed–rotational speed scatter distribution, their upper 
contour is more regular. There are several power values corresponding to a certain wind 
speed in the power curve scatters of wind turbines. Conversely, there are several wind 
speed values corresponding to a given power. This is because the wind speed has a 
random character, changing from time to time. Therefore, not every scatter is the real 
performance. From the perspective of probability statistics, when the sample is large 
enough, it is possible to find its true performance from a number of scatterers. In the 
process of data processing, it is necessary to use some methods to further eliminate some 
unreliable data. Here, it is called secondary data filtering based on Binning partition. 

4.2. Secondary Data Filtering Principle 
In this section, taking the wind speed–power curve as an example, the principles of 

the three data filtering methods will be introduced. 
• Quartile method 
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data are. Conversely, the less discrete the data are. The quartile method is suitable for data 
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In Table 2, after preliminary data filtering, some abnormal data or non-working data 
are eliminated. After the wind speed data compensation, whether the wind speed–power 
scatter distribution or the wind speed–rotational speed scatter distribution, their upper 
contour is more regular. There are several power values corresponding to a certain wind 
speed in the power curve scatters of wind turbines. Conversely, there are several wind 
speed values corresponding to a given power. This is because the wind speed has a 
random character, changing from time to time. Therefore, not every scatter is the real 
performance. From the perspective of probability statistics, when the sample is large 
enough, it is possible to find its true performance from a number of scatterers. In the 
process of data processing, it is necessary to use some methods to further eliminate some 
unreliable data. Here, it is called secondary data filtering based on Binning partition. 

4.2. Secondary Data Filtering Principle 
In this section, taking the wind speed–power curve as an example, the principles of 
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data are. Conversely, the less discrete the data are. The quartile method is suitable for data 
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In Table 2, after preliminary data filtering, some abnormal data or non-working data 
are eliminated. After the wind speed data compensation, whether the wind speed–power 
scatter distribution or the wind speed–rotational speed scatter distribution, their upper 
contour is more regular. There are several power values corresponding to a certain wind 
speed in the power curve scatters of wind turbines. Conversely, there are several wind 
speed values corresponding to a given power. This is because the wind speed has a 
random character, changing from time to time. Therefore, not every scatter is the real 
performance. From the perspective of probability statistics, when the sample is large 
enough, it is possible to find its true performance from a number of scatterers. In the 
process of data processing, it is necessary to use some methods to further eliminate some 
unreliable data. Here, it is called secondary data filtering based on Binning partition. 

4.2. Secondary Data Filtering Principle 
In this section, taking the wind speed–power curve as an example, the principles of 

the three data filtering methods will be introduced. 
• Quartile method 

The quartiles rank all values from small to large and divide them into four parts. Each 
part contains 25% of the data. The greater the interquartile range, the more discrete the 
data are. Conversely, the less discrete the data are. The quartile method is suitable for data 
sets with a small number of outliers and has a certain ability to resist interference. 

Using Binning method, the wind speed can be divided into several intervals. In the 
nth interval, the wind speed data set is marked with 1 2 3{ , , , }ni n n nv v v= ⋅⋅⋅v . Then, the power 
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In Table 2, after preliminary data filtering, some abnormal data or non-working data 
are eliminated. After the wind speed data compensation, whether the wind speed–power 
scatter distribution or the wind speed–rotational speed scatter distribution, their upper 
contour is more regular. There are several power values corresponding to a certain wind 
speed in the power curve scatters of wind turbines. Conversely, there are several wind 
speed values corresponding to a given power. This is because the wind speed has a 
random character, changing from time to time. Therefore, not every scatter is the real 
performance. From the perspective of probability statistics, when the sample is large 
enough, it is possible to find its true performance from a number of scatterers. In the 
process of data processing, it is necessary to use some methods to further eliminate some 
unreliable data. Here, it is called secondary data filtering based on Binning partition. 

4.2. Secondary Data Filtering Principle 
In this section, taking the wind speed–power curve as an example, the principles of 

the three data filtering methods will be introduced. 
• Quartile method 

The quartiles rank all values from small to large and divide them into four parts. Each 
part contains 25% of the data. The greater the interquartile range, the more discrete the 
data are. Conversely, the less discrete the data are. The quartile method is suitable for data 
sets with a small number of outliers and has a certain ability to resist interference. 

Using Binning method, the wind speed can be divided into several intervals. In the 
nth interval, the wind speed data set is marked with 1 2 3{ , , , }ni n n nv v v= ⋅⋅⋅v . Then, the power 

set corresponding to n iv  is marked as niP  = 11 12 13 21 22 23{ , , , , , , , }n n n n n nP P P P P P⋅⋅⋅ ⋅⋅⋅ , as shown 
in Figures 4 and 5a 

1

2

3

n

n

n

v
v
v

 
 
 
 
 

⋅ ⋅ ⋅ 

11 12 13

21 22 23

31 32 33

, , ,
, , ,
, , ,

       

n n n

n n n

n n n

P P P
P P P
P P P

⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅
 

⋅ ⋅ ⋅   

In Table 2, after preliminary data filtering, some abnormal data or non-working data
are eliminated. After the wind speed data compensation, whether the wind speed–power
scatter distribution or the wind speed–rotational speed scatter distribution, their upper
contour is more regular. There are several power values corresponding to a certain wind
speed in the power curve scatters of wind turbines. Conversely, there are several wind
speed values corresponding to a given power. This is because the wind speed has a random
character, changing from time to time. Therefore, not every scatter is the real performance.
From the perspective of probability statistics, when the sample is large enough, it is possible
to find its true performance from a number of scatterers. In the process of data processing,
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it is necessary to use some methods to further eliminate some unreliable data. Here, it is
called secondary data filtering based on Binning partition.

4.2. Secondary Data Filtering Principle

In this section, taking the wind speed–power curve as an example, the principles of
the three data filtering methods will be introduced.

• Quartile method

The quartiles rank all values from small to large and divide them into four parts. Each
part contains 25% of the data. The greater the interquartile range, the more discrete the
data are. Conversely, the less discrete the data are. The quartile method is suitable for data
sets with a small number of outliers and has a certain ability to resist interference.

