Bayesian Regularization Neural Network-Based Machine Learning Approach on Optimization of CRDI-Split Injection with Waste Cooking Oil Biodiesel to Improve Diesel Engine Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bio-Catalyst Synthesis from Vegetable Wastes
2.2. Biodiesel Synthesis
2.3. Optimization of Diesel Engine Performance, Emissions, and Combustion Characteristics Using Response Surface Methodology
2.4. Prediction of Diesel Engine Emissions and Combustion Characteristics Using ANN
2.5. Experimental Setup and Uncertainty Analysis of Engine Study
3. Results and Discussion
3.1. Bio-Catalyst Characterization
X-ray Diffraction Analysis for Bio-Catalyst
3.2. Biodiesel Process Optimization Using the RSM Approach
3.3. Optimization of Diesel Engine Combustion and Emissions Characteristics using the RSM Method
3.4. Diesel Engine Performance and Combustion Characteristics Prediction Using ANN
3.5. Comparison between RSM and ANN Technique
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teoh, Y.H.; How, H.G.; Lee, S.W.; Loo, D.L.; Le, T.D.; Nguyen, H.T.; Sher, F. Optimization of engine out responses with different biodiesel fuel blends for energy transition. Fuel 2022, 318, 123706. [Google Scholar] [CrossRef]
- Gundupalli, M.P.; Sriariyanun, M. Recent Trends and Updates for Chemical Pretreatment of Lignocellulosic Biomass. Appl. Sci. Eng. Prog. 2023, 16, 5842. [Google Scholar] [CrossRef]
- Binhweel, F.; Hossain, M.S.; Ahmad, M.I. Recent Trends, Potentials, and Challenges of Biodiesel Production from Discarded Animal Fats: A Comprehensive Review. BioEnergy Res. 2022. [Google Scholar] [CrossRef]
- Mandari, V.; Devarai, S.K. Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: A Critical Review. BioEnergy Res. 2022, 15, 935–961. [Google Scholar] [CrossRef]
- Samanta, S.; Sahoo, R.R. Waste Cooking (Palm) Oil as an Economical Source of Biodiesel Production for Alternative Green Fuel and Efficient Lubricant. BioEnergy Res. 2021, 14, 163–174. [Google Scholar] [CrossRef]
- Balajii, M.; Niju, S. A novel biobased heterogeneous catalyst derived from Musa acuminata peduncle for biodiesel production—Process optimization using central composite design. Energy Convers. Manag. 2019, 189, 118–131. [Google Scholar] [CrossRef]
- Chuah, L.F.; Amin, M.M.; Yusup, S.; Loo, D.L.; Le, T.D.; Raman, N.A.; Bokhari, A.; Klemes, J.J.; Alnarabiji, M.S. Influence of green catalyst on transesterification process using ultrasonic-assisted. J. Clean. Prod. 2016, 136, 14–22. [Google Scholar] [CrossRef]
- Yusuff, A.S.; Bhonsle, A.K.; Bangwal, D.P.; Atray, N. Development of a barium-modified zeolite catalyst for biodiesel production from waste frying oil: Process optimization by design of experiment. Renew. Energy 2021, 177, 1253–1264. [Google Scholar] [CrossRef]
- Ramalingam, S.; Dhamalingam, B.; Deepakkumar, R.; Sriariyanun, M. Effect of Moringa oleifera biodiesel–diesel–carbon black water emulsion blends in diesel engine characteristics. Energy Rep. 2022, 8, 9598–9609. [Google Scholar] [CrossRef]
- Dhamalingam, B.; Ramanathan, A. Biodiesel-diesel-alcohol blends as an alternative fuel for DICI engine. In Advanced Biofuels: Applications, Technologies, and Environmental Sustainability; Woodhead Publishing Series in Energy; Woodhead Publishing: Shaxton, UK, 2019; pp. 338–365. [Google Scholar]
- Pavan, P.; Bhaskar, K.; Sekar, S. Effect of split injection and injection pressure on CRDI engine fuelled with POME-diesel blend. Fuel 2021, 292, 120242. [Google Scholar] [CrossRef]
