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Abstract: Incorporating photovoltaic (PV) inverters in power distribution systems via static syn-
chronous compensators (PV-STATCOM) during the nighttime has lately been described as a solution
to improve network performance. Hunter prey optimization (HPO) is introduced in this study for
efficient PV-STATCOM device allocation in distribution systems. HPO generates numerous scenar-
ios for how animals could act when hunting, some of which have been expanded into stochastic
optimization. The PV-STATCOM device allocation issue in distribution networks is structured to si-
multaneously minimize the electrical energy losses and improve the voltage profile while accounting
for variable 24 h loadings. The impacts of varying the number of installed PV-STATCOM devices
are investigated in distribution systems. It is tested on two IEEE 33-node and 69-node distribution
networks. The effectiveness of the proposed HPO is demonstrated in comparison to the differential
evolution (DE) algorithm, particle swarm optimization (PSO), artificial rabbits algorithm (ARA), and
golden search optimizer (GSO). The simulation results demonstrate the efficiency of the proposed
HPO in adequately allocating the PV-STATCOM devices in distribution systems. For the IEEE 33-
node distribution network, the energy losses are considerably decreased by 57.77%, and the voltages
variance sum is significantly reduced by 42.84%. The energy losses in the IEEE 69-node distribution
network decreased by 57.89%, while voltage variations are reduced by 44.69%. Additionally, the
suggested HPO is highly consistent than the DE, PSO, ARA, and GSO. Furthermore, throughout the
day, the voltage profile at all distribution nodes surpasses the minimum requirement of 95%.

Keywords: allocation of PV-STATCOM devices; distribution systems; energy losses minimization;
hunter-prey-based algorithm

1. Introduction

The use of fossil fuels has been recognized as one of the main causes of climate change
for many years. This has led, among other effects, to global warming, which is expected
to reach 1.5 degrees Celsius by 2030 [1]. With the global depletion of fossil fuels and the
deregulation of the energy sectors, the integrating technology of the distributed generator
(DG) has gained significant attention during the last decade [2]. Modern electrical power
systems have demanded the creation of new solutions and services to fulfill the increased
demand for electrical energy caused by population expansion, technological advancements,
and the pursuit of quality of life [3]. DGs, particularly solar-distributed generation, have
been progressively supporting active power generation in distribution networks [2]. The
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use of DGs has a wide range of positive benefits for power systems, particularly in distribu-
tion systems with large power supply distances and a fragile structure of the network. The
optimal placement of DGs is critical to these favorable benefits. Improper DG placement
and sizing always result in low utilization of DG investment. In extreme cases, system
indices may be worse following DG integration. Because of the fast rise of DG penetra-
tion in distribution networks, studies on appropriate DG siting and size are becoming
increasingly important. In [4], three advanced systems—the operator training simulator,
the outage management system, and the real-time operation and control system—as well
as their design and primary function modules have been studied, with uses in China.
In [5], a data-driven online algorithm for voltage control issues has been handled with an
interior point solution and recursive kernel regression. In order to accomplish security and
cost-effective operation, a cluster of energy hubs in an event-triggered distributed energy
management system has been described in [6].

In power systems, active power needs to be backed up by reactive power to meet
the needs of the power system [7]. The power transfer capability of the transmission line
is growing as the energy demand grows [8]. In addition, distorting or sensitive loads in
power networks are accountable for power quality problems such as low power factor,
voltage fluctuations, harmonics, and high reactive power demand [9]. Meeting reactive
power demand has been a great concern. The majority of distribution system reactive
power demands may be supplied by deploying flexible resources based on grid-connected
inverters. Flexible AC transmission devices (FACTS) play an important role among reactive
compensation devices in increasing the available transfer capability of the transmission line
and in regulating the reactive power flow in the power system, which affects the fluctuations
and stability of the system voltage [7,8]. One of the most popular FACTs in modern power
systems is the static synchronous compensator (STATCOM), which is essentially a shunt
compensator. The STATCOM has a number of applications for power system management
and control. A photovoltaic inverter acting as a FACT known as PV-STATCOM performs the
functions of a STATCOM controller, including voltage regulation, PF improvement, current
harmonic suppression, and reactive power compensation. To enhance the power quality
during the day and night, it preserves the DC capacitor voltage stable and consistently
injects or absorbs active, reactive power into the proposed system at the point of common
connection. Additionally, it can be utilized to balance power fluctuations in the proposed
grid-connected system by performing charging and discharging operations. The technical,
financial, and environmental advantages of PV-STATCOM can be maximized with proper
allocation and sizing. Furthermore, effective allocation and sizing can enhance power
system dependability and quality, minimize capital and operating costs, and lessen the
negative environmental consequences of centralized power generation.

