A Novel Adaptive Control Approach for Maximum Power-Point Tracking in Photovoltaic Systems
Abstract
:1. Introduction
- Hill-climbing techniques;
- Optimization based algorithms;
- Artificial intelligence-based techniques; and
- Linear and non-linear techniques.
2. The Proposed Model Reference Adaptive Control Approach
- state variables, represented by the vector x(t), with cardinality ;
- control variables, represented by the vector u(t), with cardinality ;
- algebraic variables, represented by the vector y(t), with cardinality
- The errors with respect to the state variables:
- The errors with respect to the control variables:
3. Application of the MRAC-TCB Approach for MPPT of PV Arrays
3.1. PV System Overview
- PV array
- Regression plane
- Non-inverted Buck-Boost converter
- MRAC-TCB controller
3.2. Generation of the Reference Voltage by the Regression Plane
3.3. Mathematical Modeling of the Non-Inverted Buck-Boost Converter
3.4. Mathematical Derivation of the MRAC-TCB Approach for the Non-Inverted Buck-Boost Converter
3.5. Simulation Results for the Buck-Boost Converter
Test under Conditions of Variable Irradiance
3.6. Comparison with Perturb and Observe and Integral Back-Stepping Controllers
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
DC | Direct current |
FL | Fuzzy logic |
GMPP | Global maximum power-point |
IBS | Integral back-stepping controller |
IC | Incremental conductance |
ISMC | Integral sliding mode control |
LMPP | Local maximum power-point |
MPP | Maximum power-point |
MPPT | Maximum power-point tracking |
MRAC | Model reference adaptive control |
NN | Neural network |
PID | Proportional integral derivative |
P&O | Perturb and observe |
PV | Photovoltaic |
PWM | Pulse width modulation |
SMC | Sliding mode control |
TCB | Torelli control box |
References
- Padmanathan, K.; Govindarajan, U.; Ramachandaramurthy, V.K.; Jeevarathinam, B. Integrating solar photovoltaic energy conversion systems into industrial and commercial electrical energy utilization—A survey. J. Ind. Inf. Integr. 2018, 10, 39–54. [Google Scholar]
- Cavallaro, C.; Musumeci, S.; Santonocito, C.; Pappalardo, M. Smart photovoltaic UPS system for domestic appliances. In Proceedings of the IEEE 2009 International Conference on Clean Electrical Power, Capri, Italy, 9–11 June 2009; pp. 699–704. [Google Scholar]
- Fahmi, M.; Rajkumar, R.; Arelhi, R.; Isa, D. Solar PV system for off-grid electrification in rural area. In Proceedings of the 3rd IET International Conference on Clean Energy and Technology (CEAT) 2014, Kuching, Malaysia, 24–26 November 2014. [Google Scholar]
- Awasthi, A.; Sinha, A.; Singh, A.K.; Veeraganesan, R. Solar PV fed grid integration with energy storage system for electric traction application. In Proceedings of the IEEE 2016 10th International Conference on Intelligent Systems and Control (ISCO), Coimbatore, India, 7–8 January 2016; pp. 1–5. [Google Scholar]
- Liu, N.; Cheng, M. Effectiveness evaluation for a commercialized pv-assisted charging station. Sustainability 2017, 9, 323. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, F.; Hussain, S.S.; Tiwari, P.K.; Goswami, A.K.; Ustun, T.S. Comparative review of energy storage systems, their roles, and impacts on future power systems. IEEE Access 2018, 7, 4555–4585. [Google Scholar] [CrossRef]
- Beriber, D.; Talha, A. MPPT techniques for PV systems. In Proceedings of the IEEE 4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, Turkey, 13–17 May 2013; pp. 1437–1442. [Google Scholar]