Using Binning method, the wind speed can be divided into several intervals. In the
nth interval, the wind speed data set is marked with vni = {vn1, vn2, vn3, . . .}. Then, the
power set corresponding to vni is marked as Pni = {Pn11, Pn12, Pn13, . . . , Pn21, Pn22, Pn23, . . .},
as shown in Figures 4 and 5a.
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In Table 2, after preliminary data filtering, some abnormal data or non-working data 
are eliminated. After the wind speed data compensation, whether the wind speed–power 
scatter distribution or the wind speed–rotational speed scatter distribution, their upper 
contour is more regular. There are several power values corresponding to a certain wind 
speed in the power curve scatters of wind turbines. Conversely, there are several wind 
speed values corresponding to a given power. This is because the wind speed has a 
random character, changing from time to time. Therefore, not every scatter is the real 
performance. From the perspective of probability statistics, when the sample is large 
enough, it is possible to find its true performance from a number of scatterers. In the 
process of data processing, it is necessary to use some methods to further eliminate some 
unreliable data. Here, it is called secondary data filtering based on Binning partition. 

4.2. Secondary Data Filtering Principle 
In this section, taking the wind speed–power curve as an example, the principles of 

the three data filtering methods will be introduced. 
• Quartile method 

The quartiles rank all values from small to large and divide them into four parts. Each 
part contains 25% of the data. The greater the interquartile range, the more discrete the 
data are. Conversely, the less discrete the data are. The quartile method is suitable for data 
sets with a small number of outliers and has a certain ability to resist interference. 

Using Binning method, the wind speed can be divided into several intervals. In the 
nth interval, the wind speed data set is marked with 1 2 3{ , , , }ni n n nv v v= ⋅⋅⋅v . Then, the power 
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Figure 4. Mapping relationship between wind speed and power.
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Figure 5. Preliminary data filtering principle. (a) Quartile method; (b) PauTa criterion; (c) KDE method. 

• KDE method 
KDE (kernel density estimation) method is a nonparametric estimation method. KDE 

does not require any prior knowledge of the data and does not attach any assumptions to 
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According to the data size in the power set, the set Pni is rearranged in ascending order.
For ease of understanding, set Pni = Pn11, Pn12, Pn13, . . . , Pn21, Pn22, Pn23, . . .} is re-expressed
as Pn = {Pn1, Pn2, Pn3, . . .}. Then, the three quartiles can be expressed as [32]

Qn1 =


1
2 (P ni+Pn(i+1)), i= 4k(k= 0, 1, 2, . . .)
1
4 Pni +

3
4 Pn(i+1), i= 4k+1(k= 0, 1, 2, . . .)

Pn(i+1), i= 4k+2(k= 0, 1, 2, . . .)
3
4 Pn(i+1) +

1
4 Pn(i+2), i= 4k+3(k= 0, 1, 2, . . .)

(10)

Qn2 =

{
Pn[(i+1)/2], i = 2k + 1; k = 0, 1, 2, . . .
1
2 (Pn[i/2] + Pn[(i+2)/2]), i = 2k; k = 1, 2, 3, . . .

(11)

Qn3 =


1
2 (P n(3i)+Pn(3i+1)),i= 4k(k= 0, 1, 2, . . .)
3
4 Pn(3i+1) +

1
4 Pn(3i+2), i= 4k+1(k= 0, 1, 2, . . .)

Pn(3i+2), i= 4k+2(k= 0, 1, 2, . . .)
1
4 Pn(3i+1) +

3
4 Pn(3i+2), i= 4k+3(k= 0, 1, 2, . . . )

(12)
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where, Qn1 (W), Qn2 (W), and Qn3 (W) are the first quartile, the second quartile, and the
third quartile, respectively.

After calculating Qn1 and Qn3, the quartile range WQn (W) can be obtained, and the
data range [Rnd, Rnu] can be obtained according to WQn as shown in Equation (13). Values
outside the interval [Rnd, Rnu] are considered outliers.

[Rnd, Rnu] = [Qn1 − 1.5WQn, Qn3 + 1.5WQn] (13)

where, WQn = Qn3 −Qn1.
After data processing, a new set P′n is obtained, which can be expressed as

P′n = {Pnk|Qn1 − 1.5WQn < Pnk < Qn3 + 1.5WQn }(k = 1, 2, 3, . . .) (14)

• PauTa criterion

The PauTa criterion method is to calculate the standard deviation and mean value of
a group of data, determine an interval according to a certain probability, and determine
the data beyond the interval as abnormal values. This method is easy to implement and
has a good effect in removing outliers, but the data distribution is required to obey normal
distribution or approximate normal distribution. When the wind speed–power curve is
processed by using the PauTa criterion method, the standard deviation and the mean value
of the data in the set Pn are calculated and marked as σn (W) and µn (W), respectively [33].

Then, the outliers are eliminated according to Equation (15).

[Rnd, Rnu] = [µn − kσn, µn + kσn] (15)

where, k is the parameter determined in the statistical analysis of small probability events,
P′ni is the normal value, and the rest are marked as abnormal values for elimination as
shown in Figure 5b.

After data processing, a new set P′n is obtained, which can be expressed as

P′n = {Pnk|µn − kσn < Pnk < µn + kσn }(k = 1, 2, 3, . . .) (16)

• KDE method

KDE (kernel density estimation) method is a nonparametric estimation method. KDE
does not require any prior knowledge of the data and does not attach any assumptions
to the data distribution. It only needs to start from the data itself [23,34]. The calculation
expression of KDE can be written as

f (x) =
1

nh

n

∑
i=1

K(
x− Xi

h
) (17)

where, h is the window width, and its value will affect the smoothness of f (x); K(x)

is the kernel function, K(x) ≥ 0,
+∞∫
−∞

K(x)dx = 1; Xi is the sample point of independent

distribution, Xi = Pni. Here, Gaussian kernel is used.
Then, in the set Pn, power points larger than ε f (x)max are retained, and the rest are

eliminated as shown in Figure 5c. Here, ε is a judgment coefficient. After data processing, a
new set P′n is obtained, which can be expressed as

P′n = {Pnk| f (Pnk) > ε f (x)max}(k = 1, 2, 3, . . .) (18)

4.3. Single-Valued Processing Principle

The purpose of single-valued processing is to obtain the data relationship that can
reflect the one-to-one correspondence between wind speed and power. As mentioned in
the previous section, before single-valued processing, some outliers can be removed from
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the data. The main purpose is to further improve the reliability of the results. There are
many methods available for single-valued processing. The basic principles of the three
methods used in this paper will be briefly introduced below.