The literature has examined DG siting and sizing in distribution networks from several
perspectives. Many studies have targeted different planning scenarios [1,2]. However,
optimization models of DG planning are always solved using mathematical approaches and
intelligence search strategies. Due to optimization model complexity and non-convexity,
mathematical approaches are better at finding global optimum solutions [9]. Intelligence
search strategies are simple to implement and typically competent in solving complex
optimization models. However, they are time-consuming and sometimes provide local
optimal solutions instead of global optimal solutions. Utilized in [1-3,7-12], they include
the differential evolution (DE) algorithm, artificial rabbits algorithm (ARA), golden search
optimizer (GSO), genetic algorithm (GA), non-dominated sorting genetic algorithm (NSGA),
particle swarm optimization (PSO), genetic algorithm—particle swarm optimization hybrid
algorithm (GA-PSO), honey bee mating optimization (HBMO), and ant colony optimization
(ACO). Recently, Reference [12] developed a novel hunter—prey optimization (HPO) strategy,
an efficient population-based method. The HPO approach is motivated by predatory animal
behavior as well as prey species. Animal hunting behavior can take many forms, some of
which have been optimized through combinatorial methods. In place of the hypothetical
situation that is utilized by the other methods, the HPO method makes use of a unique model
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instead. Most research on optimal DG location and sizing in distribution networks treats
PV as a pure active power source. Only a few pieces of literature [13,14] have addressed
PV reactive output in steady-state voltage profiles. With the new trending technology in
PVSTATCOM [15], PV reactive power production is fast and responsive, which greatly
influences voltage recovery efficiency under voltage sag or post-fault circumstances [16].
Thus, PV-rapid STATCOM'’s reaction is crucial to DGs” appropriate siting and sizing.

A PV-STATCOM is a solar system that includes a STATCOM and is employed to regu-
late the voltage of an electrical distribution network that comprises solar power sources [17].
The PV inverters can execute that function throughout the night when there is no real power
production by the PV modules. The voltage at the point of common coupling (PCC) is
controlled by the reactive power delivered by STATCOM [18]. Voltage control is used over
the day to greatly improve the system’s performance [19]. To increase transient stability, the
PV-STATCOM systems were adopted as voltage controls combined with supplementary
damping controllers [20]. The findings show that PV-STATCOMs are appropriate, and they
greatly raise the stably transmitted power limits [7]. PV-STATCOM, or the use of PV systems
such as STATCOM, was developed to improve power transfer capacities throughout the day
and night [21,22]. In [21], transient overvoltage’s and steady-state voltages were regulated
via PV-STATCOM in a real-world distribution system. PV-STATCOMs were used in [22] to
improve the operation of distribution networks wherein voltage regulation under essential
operational demands may be supplied. In that investigation, STATCOM was controlled by
triggering a smart PV inverter to support a dynamically reactive power compensation.

In [23], a unique artificial rabbits” algorithm (ARA) influenced by wild rabbit survival
tactics was designed to simultaneously reduce energy losses and voltage profile. Although
the study in [23] indicates considerable benefits in terms of lowering energy power losses
and improving voltage profiles, it ignores investigating the impact of the number of in-
stalled PV-STATCOM s on distribution system performance. In general, the PV-STATCOM
may substantially aid in suitable incorporation in order to solve a variety of issues in power
systems [24]. Furthermore, PV-STATCOM's rapid reactive power management focuses on
improving the dynamical performance of the IEEE 33-bus distribution network in terms
of voltage recovery processes during post-fault circumstances or voltage sag [2]. More-
over, considering the grid-connected mode of operation under abnormal grid situations,
Reference [25] investigated the PV-STATCOM for providing low voltage ride-through
capacity and increasing power quality with an active and reactive injection of powers to
boost the whole system’s voltages.

There has been significant advancement at the level of optimization algorithms, partic-
ularly in the efficient use of these techniques in electricity distribution networks. In order
to reduce power loss and enhance the current and voltage profile in distribution networks,
a biologically influenced immune method for DSTATCOM has been developed [26]. The
optimum capacitor location issue in a radial delivery structure has been suggested in [27]
and solved using a flower pollination method that simulates the pollination procedure
of flowers. Moreover, a mixed fuzzy technique and flower pollination method have been
used [28] to reconfigure the distribution network in order to improve the performance of
the radial distribution feeders. In order to reduce the total yearly costs and the overall
network losses, particle swarm optimization has been used to handle the photovoltaic
storage segment planning issue [29]. In [30], an intelligent supply-demand algorithm was
implemented to identify the unknown parameters of the storage system.