- Bakhiyi, B.; Labrèche, F.; Zayed, J. The photovoltaic industry on the path to a sustainable future—Environmental and occupational health issues. Environ. Int. 2014, 73, 224–234. [Google Scholar] [CrossRef]
- Chimento, F.; Musumeci, S.; Raciti, A.; Sapuppo, C.; Di Guardo, M. A control algorithm for power converters in the field of photovoltaic applications. In Proceedings of the IEEE 2007 European Conference on Power Electronics and Applications, Aalborg, Denmark, 2–5 September 2007; pp. 1–9. [Google Scholar]
- Sarvi, M.; Azadian, A. A comprehensive review and classified comparison of MPPT algorithms in PV systems. Energy Syst. 2022, 13, 281–320. [Google Scholar] [CrossRef]
- Derbeli, M.; Napole, C.; Barambones, O.; Sanchez, J.; Calvo, I.; Fernández-Bustamante, P. Maximum power-point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications. Energies 2021, 14, 7806. [Google Scholar] [CrossRef]
- Gil-Antonio, L.; Saldivar-Marquez, M.B.; Portillo-Rodriguez, O. Maximum power-point tracking techniques in photovoltaic systems: A brief review. In Proceedings of the IEEE 2016 13th International Conference on Power Electronics (CIEP), Guanajuato, Mexico, 20–23 June 2016; pp. 317–322. [Google Scholar]
- Koutroulis, E.; Blaabjerg, F. A new technique for tracking the global maximum power-point of PV arrays operating under partial-shading conditions. IEEE J. Photovolt. 2012, 2, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.L.; Low, K.S. A global maximum power-point tracking scheme employing DIRECT search algorithm for photovoltaic systems. IEEE Trans. Ind. Electron. 2010, 57, 3456–3467. [Google Scholar] [CrossRef]
- Lian, K.; Jhang, J.; Tian, I. A maximum power-point tracking method based on perturb-and-observe combined with particle swarm optimization. IEEE J. Photovolt. 2014, 4, 626–633. [Google Scholar] [CrossRef]
- Sundareswaran, K.; Vigneshkumar, V.; Sankar, P.; Simon, S.P.; Nayak, P.S.R.; Palani, S. Development of an improved P&O algorithm assisted through a colony of foraging ants for MPPT in PV system. IEEE Trans. Ind. Inform. 2015, 12, 187–200. [Google Scholar]
- Gupta, A.K.; Pachauri, R.K.; Maity, T.; Chauhan, Y.K.; Mahela, O.P.; Khan, B.; Gupta, P.K. Effect of various incremental conductance MPPT methods on the charging of battery load feed by solar panel. IEEE Access 2021, 9, 90977–90988. [Google Scholar] [CrossRef]
- Ji, Y.H.; Jung, D.Y.; Kim, J.G.; Kim, J.H.; Lee, T.W.; Won, C.Y. A real maximum power-point tracking method for mismatching compensation in PV array under partially shaded conditions. IEEE Trans. Power Electron. 2010, 26, 1001–1009. [Google Scholar] [CrossRef]
- Mateo Romero, H.F.; González Rebollo, M.Á.; Cardeñoso-Payo, V.; Alonso Gómez, V.; Redondo Plaza, A.; Moyo, R.T.; Hernández-Callejo, L. Applications of artificial intelligence to photovoltaic systems: A review. Appl. Sci. 2022, 12, 10056. [Google Scholar] [CrossRef]
- Kermadi, M.; Salam, Z.; Eltamaly, A.M.; Ahmed, J.; Mekhilef, S.; Larbes, C.; Berkouk, E.M. Recent developments of MPPT techniques for PV systems under partial shading conditions: A critical review and performance evaluation. IET Renew. Power Gener. 2020, 14, 3401–3417. [Google Scholar] [CrossRef]
- Podder, A.K.; Roy, N.K.; Pota, H.R. MPPT methods for solar PV systems: A critical review based on tracking nature. IET Renew. Power Gener. 2019, 13, 1615–1632. [Google Scholar] [CrossRef]
- Khan, Z.A.; Khan, L.; Ahmad, S.; Mumtaz, S.; Jafar, M.; Khan, Q. RBF neural network based backstepping terminal sliding mode MPPT control technique for PV system. PLoS ONE 2021, 16, e0249705. [Google Scholar] [CrossRef] [PubMed]