• Average method (AVE)

The arithmetic mean method is the most widely used method, and its greatest advan-
tage is simple and easy to calculate. For the set P′n, based on the arithmetic mean method,
one has

P̂n =

(
In

∑
i=1

Pni

)
/In (19)

where, P̂n is the power estimation value corresponding to the nth interval wind speed.
During the performance analysis of wind turbines, this power estimate P̂n can be used

as the true power value of this interval.

• Least square method (LSM)

The method of least square is a curve fitting method, which obtains the best-fit curve
based on the minimal sum of the deviations squared from a given set of data. Here, the
least square method is used to find a data point to replace the data of the entire interval. To
estimate the power value of this interval P̂n for the set P′n, the expression can be written as

P̂n = P̂n

∣∣∣∣∣∣∣min(
In
∑

i=1
P̂n−Pni)

2 (20)

• Maximum likelihood estimation (MLE)

The maximum likelihood estimation method is a parameter estimation method used
when the distribution type is known. Likelihood and probability can also express the
probability of an event, but they are very different. Probability is the probability of observa-
tion results when parameters are known. The likelihood is to calculate the possibility of
a parameter being a certain value from the observation results. For the set P′n in the nth
interval, the estimated power value can be written as L

(
θ̂
)
= max

In
∏
i=1

p(Pni, θ)

P̂n = P̂ni

∣∣∣max{p(Pni ,θ̂),i=1,2,3,...}

(21)

where, L(θ) is the likelihood function of the parameter θ; θ̂ is the maximum likelihood
estimate of the parameter θ; p(Pni, θ) is the value of the density function of power at Pni.

4.4. Data Pre-Processing Procedure

As shown in Figure 6, there are multiple composite results after the combination of
secondary data filtering and data single-valued processing. They are the Quartile–AVE
method, Quartile–LSM method, Quartile–MLE method, PauTa–AVE method, PauTa–LSM
method, PauTa–MLE method, KDE–AVE method, KDE–LSM method, and KDE–MLE
method. In the data processing process, there will be a method selected from these methods.
The key is how to choose the most appropriate method, or what are the advantages and
disadvantages of each method. For a long time, in the process of wind turbine SCADA
data processing, there is a lack of systematic research on this problem. Among these data
processing methods, Quartile–AVE, Quartile–LSM, and Quartile–MLE have the advantage
that they do not need to know the data distribution characteristics in stage II (secondary
data filtering). The disadvantage is that the quartile method only focuses on the middle
50% of the data without considering the entire dataset. The advantage of PauTa–AVE,
PauTa–LSM, and PauTa–MLE is that if the data obey the approximate positive distribution,
the outliers can be effectively eliminated at stage II. The disadvantage of the PauTa criterion
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is that when the data distribution is skewed, it may mistakenly identify normal data points
as outliers or fail to detect true outliers. The advantage of KDE–AVE, KDE–LSM, and
KDE–MLE is that when processing data in stage II, it can obtain its data distribution
without prior knowledge. The disadvantage of the KDE method is that it depends on the
selection of kernel function and bandwidth parameter, and inappropriate choices may lead
to inaccurate estimation results.
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Figure 7 shows the data processing methods and the whole process. In addition to
data filtering and single value processing, an important link is to evaluate the processing
effect. One of the main contributions of this paper is to propose an evaluation method based
on the energy characteristic consistency (ECC) of wind turbines. The specific evaluation
method is described below.

Step 1: Obtaining the single-valued curves of wind speed–power and wind speed–
rotational speed through single-valued processing.

Step 2: Selecting several discrete wind speed values vi, extracting the correspond-
ing power value Pi from the single-valued wind speed–power curve, and extracting the
corresponding speed value ωi from the single-valued wind speed–rotational speed curve.

Step 3: Using the extracted series of discrete power and rotational speed, the rotational
speed–power curve is reconstructed, which is also a single-valued power curve.

Step 4: From SCADA data, the rotational speed and power data are extracted, and the
actual rotational speed–power curve is obtained.

Step 5: Comparing the reconstructed rotational speed–power curve with the actual
rotational speed–power curve. The designed evaluating index is

s =

N
∑

n=1

In
∑

i=1

√
(P′′ ni − Pi)

2

N
∑

n=1
In

(22)

where, P′′ ni (W)is the power value corresponding to the rotational speed ω1 (rad/s) in the
reconstructed rotational speed–power curve; P1 (W) is the power value corresponding to
the rotational speed ω1 in the actual rotational speed–power curve. In is the number of
power values corresponding to ω1. N is the number of discrete rotational speed ω1. For a
ω1, P′′ ni is unique, and Pi has multiple.
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5. Result Comparison and Discussion
5.1. Influence of Binning Benchmark

In the above data processing process, an important step is data Binning. In Stage II in
Figure 6, data Binning can have different modes. For the wind speed–power curve, data
Binning can be based on wind speed or power. For wind speed–rotational speed curve,
data Binning can be performed based on wind speed or rotational speed. Figure 8 shows
the difference between the two different Binning benchmarks, taking the wind–power
curve as an example. Figure 8a shows the data Binning based on wind speed; Figure 8c
shows the data Binning based on power. Different data Binning modes have an impact on
the modeling of the power curve and rotational speed curve. It should be noted that in
Stage III of Figure 6, only one data Binning benchmark is used, as shown in Figure 8b,d,
that is, the data Binning is based on the wind speed. This is because in the process of the
power curve single-valued processing, if the power benchmark is used, only one data point
can be obtained above the rated wind speed, which is not applicable. The same principle is
also applicable to the single-valued processing of the rotational speed curve.
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to process wind speed in SVP.

As mentioned earlier, this paper constructs nine data processing methods, and the
power curve and rotational speed curve obtained by different data processing methods
will also be different. To better represent the effect of different methods, four indicators are
proposed for comparison.

• Indicator 1 is the maximum power deviation ΛP, which means the maximum power
deviation between different data processing methods corresponding to the same
wind speed.

• Indicator 2 is the power fluctuation amplitude ∆P above the rated wind speed. In this
region, constant power control is implemented. Theoretically, the power is a horizontal
line, but the power curve processed by the actual data is fluctuating.

• Indicator 3 is the maximum rotational speed deviation Λω, which means the maximum
rotational speed deviation between different data processing methods corresponding
to the same wind speed.

• Indicator 4 is the rotational speed fluctuation amplitude ∆ω above the rated wind
speed. In this region, constant rotational speed control is implemented. Theoretically,
the rotational speed is a horizontal line, but the rotational speed curve processed by
the actual data is fluctuating.