Recently, a novel hunter-prey optimization (HPO) has been proposed by Iraj
Naruei et al. in [12], which is a population-based efficient algorithm. HPO draws in-
spiration from the behavior of prey species, such as stag and gazelle, as well as predator
creatures, such as lions, leopards, and wolves. There are several possibilities for how
animals could behave during hunting, and a number of them have been developed into
combinatorial optimization [10]. In contrast to the scenario employed by the other methods,
a unique model is utilized in HPO. A predator strikes a victim that travels far from their
group in the suggested approach, which involves prey and predator populations. The
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hunter positions himself closer to this distant prey, and the animal positions himself farther
away from danger. The search agent’s station, which had the highest fitness value, was
thought to be a secure location. Given the distinctive characteristics of HPO, this paper’s
focus is on the optimal allocation of PV-STATCOM for energy loss minimization in distri-
bution systems. The suggested HPO is used to minimize daily energy losses, and the daily
voltage profile when varied 24 h loadings are considered. Its applicability is demonstrated
using typical IEEE 33-node and 69-node distribution networks. The following are the
important contributions of the paper:

e A revolutionary HPO for PV-STATCOM allocation in distribution networks has
been developed.

e  The goal function and restrictions have considered daily energy losses and voltage
profiles for various 24 h loadings.

e  The impacts of varying the number of installed PV-STATCOM devices are investigated
in distribution systems.

e  The suggested HPO is more effective than the differential evolution (DE) algorithm,
PSO, ARA, and golden search optimizer (GSO) [11] in minimizing energy losses and
voltage profile variances while maintaining all operational requirements.

The following are the next portions of the paper. Section 2 emphasizes the presented
form of the PV-STATCOM allocation problem in distribution feeders, whereas Section 3
demonstrates the proposed framework of the innovative HPO. Furthermore, Section 4 elab-
orates on the simulation findings of the created HPO in solving the presented formulated
problem considering two IEEE distribution feeders, while Section 5 develops on the work’s
concluding remarks.

2. PV-STATCOM Allocation Problem in Distribution Feeders

The minimizing of the daily voltage variations and energy losses must be considered
when allocating PV-STATCOM in distribution feeders. As in Equation (1), both goals are
addressed in a single objective form (F) to be minimized.

24 (N NLine
FzMin(Z <2|1—Vk|+ ) Ifl-meLim>>. 1)
hr=1 \k=1 Line=1
where, Nj, indicates the number of nodes; Vj refers to the voltage value at every distribution
bus (k); Npi,, regards the number of distribution lines in the system; I;,,, refers to the
current flow in every line (Line); R}, symbolizes the resistance of every line (Line).
From Equation (1), the presented model is concerned with the 24 h loading variations
per day where the first term handles the voltage deviation minimization, and the second
term addresses the energy losses. Furthermore, the voltages at each distribution node and
the current flow across each distribution branch must be kept within acceptable limits at all
hours, as shown below [31]:

(Vimin < Vi < Vigmax)iy—123.....24; k=1:N, 2)

(ILine < ILine,mﬂx)hr:1,2,3......24; Line=1:Npipe ®)

where Vy i, and Vi .., are the minimum and upper bounds of the voltage nodes, giving a
5% allowable range; I} iy max represents the distribution branch’s thermal capacity.

The real component of the inverter current governs the DC voltage in the PV-STATCOM
devices for voltage regulation at the PCC, which might be provided by PV modules during
real or reactive power injections. The PV-STATCOM’s capacity to input active power
throughout the day, as well as its simultaneous potential to inject/absorb reactive power
through the day and night, is considered in this study. The overall balance restrictions are
adjusted every hour in an effort to incorporate the PV-STATCOM system into the electrical
distribution network. As a result, the active and reactive power balancing constraints may
be modeled as follows:
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Npys Ny
(PSub + Z PPVSj = Plosses + Z Pdi) 4)
=1 i=1 hr=123.....24
Npys Np
<Q5ub + 2 QPVSj = Qlosses + Z le> @)
j=1 i=1 hr=12,3.....24

where, Pg,;, and Qg,;, are, respectively, the overall active and reactive power provided by
the substation; Ppys; and Qpys; are, respectively, the actual and reactive power injected via
PV-STATCOM that is placed at node (j); Npys indicates the total number of PV-STATCOM
units established in the feeder; Pd; and Qd; are, respectively, actual and reactive power
consumption at node (i); Plosses and Qlosses are, respectively, the real and reactive system
losses; hr denotes each hour of the day’s horizon.