- Eltamaly, A.M. A novel musical chairs algorithm applied for MPPT of PV systems. Renew. Sustain. Energy Rev. 2021, 146, 111135. [Google Scholar] [CrossRef]
- Mingyu, L.; Xinhong, C.; Bingyu, C. Random inertia weight PSO based MPPT for Solar PV under Partial Shaded Condition. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 585, p. 012028. [Google Scholar]
- Abdellatif, W.S.; Mohamed, M.S.; Barakat, S.; Brisha, A. A Fuzzy Logic Controller Based MPPT Technique for Photovoltaic Generation System. Int. J. Electr. Eng. Inform. 2021, 13, 394–417. [Google Scholar]
- Shinde, A.B.; Deshpande, A.S.; Unde, S. Design and Simulation of Self-tuning PID controller with MPPT for Solar Array using MATLAB/Simulink. In Proceedings of the 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, 3–5 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Ghosh, A.; Malla, S.G.; Bhende, C.N. Small-signal modelling and control of photovoltaic based water pumping system. ISA Trans. 2015, 57, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, M.A.; Ahmad, I.; Munir, M.F. Double integral sliding mode control of continuous gain four quadrant quasi-Z-source converter. IEEE Access 2018, 6, 77785–77795. [Google Scholar] [CrossRef]
- Armghan, H.; Ahmad, I.; Armghan, A.; Khan, S.; Arsalan, M. Backstepping based non-linear control for maximum power-point tracking in photovoltaic system. Solar Energy 2018, 159, 134–141. [Google Scholar]
- Arsalan, M.; Iftikhar, R.; Ahmad, I.; Hasan, A.; Sabahat, K.; Javeria, A. MPPT for photovoltaic system using nonlinear backstepping controller with integral action. Solar Energy 2018, 170, 192–200. [Google Scholar] [CrossRef]
- Alsumiri, M.; Jiang, L. Sliding Mode Maximum power-point Tracking Controller for Photovoltaic Energy Conversion System with a SEPIC Converter. In Proceedings of the Eighth Saudi Students Conference in the UK; World Scientific: Singapore, 2016; pp. 463–475. [Google Scholar]
- Tan, S.C.; Lai, Y.M.; Chi, K.T.; Martínez-Salamero, L.; Wu, C.K. A fast-response sliding-mode controller for boost-type converters with a wide range of operating conditions. IEEE Trans. Ind. Electron. 2007, 54, 3276–3286. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.C.; Lai, Y. Constant-frequency reduced-state sliding mode current controller for Cuk converters. IET Power Electron. 2008, 1, 466–477. [Google Scholar] [CrossRef]
- Yang, T.; Sun, N.; Fang, Y.; Xin, X.; Chen, H. New adaptive control methods for n-Link robot manipulators with online gravity compensation: Design and experiments. IEEE Trans. Ind. Electron. 2021, 69, 539–548. [Google Scholar] [CrossRef]
- Sun, L. Helicopter Hovering Control Design based on Model Reference Adaptive Method. In Proceedings of the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 March 2019; pp. 1621–1624. [Google Scholar]
- Morse, W.; Ossman, K. Model following reconfigurable flight control system for the AFTI/F-16. J. Guid. Control Dyn. 1990, 13, 969–976. [Google Scholar] [CrossRef]
- Safamehr, H.; Najafabadi, T.A.; Salmasi, F.R. Adaptive Control of Grid-Connected Inverters with Nonlinear LC Filters. IEEE Trans. Power Electron. 2023, 38, 1562–1570. [Google Scholar] [CrossRef]
- Torelli, F.; Vaccaro, A. A generalized computing paradigm based on artificial dynamic models for mathematical programming. Soft Comput. 2014, 18, 1561–1573. [Google Scholar] [CrossRef]
- Xie, N.; Torelli, F.; Bompard, E.; Vaccaro, A. Dynamic computing paradigm for comprehensive power flow analysis. IET Gener. Transm. Distrib. 2013, 7, 832–842. [Google Scholar] [CrossRef]
