Direct Numerical Simulations of Turbulent Flow over Low-Pressure Turbine Blades with Aeroelastic Vibrations and Inflow Wakes
Abstract
:1. Introduction
- To develop a highly accurate DNS method to investigate the flow structure, wall shear stress, pressure coefficient, instantaneous vortex generation, flow separation, and other essential parameters in the design of LPT blades.
- For the first time, the effects of aeroelastic vibrations and inflow wakes are considered simultaneously in a DNS study on gas turbine engines.
2. Physical Model
3. Results
3.1. Mesh Generation
3.2. Viscous Sub-Layer Resolution
4. Results and Discussion
Validation
5. Discussion
6. Conclusions
- The flow separation is majorly affected by inflow disturbance and blade vibration. The maximum pressure coefficient on the LP turbine occurs at for clean inflow conditions , while it is moved to with the maximum value of for . This means that the maximum pressure coefficient on the separated flow region of the vibrating blade has been increased by 108%.
- The evaluation process of vorticity over the blade surfaces and in the downstream region changes significantly with the level of intensity of the inflow wakes. The blade vibration further intensifies the vortex generation process by imposing more disturbances to the flow and the downstream vortex shedding. The vortex generation and shedding are much greater in comparison with the stationary blade subject to inflow wakes.
- By increasing the inflow disturbance, the separated bubbles tend to shrink, which has a noticeable influence on the pressure value in the downstream region. The inflow disturbance reduces the boundary-layer separation region. It is observed that the highest value of the wake happens at Y* = 0.401 and it moves downward to Y* = 0.492 by raising φ from 0 to 0.91.
- Significant fluctuations are observed in the wake profiles under blade vibration, while the inflow wakes are causing the shift in the peak location of the profile. The maximum wake loss value is reduced by 16.4% by increasing the inflow wake (φ) from 0.31 to 0.91. The vortex structures are broken into smaller pieces in the wake region due to inflow wakes, which results in a shifting of the peak value of the wake loss.
Author Contributions
Funding
Conflicts of Interest
References
- Hodson, H.P.; Howell, R.J. The role of transition in high-lift low-pressure turbines for aeroengines. Prog. Aerosp. Sci. 2005, 41, 419–454. [Google Scholar] [CrossRef]
- Jeong, H.; Song, S.J. Surface roughness impact on boundary layer transition and loss mechanisms over a flat-plate under a low-pressure turbine pressure gradient. J. Turbomach. 2022, 144, 011005. [Google Scholar] [CrossRef]
- Butler, R.J.; Byerley, A.R.; VanTreuren, K.; Baughn, J.W. The effect of turbulence intensity and length scale on low-pressure turbine blade aerodynamics. Int. J. Heat Fluid Flow 2001, 22, 123–133. [Google Scholar] [CrossRef]
- Kubacki, S.; Jonak, P.; Dick, E. Evaluation of an algebraic model for laminar-to-turbulent transition on secondary flow loss in a low-pressure turbine cascade with an endwall. Int. J. Heat Fluid Flow 2019, 77, 98–112. [Google Scholar] [CrossRef]
- Han, W.; Zhang, Y.; Li, H.; Yao, M.; Wang, Y.; Feng, Z.; Zhou, D.; Dan, G. Aerodynamic design of the high pressure and low pressure axial turbines for the improved coal-fired recompression SCO2 reheated Brayton cycle. Energy 2019, 179, 442–453. [Google Scholar] [CrossRef]
- Marty, J. Numerical investigations of separation-induced transition on high-lift low-pressure turbine using RANS and LES methods. Proc. Inst. Mech. Eng. Part A J. Power Energy 2014, 228, 924–952. [Google Scholar] [CrossRef] [Green Version]
- Rahmati, M.; He, L.; Li, Y. The blade profile orientations effects on the aeromechanics of multirow turbomachines. J. Eng. Gas Turbines Power 2016, 138, 062606. [Google Scholar] [CrossRef]
- Rahmati, M.; He, L.; Wang, D.; Li, Y.; Wells, R.; Krishnababu, S. Nonlinear time and frequency domain methods for multirow aeromechanical analysis. J. Turbomach. 2014, 136, 041010. [Google Scholar] [CrossRef]
- Awada, A.; Younes, R.; Ilinca, A. Review of vibration control methods for wind turbines. Energies 2021, 14, 3058. [Google Scholar] [CrossRef]
- Pynaert, N.; Haas, T.; Wauters, J.; Crevecoeur, G.; Degroote, J. Wing Deformation of an Airborne Wind Energy System in Crosswind Flight Using High-Fidelity Fluid–Structure Interaction. Energies 2023, 16, 602. [Google Scholar] [CrossRef]