In that regard, the PV-STATCOM'’s capacity to concurrently consume and inject re-
active power throughout the daytime and night and its ability to supply active power
throughout the day is considered. As a result, the actual and reactive power injections
from PV-STATCOM to be placed at node (j) must be kept within the permissible bounds
as follows:

(0 < Ppys,; < PPVS,max,j)hr:Lz,?, 24; j=1:Npys (6)

(0 < Qpvs,; < Qpvsmax)py123... 24 i~ 1:Npys @)

where, Ppys max and Qpys max are, respectively, the overall active and reactive power of the
candidate size.

Furthermore, the penetration limitation (Kp) of PV renewable DERs resources must
be addressed not to exceed 60% of the overall active power requirement in the feeder, as
shown in [32]:

Npys Np
PenConstmint = Z PPVS,k —Kp x Z de <0 (8)
k=1 =1 hr=1,2,3......24; maxpeakdemand

In order to effectively handle the inequality constraints of Equations (2), (3), and (8),
the objective function illustrated in Equation (1) should be modified to higher values
by adding some penalty terms for the violations in one or more of these constraints too
as follows:

24 [ Ny NLine
F=Min{ Y (Y 1-Vil+ Y Ifi.. X Riine | | + Penalty. ©9)

hr=1 \k=1 Line=1

Penalty = Kz X Viol penetration + Kp X Violpine + Kc X Violy yin + Kp X Violy ey (10)

where, K4, Kp, K¢, and Kp represent penalty factors with extremely high values.

. _ PenConstmint if PenConstmint >0 .
VIOprnetration - { 0’ else ’ (11)
ViOZLine _ { BnaX(ILine) - ILine,quasz lf ILine,max < ILine . (12)
ViOIV,min — { g)/lk,min - mln(vk)e;é(e Vk,min > Vk ; (13)

maX(Vk) - Vk,max if Vk,max < Vk

Violy max = { 0, olse (14)
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3. Proposed HPO for PV-STATCOM Allocation in Distribution Systems

In the proposed HPO, prey usually swarms when a hunter goes in search of it; as a
result, the hunter chooses prey that is located far away from the swarm. Once the hunter
has located its target, he chases and attacks it. The prey searches for food while also fleeing
a predator threat and finding a safe refuge. This safe area is considered the best prey
location based on a fitness function. . N .

The initial population could be generated at random, (H) = {Hy, Hy, ..., H,}, and all
population representatives could subsequently be used to determine the objective function

=

(O) ={01,0;y,...,04}. The population in the search area is regulated and divided using
a number of rules and strategies that were motivated by the suggested algorithm.

The suggested algorithm’s rules are applied for each iteration to update each popu-
lation member’s location, which is then evaluated by the fitness function. The solutions
grow finer as the process is continued. Each member of the starting population is assigned,
based on Equation (15), to a random location inside the search area, while Equation (16)
represents the bottom and upper limits of the search area.

H; = 1b + [ub — Ib] x rand(1,d). (15)

ub = [uby,uby, ..., uby),1b = [lby,1by,. .., 1b,] (16)

where H; refers to the position of the hunter or prey, Ib and ub indicate the lower and upper
limits of the considered variables, rand(1,d) is randomized dimensional numbers that are
followed by uniformly distributed functions within the range [0,1], and d regards their
whole number.

Following the generation of the original population and the determination of each
agent’s location, the fitness of each solution member is assessed O; = f (?) The search
mechanism is based on two major foundations of exploration and exploitation. The algo-
rithm'’s propensity for very chaotic behaviors, which frequently result in solutions changing,
is described in exploration. The search space is thus investigated to determine its very
promising parts in light of the significant variances in the solutions. After potential locations
have been found, the operation of exploitation involves minimizing random behaviors
in order for the algorithm to view around and within the promising areas. Equation (17)
allows for the updating of the hunter location for the hunter searching technique:

Hl',]'(t + 1) = Hi,]‘(t) + 0.5 x [(2(1 — C)Z]l(]) — Hi’j(t)) — Hi,]‘(t) + ZCZPpos(/‘) . (17)

where H(t) and H(t + 1) denote the hunter’s previous and current positions, respectively,
Z denotes an adaptive quantity, Ppos depicts the prey position, and u specifies the mean of
all positions as depicted in Equation (18):

—
Pz=R; <C; IDT = (Pz==0);

5 (18)
Z =Ry®IDT + R3® (% IDT).

where Pz depicts a randomized vector comprising numbers between 0 and 1 that is compa-
rable to the number of the decision variables, Ry and Rj3 represent arbitrary vectors with
numbers in the [0,1] range, and R; represents a randomized integer within the same range.
IDT also represents the index numbers of the vector R; that satisfies the condition (Pz = 0).
C shows the balancing parameter between exploitation and exploration, and its value
decreases from 1 to 0.02 throughout the course of repetitions. The following mathematical
formulation of this parameter C is possible:

C=1—(0.98 x t/MaxlIt). (19)

where t and MaxIt stand for the maximum and current iteration rates, correspondingly.
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Hirj<t + 1) = { Xpos +CZ COS(27TR4) X (Xpos - Hi(t)) else

In order to first compute the mean of all positions (y) in accordance with Equation (20),
the prey position (Ppos) is determined.