According to the definition of the maximum power deviation, its calculation expression
can be written as

ΛP = max(Pimax − Pimin)|i=1,...,m (23)

where, Pimax (W) and Pimin (W) represent the maximum and minimum power values
obtained by different data processing methods at the same wind speed; m is the number of
discrete points of the power curve within the full wind speed range, and its value is the
number of wind speed data Binning.

According to the definition of the power fluctuation amplitude, its calculation expres-
sion can be written as
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∆P =

√√√√ k

∑
i=1

(
Pni − Pn

Pn

)2

× 100% (24)

where, Pni (W) is the power value using the nth data processing method when the wind
speed is vi (n = 1, . . . , 9) (m/s); k is the number of discrete points of the power curve above
the rated wind speed (constant power region); Pn (W) is the average power obtained by the
nth data processing method in the constant power area.

According to the definition of the maximum rotational speed deviation, its calculation
expression can be written as

Λω = max(ωimax −ωimin)|i=1,...,m (25)

where, ωimax (rad/s) and ωimin (rad/s) represent the maximum and minimum rotational
speed values obtained by different data processing methods at the same wind speed.

According to the definition of rotational speed fluctuation amplitude, its calculation
expression can be written as

∆ω =

√√√√ k

∑
i=1

(
ωni −ωn

ωn

)2

× 100% (26)

where, ωni (rad/s) is the rotational speed value using the nth data processing method when
the wind speed is vi (m/s); k is the number of discrete points of the rotational speed curve
above the rated wind speed (constant power region); ωn (rad/s) is the average rotational
speed obtained by the nth data processing method in the constant power area.

Figure 9 shows nine wind speed-power curves obtained by nine data processing
methods, among which Figure 9a–c are the wind speed–power curves using wind speed
data Binning, and Figure 9d–f are the wind speed–power curves using power data Binning.
Table 3 shows the values of various indicators under different Binning conditions. It can
be seen from the curves in Figure 9 that the rated wind speeds obtained by different data
processing methods are nearly the same, and the power curves tend to be consistent overall.
The maximum power deviation using the wind speed data Binning occurs when the wind
speed is 11.25 m/s, between the KDE–MLE method and the Quartile–LSM method, with
a maximum deviation of 236.93 kW. The maximum power deviation using power data
Binning occurs when the wind speed is 10.75 m/s, also between the KDE–MLE method
and Quartile–LSM method, with a maximum deviation of 120.70 kW. In general, no matter
which method is used, the maximum power deviation using the power data Binning is
smaller than that using the wind speed data Binning. This is because the wind speed is
random, and the power has good stability. Therefore, when the power is taken as the
benchmark, the interference of instantaneous wind speed can be eliminated better, and
a better filtering effect can be achieved. In contrast, when the wind speed is taken as the
benchmark, there will be a large deviation, which makes it not possible to obtain a better
filtering effect. The maximum power fluctuation amplitude using wind speed data Binning
occurs at the PauTa criterion–LSM method, with a value of 13.8%; the minimum power
fluctuation amplitude occurs at the KDE–AVE method, with a value of 0.9%. The maximum
power fluctuation amplitude using power data Binning also occurs at the PauTa criterion–
LSM method, with a value of 17.2%; the minimum power fluctuation amplitude occurs at
the KDE–MLE method, with a value of 9.3%. It shows that among the nine methods when
the PauTa criterion–LSM method is used, the result of the power fluctuation amplitude is
poor. In general, no matter which method is used, the power fluctuation amplitude using
wind speed data Binning is better than that using power data Binning. This is because
when the wind speed is above the rated wind speed, the power value is in a limited range,
and it is difficult to eliminate the abnormal value of wind speed by power data Binning.
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Figure 9. Influence of Binning benchmark on wind-power curve. (a) wind-power curves obtained 
by binning wind speed data using three Quartile-based methods; (b) wind-power curves obtained 
by binning wind speed data using three PauTa-based methods; (c) wind-power curves obtained by 
binning wind speed data using three KDE-based methods. (d) wind-power curves obtained by 
binning power data using three Quartile-based methods. (e) wind-power curves obtained by 
binning power data using three PauTa-based methods. (f) wind-power curves obtained by binning 
power data using three KDE-based methods. 

Figure 10a–c are the wind speed–rotational speed curves using the wind speed data 
Binning, and Figure 10d–f are the wind speed–rotational speed curves using the speed 
data Binning. The rotational speed curves obtained by different data processing methods 
tend to be consistent, and the rated speeds are nearly the same. The maximum rotational 
speed deviation using the wind speed data Binning occurs at the wind speed of 5.25 m/s, 
between the PauTa criterion–MLE method and the KDE–LSM method, and the maximum 
rotational speed deviation is 0.11 rad/s. The maximum rotational speed deviation using 
the rotational speed data Binning occurs at the wind speed of 6.25 m/s, between the KDE–
MLE method and the Quartile–LSM method, and the maximum rotational speed 
deviation is 0.10 rad/s. The wind speed when reaching the maximum rotational speed 
deviation occurs at the maximum wind energy tracking stage. In general, no matter which 
method is used, the maximum rotational speed deviation using the power data Binning is 
smaller than that using the wind speed data Binning. 

Table 3. Indicators of two kinds of data Binning benchmarks. 

 PΛ  (kW) PmaxΔ  (%) PminΔ  (%) ωΛ  (rad/s) ω m axΔ  (%) ω m inΔ  (%) 
Wind speed data 

Binning 236.93 13.8 0.9 0.11 1.5 0.9 

Power speed data 
Binning 120.70 17.2 9.3 0.10 2.1 1.6 

The maximum rotational speed fluctuation amplitude using the wind speed data 
Binning occurs at the KDE–MLE method, with a value of 1.5%; the minimum rotational 
speed fluctuation amplitude occurs at the Quartile–LSM method, with a value of 0.9%. 

Figure 9. Influence of Binning benchmark on wind-power curve. (a) wind-power curves obtained
by binning wind speed data using three Quartile-based methods; (b) wind-power curves obtained
by binning wind speed data using three PauTa-based methods; (c) wind-power curves obtained
by binning wind speed data using three KDE-based methods. (d) wind-power curves obtained by
binning power data using three Quartile-based methods. (e) wind-power curves obtained by binning
power data using three PauTa-based methods. (f) wind-power curves obtained by binning power
data using three KDE-based methods.

Table 3. Indicators of two kinds of data Binning benchmarks.