- Santo, G.; Peeters, M.; Van Paepegem, W.; Degroote, J. Fluid–structure interaction simulations of a wind gust impacting on the blades of a large horizontal axis wind turbine. Energies 2020, 13, 509. [Google Scholar] [CrossRef] [Green Version]
- Naung, S.W.; Rahmati, M.; Farokhi, H. Direct numerical simulation of interaction between transient flow and blade structure in a modern low-pressure turbine. Int. J. Mech. Sci. 2021, 192, 106104. [Google Scholar] [CrossRef]
- Fan, X.; Wang, Y.; Tan, W. Aerodynamic wake oscillator for modeling flow-induced vibration of tandem cylinders with short spans. Int. J. Mech. Sci. 2021, 204, 106548. [Google Scholar] [CrossRef]
- Wang, X.; Zou, Z. Uncertainty analysis of impact of geometric variations on turbine blade performance. Energy 2019, 176, 67–80. [Google Scholar] [CrossRef]
- Zhang, Z.; Santoni, C.; Herges, T.; Sotiropoulos, F.; Khosronejad, A. Time-averaged wind turbine wake flow field prediction using autoencoder convolutional neural networks. Energies 2022, 15, 41. [Google Scholar] [CrossRef]
- Qu, X.; Zhang, Y.; Lu, X.; Lei, Z.; Zhu, J. Effect of periodic wakes and a contoured endwall on secondary flow in a high-lift low-pressure turbine cascade at low Reynolds numbers. Comput. Fluids 2019, 190, 1–14. [Google Scholar] [CrossRef]
- Tucker, P. Computation of unsteady turbomachinery flows: Part 1—Progress and challenges. Prog. Aerosp. Sci. 2011, 47, 522–545. [Google Scholar] [CrossRef]
- Nakhchi, M.; Naung, S.W.; Rahmati, M. Influence of blade vibrations on aerodynamic performance of axial compressor in gas turbine: Direct numerical simulation. Energy 2022, 242, 122988. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, F.; Liu, H.; Chen, H. Large eddy simulation of unsteady transitional flow on the low-pressure turbine blade. Sci. China Technol. Sci. 2014, 57, 1761–1768. [Google Scholar] [CrossRef]
- Siddiqui, M.S.; Fonn, E.; Kvamsdal, T.; Rasheed, A. Finite-volume high-fidelity simulation combined with finite-element-based reduced-order modeling of incompressible flow problems. Energies 2019, 12, 1271. [Google Scholar] [CrossRef] [Green Version]
- Jia, F.; Wang, Z.; Bhaskaran, R.; Paliath, U.; Laskowski, G.M. Accuracy, efficiency and scalability of explicit and implicit FR/CPR schemes in large eddy simulation. Comput. Fluids 2019, 195, 104316. [Google Scholar] [CrossRef]
- Zaki, T.; Wissink, J.; Durbin, P.; Rodi, W. Direct computations of boundary layers distorted by migrating wakes in a linear compressor cascade. Flow Turbul. Combust. 2009, 83, 307–322. [Google Scholar] [CrossRef]
- Wheeler, A.P.; Sandberg, R.D.; Sandham, N.D.; Pichler, R.; Michelassi, V.; Laskowski, G. Direct numerical simulations of a high-pressure turbine vane. J. Turbomach. 2016, 138, 071003. [Google Scholar] [CrossRef]
- Moriguchi, S.; Miyazawa, H.; Furusawa, T.; Yamamoto, S. Large eddy simulation of a linear turbine cascade with a trailing edge cutback. Energy 2021, 220, 119694. [Google Scholar] [CrossRef]
- Iyer, A.; Abe, Y.; Vermeire, B.; Bechlars, P.; Baier, R.; Jameson, A.; Witherden, F.; Vincent, P. High-order accurate direct numerical simulation of flow over a MTU-T161 low pressure turbine blade. Comput. Fluids 2021, 226, 104989. [Google Scholar] [CrossRef]
- Wei, Z.; Ni, M.; Gan, X.; Chen, W.; Chen, P. Generation of unsteady incoming wakes for wake/blade interaction. Aerosp. Sci. Technol. 2020, 106, 106127. [Google Scholar] [CrossRef]
- Moxey, D.; Cantwell, C.D.; Bao, Y.; Cassinelli, A.; Castiglioni, G.; Chun, S.; Juda, E.; Kazemi, E.; Lackhove, K.; Marcon, J. Nektar++: Enhancing the capability and application of high-fidelity spectral/hp element methods. Comput. Phys. Commun. 2020, 249, 107110. [Google Scholar] [CrossRef]
- Cantwell, C.D.; Moxey, D.; Comerford, A.; Bolis, A.; Rocco, G.; Mengaldo, G.; De Grazia, D.; Yakovlev, S.; Lombard, J.-E.; Ekelschot, D. Nektar++: An open-source spectral/hp element framework. Comput. Phys. Commun. 2015, 192, 205–219. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Palacios, R.; Graham, M.; Sherwin, S. Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders. J. Comput. Phys. 2016, 321, 1079–1097. [Google Scholar] [CrossRef] [Green Version]