- Ravikumar, J.; Sekar, S.; Damodharan, D.; Yuvarajan, D.; Lakshmanan, T.; Mukilarasan, N.; Gopal, K.; Melvin, V.D.P. Multi-objective optimization of performance and emission characteristics of a CRDI diesel engine fueled with sapota methyl ester/diesel blends. Energy 2022, 250, 123709. [Google Scholar]
- Ganesan, N.; Viswanathan, K.; Karthic, S.V.; Ekambaram, P.; Wu, W. Split injection strategies based RCCI combustion analysis with waste cooking oil biofuel and methanol in an open ECU assisted CRDI engine. Fuel 2022, 319, 123710. [Google Scholar] [CrossRef]
- Dharma, B.; Karvembu, R.; Ramanathan, A. Impact of split injection strategy on combustion, performance and emissions characteristics of biodiesel fuelled common rail direct injection assisted diesel engine. Energy 2018, 165, 577–592. [Google Scholar]
- Thangarasu, V.; Angkayarkan Vinayakaselvi, M.; Ramanathan, A. Artificial neural network approach for parametric investigation of biodiesel synthesis using biocatalyst and engine characteristics of diesel engine fuelled with Aegle Marmelos Correa biodiesel. Energy 2021, 230, 120738. [Google Scholar] [CrossRef]
- Kumari, N.; Garg, S.; Singhal, A.; Kumar, M.; Bhattacharya, M.; Kumar Jha, P.; Kumar Chauhan, D.; Shekhar Thakur, I. Optimizing pretreatment of Leucaena leucocephala using artificial neural networks (ANNs), Bioresource. Technol. Rep. 2019, 7, 100289. [Google Scholar]
- Tosun, E.; Aydin, K.; Bilgili, M. Comparison of linear regression and artificial neural network model of a diesel engine fueled with biodiesel-alcohol mixtures. Alex. Eng. J. 2016, 55, 3081–3089. [Google Scholar] [CrossRef] [Green Version]
- Sriariyanun, M.; Kitiborwornkul, N.; Tantayotai, P.; Rattanaporn, K.; Show, P.L. One-Pot Ionic Liquid-Mediated Bioprocess for Pretreatment and Enzymatic Hydrolysis of Rice Straw with Ionic Liquid-Tolerance Bacterial Cellulase. Bioengineering 2022, 9, 17. [Google Scholar] [CrossRef]
- Payal, A.; Rai, C.S.; Reddy, B.V. Comparative analysis of Bayesian regularization and Levenberg-Marquardt training algorithm for localization in a wireless sensor network. In Proceedings of the 2013 15th International Conference on Advanced Communications Technology (ICACT), PyeongChang, Republic of Korea, 27–30 January 2013. [Google Scholar]
- Sivanandam, S.N.; Sumathi, S.; Deepa, S.N. Introduction to Neural Networks Using Matlab 6.0 Computer Engineering Series, 1st ed.; Tata McGraw-Hill: New Delhi, India, 2006. [Google Scholar]
- Agrawal, T.; Gautam, R.; Agrawal, S.; Singh, V.; Kumar, M.; Kumar, S. Optimization of engine performance parameters and exhaust emissions in compression ignition engine fueled with biodiesel-alcohol blends using the taguchi method, multiple regression and artificial neural network. Sustain. Futur. 2020, 2, 100039. [Google Scholar] [CrossRef]
- Eldiehy, K.S.H.; Gohain, M.; Daimary, N.; Borah, D.; Mandal, M.; Deka, D. Radish (Raphanus sativus L.) leaves: A novel source for a highly efficient heterogeneous base catalyst for biodiesel production using waste soybean cooking oil and Scenedesmus obliquus oil. Renew. Energy 2022, 191, 888–901. [Google Scholar] [CrossRef]
- Siddavatam, N.K.R.; Mohmad, M.W. A Comprehensive Review on Effects of Nanoparticles-antioxidant Additives-biodiesel Blends on Performance and Emissions of Diesel Engine. Appl. Sci. Eng. Prog. 2020, 13, 285–298. [Google Scholar]
- Mahesh, S.E.; Ramanathan, A.; Begum, M.S.; Narayanan, A. Biodiesel production from waste cooking oil using KBr impregnated CaO as catalyst. Appl. Therm. Eng. 2015, 91, 442–450. [Google Scholar] [CrossRef]