ΛP (kW) ∆Pmax (%) ∆Pmin (%) Λω (rad/s) ∆ωmax (%) ∆ωmin (%)

Wind speed data Binning 236.93 13.8 0.9 0.11 1.5 0.9
Power speed data Binning 120.70 17.2 9.3 0.10 2.1 1.6

Figure 10a–c are the wind speed–rotational speed curves using the wind speed data
Binning, and Figure 10d–f are the wind speed–rotational speed curves using the speed
data Binning. The rotational speed curves obtained by different data processing methods
tend to be consistent, and the rated speeds are nearly the same. The maximum rotational
speed deviation using the wind speed data Binning occurs at the wind speed of 5.25 m/s,
between the PauTa criterion–MLE method and the KDE–LSM method, and the maximum
rotational speed deviation is 0.11 rad/s. The maximum rotational speed deviation using the
rotational speed data Binning occurs at the wind speed of 6.25 m/s, between the KDE–MLE
method and the Quartile–LSM method, and the maximum rotational speed deviation is
0.10 rad/s. The wind speed when reaching the maximum rotational speed deviation occurs
at the maximum wind energy tracking stage. In general, no matter which method is used,
the maximum rotational speed deviation using the power data Binning is smaller than that
using the wind speed data Binning.
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Figure 10. Influence of Binning benchmark on wind–rotational speed curve. (a) wind speed and 
rotational speed curves obtained by binning wind speed data using three Quartile-based methods; 
(b) wind speed and rotational speed curves obtained by binning wind speed data using three PauTa-
based methods; (c) wind speed and rotational speed curves obtained by binning wind speed data 
using three KDE-based methods. (d) wind speed and rotational speed curves obtained by binning 
power data using three Quartile-based methods. (e) wind speed and rotational speed curves 
obtained by binning power data using three PauTa-based methods. (f) wind speed and rotational 
speed curves obtained by binning power data using three KDE-based methods. 

5.2. Influence of Sliding Mode of Binning 
Another critical step in the above data Binning process is the selection of sliding 

mode. In Stage II in Figure 6, data Binning can have different sliding modes. Discrete 
sliding Binning or equal-width (shoulder-to-shoulder) sliding Binning can be selected. 
Figure 11 shows two different sliding Binning modes. Figure 11a,b are the wind speed–
power curve and the wind speed–rotational speed curve, respectively, which are 
processed by discrete sliding Binning. Figure 11c,d are processed by equal-width 
(shoulder-to-shoulder) sliding Binning. 

Figure 10. Influence of Binning benchmark on wind–rotational speed curve. (a) wind speed and
rotational speed curves obtained by binning wind speed data using three Quartile-based methods;
(b) wind speed and rotational speed curves obtained by binning wind speed data using three PauTa-
based methods; (c) wind speed and rotational speed curves obtained by binning wind speed data
using three KDE-based methods. (d) wind speed and rotational speed curves obtained by binning
power data using three Quartile-based methods. (e) wind speed and rotational speed curves obtained
by binning power data using three PauTa-based methods. (f) wind speed and rotational speed curves
obtained by binning power data using three KDE-based methods.

The maximum rotational speed fluctuation amplitude using the wind speed data
Binning occurs at the KDE–MLE method, with a value of 1.5%; the minimum rotational
speed fluctuation amplitude occurs at the Quartile–LSM method, with a value of 0.9%. The
maximum rotational speed fluctuation amplitude using the power data Binning also occurs
at the KDE–MLE method, with a value of 2.1%; the minimum rotational speed fluctuation
amplitude also occurs at the Quartile–LSM method, with a value of 1.6%. No matter which
method is used, the rotational speed fluctuation amplitude using the wind speed data
Binning is better than that using the power data Binning.

5.2. Influence of Sliding Mode of Binning

Another critical step in the above data Binning process is the selection of sliding mode.
In Stage II in Figure 6, data Binning can have different sliding modes. Discrete sliding
Binning or equal-width (shoulder-to-shoulder) sliding Binning can be selected. Figure 11
shows two different sliding Binning modes. Figure 11a,b are the wind speed–power
curve and the wind speed–rotational speed curve, respectively, which are processed by
discrete sliding Binning. Figure 11c,d are processed by equal-width (shoulder-to-shoulder)
sliding Binning.
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Figure 11. Different sliding Binning modes. (a) wind-power scatted relationship obtained by DSB 
mode; (b) wind-power scatted relationship obtained by SSB mode; (c) wind speed and rotational 
speed scatted relationship obtained by DSB mode; (d) wind speed and rotational speed scatted 
relationship obtained by SSB mode. 

Figure 12a–c is the wind speed–power curve obtained by selecting the discrete sliding 
Binning, and Figure 12d–f is the wind speed–power curve obtained by selecting the equal 
width (shoulder-to-shoulder) sliding Binning. Here, the Binning width of the equal width 
(shoulder-to-shoulder) sliding Binning is set to be 0.5 m/s. The Binning width of the 
discrete sliding Binning is also set to 0.5 m/s, and the sliding interval is set to 0.1 m/s. Table 
4 shows the values of various indicators under different sliding Binning modes. During 
the discussion, the wind speed data Binning benchmark is used. From the curve in Figure 
12, the rated power and rated wind speed obtained by different data processing methods 
are very close, and the power curve tends to be consistent. Among the three single-valued 
methods, the power value obtained by the LSM method is relatively small, and the power 
value obtained by the MLE method is relatively large. The maximum power deviation 
using the discrete sliding Binning occurs when the wind speed is 9.25 m/s, between the 
KDE–MLE method and the Quartile–LSM method, with a maximum deviation of 290.59 
kW. The maximum power deviation using the equal width (shoulder-to-shoulder) sliding 
Binning occurs when the wind speed is 10.25 m/s, also between the KDE–MLE method 
and the Quartile–LSM method, with the maximum deviation of 275.90 kW. In general, no 
matter which method is used, the maximum power deviation using the equal width 
(shoulder-to-shoulder) sliding Binning is smaller than that using the discrete sliding 
Binning. The maximum power fluctuation amplitude using the discrete sliding Binning 
occurs at the PuaTa–LSM method, with a value of 1.28%; the minimum rotational speed 
fluctuation amplitude occurs at the Quartile–MLE method, with a value of 0.29%. The 
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minimum power fluctuation amplitude also occurs at the Quartile–MLE method, with a 
value of 0.28%. Under different sliding Binning modes, there is no obvious change in the 
power fluctuation amplitude obtained by the same data processing method. This is 
because even though the sliding mode is different, the amount of data in the Binning does 

Figure 11. Different sliding Binning modes. (a) wind-power scatted relationship obtained by DSB
mode; (b) wind-power scatted relationship obtained by SSB mode; (c) wind speed and rotational
speed scatted relationship obtained by DSB mode; (d) wind speed and rotational speed scatted
relationship obtained by SSB mode.