- Torelli, F.; Vaccaro, A.; Xie, N. A novel optimal power flow formulation based on the Lyapunov theory. IEEE Trans. Power Syst. 2013, 28, 4405–4415. [Google Scholar] [CrossRef]
- Torelli, F.; Montegiglio, P.; De Bonis, A.; Catalão, J.P.; Chicco, G.; Mazza, A. A new approach for solving DAE systems applied to distribution networks. In Proceedings of the IEEE 2014 49th International Universities Power Engineering Conference (UPEC), Cluj-Napoca, Romania, 22–25 September 2014; pp. 1–6. [Google Scholar]
- Qureshi, M.A.; Torelli, F.; Mazza, A.; Chicco, G. Application of artificial dynamics to represent non-isolated single-input multiple-output DC–DC converters with averaged models. In Proceedings of the IEEE 2021 56th International Universities Power Engineering Conference (UPEC), Virtual, 31 August–3 September 2021; pp. 1–6. [Google Scholar]
- Djaferis, T.E.; Schick, I.C. System Theory: Modeling, Analysis and Control; Springer: New York, NY, USA, 2012. [Google Scholar]
- Iftikhar, R.; Ahmad, I.; Arsalan, M.; Naz, N.; Ali, N.; Armghan, H. MPPT for photovoltaic system using nonlinear controller. Int. J. Photoenergy 2018, 2018, 6979723. [Google Scholar] [CrossRef] [Green Version]
- Başoğlu, M.E.; Çakır, B. Comparisons of MPPT performances of isolated and non-isolated DC–DC converters by using a new approach. Renew. Sustain. Energy Rev. 2016, 60, 1100–1113. [Google Scholar] [CrossRef]
- Zurbriggen, I.G.; Ordonez, M. PV Energy Harvesting Under Extremely Fast Changing Irradiance: State-Plane Direct MPPT. IEEE Trans. Ind. Electron. 2019, 66, 1852–1861. [Google Scholar] [CrossRef]
- Marinkov, S.; de Jager, B.; Steinbuch, M. Extremum seeking control with data-based disturbance feedforward. In Proceedings of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014; pp. 3627–3632. [Google Scholar] [CrossRef]
Description of Parameters | Nominal Value |
---|---|
PV modules per string | 10 |
Parallel strings | 1 |
Maximum Power | 213.15 W |
Cells per module | 72 |
Voltage at open circuit | 363 V |
Current at short circuit | 7.84 A |
Voltage at Maximum Power | 290 V |
Current at Maximum Power | 7.35 A |
Description of Parameters | Nominal Value |
---|---|
Capacitance, | 67 F |
Capacitance, | 480 F |
Inductance, L | 11 mH |
Resistance, R | 20 |
Switching frequency, | 100 kHz |
TCB gain, K |
Method | RT (ms) | ST 5% (ms) | ST 2% (ms) | Overshoot (V) | MPPT Efficiency |
---|---|---|---|---|---|
P&O | 2.3 | 58.2 | NA | 86.0 | 94.8 |
IBS | 2.1 | 2.8 | 2.7 | 13.3 | 97.4 |
MRAC-TCB | 2.3 | 2.5 | 3.0 | 6.3 | 96.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qureshi, M.A.; Torelli, F.; Musumeci, S.; Reatti, A.; Mazza, A.; Chicco, G. A Novel Adaptive Control Approach for Maximum Power-Point Tracking in Photovoltaic Systems. Energies 2023, 16, 2782. https://doi.org/10.3390/en16062782
Qureshi MA, Torelli F, Musumeci S, Reatti A, Mazza A, Chicco G. A Novel Adaptive Control Approach for Maximum Power-Point Tracking in Photovoltaic Systems. Energies. 2023; 16(6):2782. https://doi.org/10.3390/en16062782
Chicago/Turabian StyleQureshi, Muhammad Ahmed, Francesco Torelli, Salvatore Musumeci, Alberto Reatti, Andrea Mazza, and Gianfranco Chicco. 2023. "A Novel Adaptive Control Approach for Maximum Power-Point Tracking in Photovoltaic Systems" Energies 16, no. 6: 2782. https://doi.org/10.3390/en16062782
APA StyleQureshi, M. A., Torelli, F., Musumeci, S., Reatti, A., Mazza, A., & Chicco, G. (2023). A Novel Adaptive Control Approach for Maximum Power-Point Tracking in Photovoltaic Systems. Energies, 16(6), 2782. https://doi.org/10.3390/en16062782