RS e
p=n"'x)Y H; (20)
i=1

The distance is determined using the Euclidean distance formula as shown in
Equation (21):

(21)

The maximum distance from the positions’ mean of the search agent is considered as
prey (Ppos) as illustrated in Equation (22):

—

—
Ppos = H;li is index of Max (end)sort(Deyc). (22)

When the hunter captures the prey in accordance with the hunting case, the prey
dies, and the hunter subsequently searches for a different prey. To solve this problem, a
diminishing mechanism is taken into account, as shown in Equation (23):

kbest = round(n x C). (23)

Therefore, the prey position may be determined using Equation (22) and adjusted to
yield Equation (24):

— —

P pos = H;iis sorted Deyc(Kbest). @4

The value of Kbest at the beginning of the algorithm is equal to N. Therefore, the final
search agent, which is furthest away from the average location of the group (), is chosen as
prey and assaulted by the hunter. At the conclusion of the process, the Kbest value equals
the first search agent (the search agent that is situated the closest to the average position of
the search agents (p)). It should be emphasized that each iteration’s ranking of the search
agents is based on their distance from their average position (y). Prey tries to flee and find a
safe place after being attacked. Since it gives the prey a chance of surviving, the most secure
posture is thought to determine the ideal global position, whereas the hunter would choose
substitute prey. As shown in Equation (25), the prey location could be changed as follows:

Hl',]'(t +1)=X () T CZ cos(2mRy) X (Xpos(j) - H[//‘(i’)). (25)

pos
where X, is the global best solution with the minimum fitness value; Ry is a randomized
number with a value between [—1,1]. The cosine function and its input parameters enable
the positioning of the forthcoming prey at various globally optimized radials and angles.
Consequently, the effectiveness of the exploiting developmental stage can be enhanced.
Based on the above, Equations (17) and (25) are used in HPO to choose the hunter and prey,
as seen in the following Equation:

xi(#) + 0.5[(2CZPpos — Hi(t)) + (2(1 — €)Zpu — Hi(1))] if Rs < B 26)

where f designates a regulated parameter, where 0.1 is set as its value, an arbitrary number
is represented by the symbol (Rs), and its value is between [0,1]. If R5 is smaller than j, the
search agent becomes a hunting predator, and as a result, its following position is modified,
as shown in the first row in Equation (12). Nevertheless, if Rs5 is more than j, the search
agent will fall victim, and as a result, the search agent’s position is adjusted, as shown in
the second row in Equation (12). In Figure 1, the HPO's flowchart is shown.
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Set n, MaxIt, p, Ib and ub

v
Apply equation (15) for initialization, £ =0
v
Evaluate the fitness for each search agent and Extract Ppos
v
t=t+1 |«

¥

Evaluate Z using equation (18)
v

Update C using equation (19)
v

Randomly generate a Rs

v

Update the prey locations (H) using equation (26)

Yes

Are new locations within the permissible limits?

Set the violated
variable at the
nearest limit

Evaluate the fitness of the new locations [«

)

Update Xj.s

> t > Maxit?
]
Optimal Solution

Figure 1. Main steps of the proposed HPO.

4. Simulation Results

The proposed HPO is validated on IEEE 33-node and 69-node distribution feeders.
The first feeder includes 33 nodes and 32 distribution lines. Figure 2 depicts the related
system one-line schematic with a typical voltage of 12.66 kV. The total active (MW), reactive
(MVAr), and apparent loads (MVA) for the nominal loading state are, respectively, 3.715,
2.3, and 4.369 [33]. The second feeder includes 69 nodes and 68 distribution lines. Figure 3
depicts the regarding networked one-line graph with a typical voltage of 12.66 kV. The
total system loads are 3.802 MW and 2.694 MVAr, respectively [34]. The maximum reactive
power limit of PV-STATCOM is £1000 kVAr.
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Figure 2. IEEE 33-distribution system.
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Figure 3. IEEE 69-distribution system.

During the simulations, every load’s power factor remains constant, and the distribu-
tion nodes are supposed to have the same loading curve, as shown in Figure 4.
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Figure 4. Loading profile per hour as a percent of the nominal condition [35].