Figure 12a–c is the wind speed–power curve obtained by selecting the discrete sliding
Binning, and Figure 12d–f is the wind speed–power curve obtained by selecting the equal
width (shoulder-to-shoulder) sliding Binning. Here, the Binning width of the equal width
(shoulder-to-shoulder) sliding Binning is set to be 0.5 m/s. The Binning width of the discrete
sliding Binning is also set to 0.5 m/s, and the sliding interval is set to 0.1 m/s. Table 4
shows the values of various indicators under different sliding Binning modes. During the
discussion, the wind speed data Binning benchmark is used. From the curve in Figure 12,
the rated power and rated wind speed obtained by different data processing methods are
very close, and the power curve tends to be consistent. Among the three single-valued
methods, the power value obtained by the LSM method is relatively small, and the power
value obtained by the MLE method is relatively large. The maximum power deviation using
the discrete sliding Binning occurs when the wind speed is 9.25 m/s, between the KDE–
MLE method and the Quartile–LSM method, with a maximum deviation of 290.59 kW. The
maximum power deviation using the equal width (shoulder-to-shoulder) sliding Binning
occurs when the wind speed is 10.25 m/s, also between the KDE–MLE method and the
Quartile–LSM method, with the maximum deviation of 275.90 kW. In general, no matter
which method is used, the maximum power deviation using the equal width (shoulder-
to-shoulder) sliding Binning is smaller than that using the discrete sliding Binning. The
maximum power fluctuation amplitude using the discrete sliding Binning occurs at the
PuaTa–LSM method, with a value of 1.28%; the minimum rotational speed fluctuation
amplitude occurs at the Quartile–MLE method, with a value of 0.29%. The maximum power
fluctuation amplitude using the equal width (shoulder-to-shoulder) sliding Binning also
occurs at the PuaTa–LSM method, with a value of 1.30%; the minimum power fluctuation
amplitude also occurs at the Quartile–MLE method, with a value of 0.28%. Under different
sliding Binning modes, there is no obvious change in the power fluctuation amplitude
obtained by the same data processing method. This is because even though the sliding
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mode is different, the amount of data in the Binning does not change much and has enough
data. For the same filtering method, the filtering of outliers has similar effect.
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Figure 12. Influence of sliding Binning mode on wind–power curve. (a) wind–power curves 
obtained by selecting DSB mode using three Quartile-based methods; (b) wind–power curves 
obtained by selecting DSB mode using three PauTa-based methods; (c) wind–power curves obtained 
by selecting DSB mode using three KDE-based methods; (d) wind–power curves obtained by 
selecting SSB mode using three Quartile-based methods; (e) wind–power curves obtained by 
selecting SSB mode using three PauTa-based methods; (f) wind–power curves obtained by selecting 
SSB mode using three KDE-based methods. 

Figure 13a–c is the wind speed–rotational speed curve obtained by selecting the 
discrete sliding Binning, and Figure 13d–f is the wind speed–rotational speed curve 
obtained by selecting the equal width (shoulder-to-shoulder) sliding Binning. The 
rotational speed curves obtained by different data processing methods tend to be 
consistent, and the rated speeds are nearly the same. Among the three single-valued 
methods, the rotational speed value obtained by the LSM method is relatively small, and 
the rotational speed value obtained by the MLE method is relatively large. The maximum 
rotational speed deviation using the discrete sliding Binning occurs when the wind speed 
is 5.25 m/s, between the KDE–MLE method and the Quartile–LSM method, with a 
maximum deviation of 0.13 rad/s. The maximum rotational speed deviation using the 
equal width (shoulder-to-shoulder) sliding Binning occurs when the wind speed is 5.75 
m/s, also between the KDE–MLE method and the Quartile–LSM method, with the 
maximum deviation of 0.09 rad/s. No matter which method is used, the maximum 
rotational speed deviation using the equal width (shoulder-to-shoulder) sliding Binning 
is smaller than that using the discrete sliding Binning. The maximum rotational speed 
fluctuation amplitude using the discrete sliding Binning occurs at the PuaTa–LSM 
method, with a value of 2.84%; the minimum rotational speed fluctuation amplitude 
occurs at the KDE–MLE method, with a value of 2.07%. The maximum rotational speed 
fluctuation amplitude using the equal width (shoulder-to-shoulder) sliding Binning also 
occurs at the PuaTa–LSM method, with a value of 2.48%; the minimum rotational speed 
fluctuation amplitude occurs at the KDE–LSM method, with a value of 2.10%. This again 
verifies that among the nine data processing methods, the performance of the rotating 

Figure 12. Influence of sliding Binning mode on wind–power curve. (a) wind–power curves obtained
by selecting DSB mode using three Quartile-based methods; (b) wind–power curves obtained by
selecting DSB mode using three PauTa-based methods; (c) wind–power curves obtained by selecting
DSB mode using three KDE-based methods; (d) wind–power curves obtained by selecting SSB mode
using three Quartile-based methods; (e) wind–power curves obtained by selecting SSB mode using
three PauTa-based methods; (f) wind–power curves obtained by selecting SSB mode using three
KDE-based methods.

Table 4. Indicators of two kinds of sliding Binning modes.

ΛP (kW) ∆Pmax (%) ∆Pmin (%) Λω (rad/s) ∆ωmax (%) ∆ωmin (%)