- Cassinelli, A.; Adami, P.; Montomoli, F.; Sherwin, S.J. On the effect of wake passing on a low pressure turbine cascade using spectral/hp element methods. Bull. Am. Phys. Soc. 2019, 64, 13. [Google Scholar]
- Yan, Z.-G.; Pan, Y.; Castiglioni, G.; Hillewaert, K.; Peiró, J.; Moxey, D.; Sherwin, S.J. Nektar++: Design and implementation of an implicit, spectral/hp element, compressible flow solver using a Jacobian-free Newton Krylov approach. Comput. Math. Appl. 2021, 81, 351–372. [Google Scholar] [CrossRef] [Green Version]
- Nakhchi, M.; Rahmati, M. Direct numerical simulations of flutter instabilities over a vibrating turbine blade cascade. J. Fluids Struct. 2021, 104, 103324. [Google Scholar] [CrossRef]
- Michelassi, V.; Chen, L.-W.; Pichler, R.; Sandberg, R.D. Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part II: Effect of Inflow Disturbances. J. Turbomach. 2015, 137, 071005. [Google Scholar] [CrossRef]
- Stadtmüller, P. Investigation of Wake-Induced Transition on the LP Turbine Cascade T106A-EIZ. DFG-Verbundproject Fo 136/11; Universität der Bundeswehr München: Neubiberg, Germany, 2001. [Google Scholar]
- Vos, P.E.; Sherwin, S.J.; Kirby, R.M. From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low-and high-order discretisations. J. Comput. Phys. 2010, 229, 5161–5181. [Google Scholar] [CrossRef]
- Nakhchi, M.; Naung, S.W.; Rahmati, M. High-resolution direct numerical simulations of flow structure and aerodynamic performance of wind turbine airfoil at wide range of Reynolds numbers. Energy 2021, 225, 120261. [Google Scholar] [CrossRef]
- Dong, S.; Karniadakis, G.E.; Chryssostomidis, C. A robust and accurate outflow boundary condition for incompressible flow simulations on severely-truncated unbounded domains. J. Comput. Phys. 2014, 261, 83–105. [Google Scholar] [CrossRef]
- Cassinelli, A.; Xu, H.; Montomoli, F.; Adami, P.; Vazquez Diaz, R.; Sherwin, S.J. On the Effect of Inflow Disturbances on the Flow Past a Linear LPT Vane Using Spectral/hp Element Methods. In Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, Arizona, PX, USA, 17–21 June 2019; p. V02CT41A032. [Google Scholar]
- Stadtmüller, P.; Fottner, L. A Test Case for the Numerical Investigation of Wake Passing Effects on a Highly Loaded LP Turbine Cascade Blade. In Proceedings of the ASME Turbo Expo 2001: Power for Land, Sea, and Air, New Orleans, LA, USA, 4–7 June 2001; American Society of Mechanical Engineers: New York, NY, USA, 2001; p. V001T03A015. [Google Scholar]
- Nakhchi, M.E.; Naung, S.W.; Rahmati, M. DNS of secondary flows over oscillating low-pressure turbine using spectral/hp element method. Int. J. Heat Fluid Flow 2020, 86, 108684. [Google Scholar] [CrossRef]
- Sieverding, C.H.; Ottolia, D.; Bagnera, C.; Comadoro, A.; Brouckaert, J.-F.; Desse, J.-M. Unsteady turbine blade wake characteristics. J. Turbomach. 2004, 126, 551–559. [Google Scholar] [CrossRef]
Parameter | Symbol | Value | Parameter | Symbol | Value |
---|---|---|---|---|---|
Chord length | C | 99 mm | Pitch to chord length | s/C | 0.798 |
Axial chord length | Cax | 85 mm | Cylindrical rod diameter | d | 0.02C |
Inflow angle | β1 | 37.7° | Cylinder velocity | ubar | −0.41U |
Exit angle | β2 | 63.2° | Reduced vibration frequency | fred | 0.51 |
Trailing edge thickness | - | 1.8 mm | Reynolds number | Re | 50,000–51,800 |
Trailing edge radius | - | 0.5 mm | Inflow disturbance | φ | 0–0.91 |
Span length | L | 0.8C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erfanian Nakhchi, M.; Win Naung, S.; Rahmati, M. Direct Numerical Simulations of Turbulent Flow over Low-Pressure Turbine Blades with Aeroelastic Vibrations and Inflow Wakes. Energies 2023, 16, 2803. https://doi.org/10.3390/en16062803
Erfanian Nakhchi M, Win Naung S, Rahmati M. Direct Numerical Simulations of Turbulent Flow over Low-Pressure Turbine Blades with Aeroelastic Vibrations and Inflow Wakes. Energies. 2023; 16(6):2803. https://doi.org/10.3390/en16062803
Chicago/Turabian StyleErfanian Nakhchi, Mahdi, Shine Win Naung, and Mohammad Rahmati. 2023. "Direct Numerical Simulations of Turbulent Flow over Low-Pressure Turbine Blades with Aeroelastic Vibrations and Inflow Wakes" Energies 16, no. 6: 2803. https://doi.org/10.3390/en16062803
APA StyleErfanian Nakhchi, M., Win Naung, S., & Rahmati, M. (2023). Direct Numerical Simulations of Turbulent Flow over Low-Pressure Turbine Blades with Aeroelastic Vibrations and Inflow Wakes. Energies, 16(6), 2803. https://doi.org/10.3390/en16062803