4.1. IEEE 33-Distribution Feeder

4.1.1. Comparative Assessment of PV-STATCOM Allocations in IEEE
33-Distribution Feeder

The suggested HPO is used in contrast to ARA, PSO, GSO, and DE for PV-STATCOM
allocation on the first examined feeder to reduce energy losses and voltage deviation
compromise. The total number of PV-STATCOM units is limited to three. Table 1 shows
the outcomes of the HPO, ARA, PSO, GSO, and DE for PV-STATCOM allocation. This
table displays the PV-STATCOM allocations where their installed buses acquired by the
proposed HPO are 11, 26, and 30, and their associated PV sizes are 840, 767, and 844 kW,
respectively, and their corresponding STATCOM sizes are the same as £1000 kVAr at the
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three locations. From this table, the proposed HPO achieves the least compromise of the
energy losses and voltage deviations by reducing it from 10,505.6 to 1534.093 with an
improvement percentage of 85.39%. In the second rank, the ARA achieves 1643.77, DE
comes third with 2132.16, and GSO comes fourthly with 2387.5. PSO presents the worst
objective with 2909.081. Figure 5 shows their relevant convergence characteristics. As
shown, the proposed HPO derives excellent convergence characteristics compared to all
other applied algorithms in obtaining the least compromise of energy losses and voltage

deviations. The proposed HPO shows a faster approach to the lower objective values very
early at the first 20% of the iterations.

8450.00
R—— el
7450.00
DE
6450.00 ARO
&- e
E 5450.00 )
8- —g=—- - == HBO
o L 1
2 1 1'. \
= [ | i
O 4450.00 " \ \
1 i
\ LN“ k
3450.00 | | \
bl
| i
T
~
h‘ o
‘---------‘----- -
145D-m LK R N R R R R N B B e
= b o 00 e = b~ D o WD Sl 0 e = B D
FNSEBRYSIRIMEEIRASIERRR
Iterations
Figure 5. Convergence properties of the applied algorithms for IEEE 33-distribution feeder.
Table 1. PV-STATCOM allocations for IEEE 33-distribution feeder.
Items Initial ARA DE PSO GSO Proposed HPO
- 7 31 2 10 11
Installed nodes. - 14 15 10 32 26
- 31 8 28 33 30
- 652 934 451 1000 840
PV-STATCOM PV Size - 969 448 1000 451 767
Devices (kW)
- 830 716 1000 1000 844
- +862 +953 +1000 41000 +1000
STATCOM Size - +769 4965 +£1000 1000 +£1000
(kVAr)
- +838 +842 +1000 41000 +1000
Objective 10,505.6 1643.774  2132.1595  2909.081 2387.5 1534.093
Ranking - Second Third Worst Fourth Best
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Comparing the two best algorithms of HPO and ARA, their related hourly power
losses are depicted versus the initial case in Figure 6. As can be seen, the proposed HPO
shows a great reduction in power losses at all hours compared to the initial case. The
energy losses are considerably decreased from 3557.25 kW /day to 1513.697 kW /day by
57.77% using the HPO compared to the initial case. The proposed HPO shows a significant
reduction in power losses at most hours compared to ARA. The energy losses are decreased
from 1623.56 kW /day to 1513.697 kW /day by 6.67% using the HPO compared to ARA.
Additionally, the related hourly voltage deviations of HPO compared to ARA and the initial
case are depicted in Figure 7. Both ARA and HPO obtain very close benefits of 20.21 and
20.38 PU/day, respectively. As shown, the voltage deviations are considerably decreased
from 35.643 PU/day to 20.21 PU/day by 42.37% using the HPO compared to the initial case.

250
e Initial
200 g
o PV-STATCOM_ARA |
Z150 PV-STATCOM_HPO | -
= :
w
w K
3 100
0 I Il I kb
8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour

Figure 6. Hourly power losses based on the proposed HPO and ARA versus the initial case for IEEE
33-distribution feeder.

4.1.2. Impacts of Varying the Number of Installed PV-STATCOM Devices in IEEE
33-Distribution Feeder

The impacts of varying the number of installed PV-STATCOM devices are investigated
in distribution systems. The proposed HPO is applied considering one, two, three, and
four devices installation, and the regarding locations, sizes, and benefits are tabulated in
Table 2. In this regard, Figure 8 shows the convergence properties of HPO with varying the
number of installed devices for the IEEE 33-distribution feeder. As shown, the considered
objective is reduced from 10,505.6 to 4424.035, 1549.66, 1534.093, and 1520.24, respectively
considering one, two, three, and four PV-STATCOM devices installation.