DSB 290.59 1.30 0.28 0.13 2.84 2.07
SSB 275.90 1.28 0.29 0.09 2.48 2.10

Figure 13a–c is the wind speed–rotational speed curve obtained by selecting the dis-
crete sliding Binning, and Figure 13d–f is the wind speed–rotational speed curve obtained
by selecting the equal width (shoulder-to-shoulder) sliding Binning. The rotational speed
curves obtained by different data processing methods tend to be consistent, and the rated
speeds are nearly the same. Among the three single-valued methods, the rotational speed
value obtained by the LSM method is relatively small, and the rotational speed value
obtained by the MLE method is relatively large. The maximum rotational speed deviation
using the discrete sliding Binning occurs when the wind speed is 5.25 m/s, between the
KDE–MLE method and the Quartile–LSM method, with a maximum deviation of 0.13 rad/s.
The maximum rotational speed deviation using the equal width (shoulder-to-shoulder) slid-
ing Binning occurs when the wind speed is 5.75 m/s, also between the KDE–MLE method
and the Quartile–LSM method, with the maximum deviation of 0.09 rad/s. No matter
which method is used, the maximum rotational speed deviation using the equal width
(shoulder-to-shoulder) sliding Binning is smaller than that using the discrete sliding Bin-
ning. The maximum rotational speed fluctuation amplitude using the discrete sliding
Binning occurs at the PuaTa–LSM method, with a value of 2.84%; the minimum rotational
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speed fluctuation amplitude occurs at the KDE–MLE method, with a value of 2.07%. The
maximum rotational speed fluctuation amplitude using the equal width (shoulder-to-
shoulder) sliding Binning also occurs at the PuaTa–LSM method, with a value of 2.48%; the
minimum rotational speed fluctuation amplitude occurs at the KDE–LSM method, with a
value of 2.10%. This again verifies that among the nine data processing methods, the per-
formance of the rotating speed fluctuation amplitude obtained by the PuaTa–LSM method
is the worst. Among the three single-valued methods, the KDE data filtering method
performs best at the constant rotational speed stage. Under different sliding Binning modes,
there is no obvious change in the rotating speed fluctuation amplitude obtained by the
same data processing method.
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Figure 13. Influence of sliding Binning mode on wind–rotational speed curve. (a) wind speed and 
rotational speed curves obtained by selecting DSB mode using three Quartile-based methods; (b) 
wind speed and rotational speed curves obtained by selecting DSB mode using three PauTa-based 
methods; (c) wind speed and rotational speed curves obtained by selecting DSB mode using three 
KDE-based methods; (d) wind speed and rotational speed curves obtained by selecting SSB mode 
using three Quartile-based methods; (e) wind speed and rotational speed curves obtained by 
selecting SSB mode using three PauTa-based methods; (f) wind speed and rotational speed curves 
obtained by selecting SSB mode using three KDE-based methods. 

Table 4. Indicators of two kinds of sliding Binning modes. 

 PΛ  (kW) PmaxΔ  (%) PminΔ  (%) ωΛ  (rad/s) ω m axΔ  (%) ωminΔ  (%) 
DSB 290.59 1.30 0.28 0.13 2.84 2.07 
SSB 275.90 1.28 0.29 0.09 2.48 2.10 

5.3. Reliability Analysis Based on ECC 
As mentioned above, the rotational speed–power curve can be reconstructed from 

the wind-power curve and the wind–rotational speed curve. Then, the reconstructed 
rotational speed–power curve is compared with the rotational speed–power curve 
obtained from the rotational speed data and power data in the SCADA system. The 
calculation algorithm is described in Equation (22). The smaller the target value, the closer 
the reconstructed rotational speed–power curve is to the real rotational speed–power data, 
and the better the data pre-processing method is. This comparison is based on the energy 
characteristic consistency (ECC) of wind turbines described in Section 2. Here, it should 
be noted that the rotational speed data and power data in the SCADA system are both 
measured values and are relatively accurate measured values. Therefore, it can be 
considered that the rotational speed–power curve directly constructed from SCADA data 
is the actual performance curve of wind turbines. 

Figure 13. Influence of sliding Binning mode on wind–rotational speed curve. (a) wind speed
and rotational speed curves obtained by selecting DSB mode using three Quartile-based methods;
(b) wind speed and rotational speed curves obtained by selecting DSB mode using three PauTa-based
methods; (c) wind speed and rotational speed curves obtained by selecting DSB mode using three
KDE-based methods; (d) wind speed and rotational speed curves obtained by selecting SSB mode
using three Quartile-based methods; (e) wind speed and rotational speed curves obtained by selecting
SSB mode using three PauTa-based methods; (f) wind speed and rotational speed curves obtained by
selecting SSB mode using three KDE-based methods.

5.3. Reliability Analysis Based on ECC

As mentioned above, the rotational speed–power curve can be reconstructed from the
wind-power curve and the wind–rotational speed curve. Then, the reconstructed rotational
speed–power curve is compared with the rotational speed–power curve obtained from the
rotational speed data and power data in the SCADA system. The calculation algorithm
is described in Equation (22). The smaller the target value, the closer the reconstructed
rotational speed–power curve is to the real rotational speed–power data, and the better
the data pre-processing method is. This comparison is based on the energy characteristic
consistency (ECC) of wind turbines described in Section 2. Here, it should be noted that the
rotational speed data and power data in the SCADA system are both measured values and
are relatively accurate measured values. Therefore, it can be considered that the rotational
speed–power curve directly constructed from SCADA data is the actual performance curve
of wind turbines.
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The rotational speed–power curve directly constructed from SCADA data is shown
in Figure 14a. Except for a few abnormal values, most of the data are in line with the
theoretical trend of the speed–power curve. Figure 14b shows the scattered data in the
maximum wind energy tracking stage, and the fitting curve and confidence interval are
also given in the figure. The reason for selecting the maximum wind energy tracking
stage is that when wind turbines are in the startup stage and constant speed stage, the
power increases (decreases) while the rotational speed remains unchanged. If these stages
are included in the scope of comparison, it will cause large errors. Since the relationship
between rotational speed and power is a cubic function (Equation (3)), the fitting form in
the figure is a cubic polynomial. In addition, considering the existing interference data, the
confidence interval is set to filter out the outliers far from the main data band, to improve
the data reliability.
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Figure 14. Rotational speed–power curve directly constructed from SCADA data. (a) rotational
speed–power curve in full range; (b) rotational speed–power curve in the maximum wind energy
tracking stage.

Four wind turbines are selected to verify the advantages and disadvantages of the
nine data processing methods. Figure 15a shows the rotational speed–power curve of
WT1, and Figure 15b–d show the rotational speed–power curve of WT2, WT3, and WT4
respectively. Table 5 shows the evaluating index s calculated from Equation (22). It can
be seen from Figure 15 that the rotational speed–power curves obtained by the nine data
pre-processing methods tend to be consistent, with local differences. At the same wind
speed, the rotational speed and power values obtained by MLE are relatively high among
the three single-valued methods. This shows that after filtering in stage II, most of the
data is concentrated at the upper center level. Among the three outlier filtering methods,
the power value obtained by KDE is relatively large. The rated rotational speed of WT1
is 13.42 r/min. The minimum wind speed to reach the rated rotational speed is 9.25 m/s,
which occurs at three combination methods of KDE (KDE–AVE, KDE–LSM, and KDE–
MLE), and the maximum wind speed is 10.25 m/s, which occurs at PuaTa–AVE. The wind
speed for other methods to reach the rated rotational speed is 9.75 m/s. The rated power of
WT1 is 2071.04 kW. The minimum wind speed to reach the rated power is 11.75 m/s, which
occurs at three combination methods of KDE (KDE–AVE, KDE–LSM, and KDE–MLE). The
maximum wind speed is 12.75 m/s, which occurs at several combination methods of PuaTa
(PuaTa–AVE, PuaTa–LSM, and PuaTa–MLE). The wind speed for other methods to reach
the rated power is 12.25 m/s. By analyzing the evaluating index s in Table 5, the values
obtained by different data processing methods are quite different. PuaTa–LSM performed
the best, with a value of 6.13 kW, while PuaTa–AVE performed the worst, with a value of
15.36 kW.
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Table 5. Evaluating index s based on ECC (kW).

Quartile-
AVE

Quartile-
LSM

Quartile-
MLE

PauTa-
AVE

PauTa-
LSM

PauTa-
MLE

KDE-
AVE

KDE-
LSM

KDE-
MLE

WT1 7.44 10.37 10.35 15.36 6.13 10.18 7.47 6.51 7.81
WT2 5.38 5.07 7.33 9.27 5.21 7.18 5.76 5.53 6.49
WT3 11.13 9.42 9.15 9.47 12.02 8.5 10.45 9.23 9.76
WT4 9.65 8.91 9.65 11.05 11.08 11.07 8.88 8.96 9.98

The rated rotational speed of WT2 is 13.48 r/min. The wind speed using Quartile–
LSM and PuaTa–AVE to reach the rated speed is 9.75 m/s, and the wind speed for other
methods is 10.25 m/s. The rated power of WT2 is 2062.72 kW. The wind speed using the
three combined methods of KDE to reach the rated power is 11.75 m/s, and the wind
speed for the other methods is 12.25 m/s. By analyzing the evaluating index s in Table 5,
Quartile–LSM performed the best, with a value of 5.07 kW, while PuaTa–AVE performed
the worst, with a value of 9.27 kW.

The rated rotational speed of WT3 is 13.50 r/min. The wind speed using three
combination methods of KDE to reach the rated rotational speed is 9.25 m/s, and the wind
speed for other methods is 8.75 m/s. The rated power of WT3 is 2070.83 kW. The minimum
wind speed to reach the rated power is 10.25 m/s, which occurs at three combination
methods of KDE. The maximum wind speed to reach the rated power is 12.25 m/s, which
occurs at three combination methods of the PuaTa criterion. By analyzing the evaluating
index s in Table 5, PuaTa–MLE performed the best, with a value of 8.50 kW, while PuaTa–
LSM performed the worst, with a value of 12.02 kW.
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The rated rotational speed of WT4 is 13.50 r/min. The wind speed using Quartile–
LSM, PuaTa–AVE, and PuaTa–LSM to reach the rated rotational speed is 8.75 m/s. The
wind speed for other methods is 8.25 m/s. The rated power of WT4 is 2014.55 kW. The
minimum wind speed to reach the rated power is 10.75 m/s, which occurs at KDE–LSM.
The maximum wind speed to reach the rated power is 12.25 m/s, which occurs at PuaTa–
LSM. By analyzing the evaluating index s in Table 5, KDE–AVE performed the best, with a
value of 8.88 kW, and PuaTa–LSM performed the worst, with a value of 11.08 kW.

More useful information can be found in Table 5. For example, by observing the
evaluation index s of each wind turbine, the maximum value occurs in two methods,
namely PauTa–AVE and PauTa–LSM. Specifically, for WT1 and WT2, the s value obtained
by PauTa–AVE is the largest. For WT3 and WT4, the s value obtained by PauTa–LSM
is the largest. In another scenario, the method to obtain the best evaluation index (the
corresponding s value is the minimum) is also different. However, from the overall data
distribution in Table 5, KDE–LSM has good performance in general. The sum of four
evaluating index values obtained by KDE–LSM from four wind turbines is the smallest.
By calculating the standard deviation of the evaluation indexes obtained by the same
method on four wind turbines, it can be found that the performance of Quartile–MLE is
the best, with a value of 1.29. The standard deviation of the evaluation indexes obtained by
the KDE–LSM on four wind turbines is 1.82. An important piece of information revealed
here is that no method is absolutely the best, which is related to the amount of data and
observation angle.

6. Conclusions

This paper has fully explored various data pre-processing algorithms for power curve
online modeling of wind turbines. The purpose is to find the most suitable algorithm.
To analyze the reliability of various data processing algorithms, the novel energy character-
istic consistency (ECC) is proposed for the first time. The analytical expression between
the power and the wind speed measured by the nacelle anemometer is presented. This
theoretically proves why the wind speed measured by the nacelle anemometer should be
compensated. Moreover, the SCADA data processing is divided into three stages, namely,
preliminary data filtering and compensation, secondary data filtering based on Binning,
and single-valued processing based on Binnig. Different data processing algorithms are
selected at different stages and finally merged into 9 data processing algorithms. Among
these data processing methods, Quartile–AVE, Quartile–LSM, and Quartile–MLE have the
advantage that they do not need to know the data distribution characteristics in stage II
(secondary data filtering). The advantage of PauTa–AVE, PauTa–LSM, and PauTa–MLE is
that if the data obey the approximate positive distribution, the outliers can be effectively
eliminated at stage II. The advantage of KDE–AVE, KDE–LSM, and KDE–MLE is that when
processing data in stage II, it can obtain its data distribution without prior knowledge.
An evaluation method based on the energy characteristic consistency (ECC) of wind tur-
bines is proposed which is one of the main contributions of this paper. This evaluating
index quantitatively compares the reconstructed rotational speed–power curve with the
actual rotational speed–power curve. The influence of sliding mode and the benchmark of
Binning on data processing has been fully analyzed through four quantitative indicators.
Furthermore, four wind turbines are selected to verify the advantages and disadvantages of
the nine data processing methods. The results show that KDE–LSM has good performance
in general. The sum of four evaluating index values obtained by KDE–LSM from four wind
turbines is the smallest. The evaluating index values of the four wind turbines are 6.51 kW,
5.53 kW, 9.23 kW, and 8.96 kW, respectively, and the sum is 30.23 kW.
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