Based on these varying numbers of PV-STATCOM devices installation, Figures 9 and 10
describe the hourly power losses and voltage deviations. These figures illustrate the benefi-
cial achievements in reducing the losses and voltage deviations for each loading hour with
the increased number of PV-STATCOM devices installed. It can also be noticed that two,
three, or four PV-STATCOM devices provide approximated benefits. On the other side, one
PV-STATCOM is insufficient to achieve the operational constraints, and therefore, the related
objective is considerably high. To show that, Figure 11 depicts the hourly minimum voltage
with varying the number of installed devices. As shown, the minimum voltage, in the
case of considering one PV-STATCOM device, causes undervoltage through the hours 9:23,
whereas it improves the minimum voltage all over the day. On the contrary, considering
two, three, and four PV-STATCOM devices, the minimum voltage is improved throughout
the day and successfully exceeds the lowest threshold.
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Figure 7. Hourly voltage deviations based on the proposed HPO versus the initial case (a) and

ARA (b) for IEEE 33-distribution feeder.



Energies 2023, 16, 2790

13 of 20

Table 2. PV-STATCOM allocations with varying the number

distribution feeder.

of installed devices for IEEE 33-

Items Initial NPVS =1 NPVS =2 NPVS =3 NPVS =4
- 8 30 11 4
- - 12 26 30
Installed nodes.
- - - 30 12
- - - - 2
- 1000 1000 840 446
PV-STATCOM Devices PV Size . . 1000 767 1000
(kW) - - - 844 995
- - - - 10
- +1000 +1000 +1000 +1000
- - +948 +1000 +1000
STATCOM Size (kVAr)
- - - +1000 +963
- - - - +1000
Objective 10,505.6 4424.035 1549.66 1534.093 1520.24
450
|
:‘I
2950 | === NPV5-=2
l'i
I L N N ] —
4450 |y NFV5=3
!
[
1 NPVS=
3950 !
v 0!
- - !
32 ]
T 3450 | 1
o= I i
(o] '
2950 " "
g !
i |
2450 |15
~3
1950 NN
--.
- .
_-L-_;'_-."‘_ - e e T e~ —
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"N 39EbR3 S RIBERER S8R E

Figure 8. Convergence properties of HPO with varying the number of installed devices for IEEE
33-distribution feeder.
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Figure 9. Hourly power losses with varying the number of installed devices compared to the initial
case for IEEE 33-feeder.
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Figure 10. Hourly voltage deviations with varying the number of installed devices compared to the
initial case for IEEE 33-feeder.
0.99
__ 098
£ 097
Eno.%
I
g
£ 0.93
£ 0.92
g 0.91
0.9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour
= = Limit —+—Initial —»—NPV5=1 NPVS5=2 ——gee=NPVS5=3 empe=NPV5=4

Figure 11. Hourly minimum voltage with varying the number of installed devices compared to the
initial case for IEEE 33-feeder.
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4.2. IEEE 69-Distribution Feeder

4.2.1. Comparative Assessment of PV-STATCOM Allocations in IEEE
69-Distribution Feeder

In contrast to ARA, PSO, GSO, and DE, the proposed HPO is employed for PV-
STATCOM allocation on the second studied feeder to decrease energy losses and voltage
deviation compromise. There are only three PV-STATCOM devices available. The results
of the HPO, ARA, PSO, GSO, and DE for PV-STATCOM allocation are shown in Table 3.
Similar results are produced where this table illustrates the PV-STATCOM allocations when
the projected HPO'’s installed buses are 61, 62, and 63, and their related PV sizes are 1000,
1000, and 508 kW, respectively, and their corresponding STATCOM sizes are the same of
£1000 kVAr at the three sites. According to this data, the proposed HPO achieves the
least compromise of energy losses and voltage variations by lowering it from 3821.42 to
1616.61 with a 57.7% improvement. The ARA is ranked second with 1622.93, DE is third
with 1814.4, and GSO is fourth with 1952.97. With 2416.34, PSO has the poorest objective.
Figure 12 also depicts their key convergence features. As demonstrated, the suggested
HPO outperforms all previously used algorithms to get the least amount of energy loss
and voltage variation. The suggested HPO approaches the lower objective values more
quickly in the first 20% of iterations.

Table 3. PV-STATCOM allocations for IEEE 69-distribution feeder.

Items Initial PSO DE ARA GSO Proposed HBO
- 63 64 61 61 63
Installed nodes. - 61 59 64 64 62
- 2 62 62 69 61
- 1000 967 737 1000 508
PV-STATCOM Devices PX(%Q - 1000 488 964 1000 1000
- 10 806 774 498 1000
- +1000 +928 +957 +1000 +1000
STATCOM Size (kVAr) - +1000 +850 +876 +1000 +1000
- +1000 +937 +911 +1000 +1000
Objective 3821.4161 2416.336 1814.308 1622.933 1952.972 1616.607
Ranking - Worst Third Second Fourth Best
7450
— PS50
6450 DE
ARO
=== GSO
=== HBO

Objective

1450

Figure 12. Convergence properties of the applied algorithms for IEEE 69-distribution feeder.
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4.2.2. Impacts of Varying the Number of Installed PV-STATCOM s in IEEE
69-Distribution Feeder

In addition, the effects of altering the number of installed PV-STATCOM devices are
investigated in the second distribution feeder. The proposed HPO is used when installing
one, two, three, or four devices, and the corresponding positions, sizes, and advantages
are reported in Table 4. In this context, Figure 13 depicts the convergence features of HPO
when the number of installed devices for an IEEE 33-distribution feeder is varied. As
indicated, the considered target is lowered from 3821.416 to 2882.764, 1642.25, 1616.61, and
1609.65 when one, two, three, and four PV-STATCOM devices are installed, respectively.

Table 4. PV-STATCOM allocations with varying the number of installed devices for IEEE 69-
distribution feeder.

Items Initial NPVS =1 NPVS =2 NPVS =3 NPVS =4
- 64 61 63 61
- - 64 62 62
Installed nodes.
- - - 61 2
- - - - 51
- 1000 1000 508 1000
PV-STATCOM Devices PV Size - - 1000 1000 1000
(kW) - - - 1000 10
- - - - 498
- +1000 +1000 +1000 +1000
- - +948 +1000 +1000
STATCOM Size (KVAT) 1000 000
- - - - +1000
Objective 3821.4161 2882.764 1642.25 1616.61 1609.65
5450
4950 === NPVSTATCOM=2
=== NPFVSTATCOM=3
4450
NFVSTATCOM=4
3950
@
2
& 3450
o
(o]
2950
2450
L
1950 €
T T—
‘--'..------l----h--- _________ -
1450
— Ly b~ oo R I I R T Y- R - - A~ I IR T - )
NS BCRBSHdaIHSREaHNS28KE]
Iterations

Figure 13. Convergence properties of HPO with varying the number of installed devices for IEEE
69-distribution feeder.



Energies 2023, 16, 2790 17 of 20

Figures 14 and 15 show the hourly power losses and voltage variations. These statistics
show the benefits of increasing the number of PV-STATCOM devices installed in lowering
losses and voltage variations for each loading hour. It is also worth noting that two, three,
or four PV-STATCOM devices give equivalent advantages. On the other hand, one PV-
STATCOM is inadequate to meet the operational constraints; hence, the related goal is
significantly higher. Figure 16 displays the hourly minimum voltage as the number of
installed devices varies. As illustrated, in the instance of one PV-STATCOM device, the
minimum voltage causes undervoltage during the hours 9:23, whereas it improves the
minimum voltage throughout the day.

5
o

m B
=] =)

Losses (kW)
=
=
=)

g

1 2 3 4 5 6 7 B8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour

Figure 14. Hourly power losses with varying the number of installed devices compared to the initial
case for IEEE 69-feeder.

2.00
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1.20
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0.40
0.20
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VD (PU)

1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour

Figure 15. Hourly voltage deviations with varying the number of installed devices compared to the
initial case for IEEE 69-feeder.
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Figure 16. Hourly minimum voltage with varying the number of installed devices compared to the
initial case for IEEE 69-feeder.

5. Conclusions

This paper introduces hunter-prey optimization (HPO) for effective photovoltaic-static
synchronous compensators (PV-STATCOM) device allocation in distribution feeders to
improve its performance. The suggested solution to the PV-STATCOM device allocation
problem in distribution networks is designed to reduce electrical energy losses by improv-
ing voltage profile while accounting for changing 24 h loadings. In distribution feeders,
the effects of altering the number of installed PV-STATCOM devices are also investigated.
It has been tested on two IEEE distribution networks of 33 and 69 nodes. Based on the
simulation results, we concluded the following:

e The suggested HPO outperforms the differential evolution (DE) method, particle
swarm optimization (PSO), artificial rabbits algorithm (ARA), and golden search opti-
mizer (GSO) in assigning PV-STATCOM devices in distribution systems, decreasing
energy losses and voltage profile variations while meeting all operational criteria.

e Considering converging characteristics, the proposed HPO delivers quicker conver-
gence than DE, PSO, ARA, and GSO since it can approach the least objective values
faster in the first 20% of iterations.

e  Furthermore, for both distribution feeders under consideration, one PV-STATCOM
unit is insufficient to fulfill all requirements throughout the day due to considerable
levels of operational constraint violation.

As future research, different points can be further investigated, including PV-STATCOM
devices allocation in distribution feeders, such as the impacts of inserting other ancillary ser-
vices, automatic reconfiguration capability, distribution custom devices, automatic voltage
regulators, and other advanced technologies.
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