- Yogesh, P.; Chandramohan, D. Combustion, performance and emissions characteristics of CRDI engine fueled with biodiesel, ethanol & butanol blends at vatious fuel injection strategies. J. Appl. Sci. Eng. 2022, 25, 1123–1129. [Google Scholar]
- Jain, A.; Singh, A.P.; Agarwal, A.K. Effect of Split Fuel Injection and EGR on NOx and PM Emission Reduction in a Low Temperature Combustion (LTC) Mode Diesel Engine. Energy 2017, 122, 249–264. [Google Scholar] [CrossRef]
- Park, S.; Kimb, H.J.; Shin, D.H.; Lee, J.T. Effects of various split injection strategies on combustion and emissions characteristics in a single-cylinder diesel engine. Appl. Therm. Eng. 2018, 140, 422–431. [Google Scholar] [CrossRef]
- Dharmalingam, B.; Deepakkumar, R.; Bhattacharya, K.; Gundupalli, M.G.; Sriariyanun, M. Prediction of split injection strategy assisted diesel engine combustion, performance and emission characteristics fueled waste frying oil methyl ester through central composite design. Mater. Today Proc. 2023, 72, 2965–2970. [Google Scholar] [CrossRef]
- da Silva, M.J.; de Oliveira, A.; Sodre, A.R. Analysis of processing methods for combustion pressure measurement in diesel engine. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 282. [Google Scholar] [CrossRef] [Green Version]
Molar Ratio (% v/v) | Catalyst (%wt.) | Temperature (°C) | Time (Min) | Speed (rpm) | FAME Yield (%) |
---|---|---|---|---|---|
9 | 7 | 60 | 120 | 600 | 90 |
3 | 5 | 65 | 150 | 300 | 75 |
9 | 7 | 60 | 120 | 900 | 93 |
6 | 9 | 50 | 60 | 600 | 82 |
9 | 7 | 55 | 90 | 600 | 91 |
3 | 5 | 45 | 30 | 300 | 75 |
9 | 9 | 60 | 60 | 600 | 90 |
12 | 3 | 65 | 120 | 300 | 82 |
3 | 1 | 55 | 30 | 1500 | 73 |
12 | 7 | 45 | 120 | 1200 | 76 |
9 | 7 | 55 | 60 | 600 | 91 |
15 | 3 | 65 | 30 | 1200 | 75 |
12 | 7 | 45 | 90 | 1500 | 80 |
6 | 5 | 60 | 90 | 900 | 90 |
12 | 3 | 65 | 150 | 300 | 82 |
6 | 7 | 55 | 60 | 900 | 89 |
3 | 1 | 45 | 90 | 1200 | 73 |
6 | 5 | 50 | 90 | 900 | 86 |
12 | 1 | 45 | 150 | 1500 | 73 |
6 | 9 | 50 | 120 | 600 | 89 |
9 | 7 | 60 | 30 | 600 | 91 |
6 | 3 | 50 | 90 | 900 | 83 |
15 | 5 | 50 | 60 | 600 | 81 |
3 | 9 | 65 | 150 | 1200 | 76 |
3 | 1 | 45 | 150 | 300 | 72 |
15 | 9 | 60 | 60 | 900 | 86 |
15 | 5 | 50 | 90 | 600 | 81 |
3 | 3 | 45 | 120 | 1200 | 73 |
12 | 5 | 50 | 30 | 300 | 75 |
15 | 7 | 50 | 120 | 900 | 84 |
12 | 1 | 55 | 150 | 1500 | 73 |
3 | 9 | 65 | 120 | 300 | 81 |
Main Injection Timing (°C) | Post-Injection Timing (°C) | Main Injection Quantity (%) | Post-Injection Quantity (%) | Fuel Proportion |
---|---|---|---|---|
19 | −7 | 80 | 20 | B80-20 |
23 | −7 | 90 | 10 | B90-10 |
25 | −3 | 70 | 30 | B70-30 |
17 | 7 | 90 | 10 | B90-10 |
21 | 0 | 80 | 20 | D80-20 |
25 | 7 | 90 | 10 | B90-10 |
25 | −7 | 90 | 10 | D90-10 |
19 | 3 | 80 | 20 | B80-20 |
25 | 7 | 70 | 30 | B70-30 |
21 | 3 | 80 | 20 | B80-20 |
17 | −7 | 70 | 30 | B70-30 |
23 | 7 | 70 | 30 | B70-30 |
21 | −7 | 80 | 20 | B80-20 |
25 | −3 | 90 | 10 | D90-10 |
23 | 0 | 80 | 20 | D80-20 |
21 | 3 | 80 | 20 | B80-20 |
17 | −7 | 70 | 30 | B70-30 |
25 | −7 | 70 | 30 | B70-30 |
21 | 0 | 80 | 20 | D80-20 |
23 | −7 | 90 | 10 | B90-10 |
19 | −3 | 80 | 20 | B80-20 |
17 | 7 | 90 | 10 | D90-10 |
17 | −7 | 70 | 30 | B70-30 |
21 | −3 | 80 | 20 | D80-20 |
17 | −3 | 90 | 10 | B90-10 |
21 | 0 | 80 | 20 | B80-20 |
19 | 3 | 90 | 10 | B90-10 |
17 | 7 | 70 | 30 | B70-10 |
17 | −7 | 90 | 10 | B90-10 |
19 | 0 | 80 | 20 | D80-20 |
19 | −7 | 80 | 20 | B80-20 |
23 | −7 | 90 | 10 | D90-10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dharmalingam, B.; Annamalai, S.; Areeya, S.; Rattanaporn, K.; Katam, K.; Show, P.-L.; Sriariyanun, M. Bayesian Regularization Neural Network-Based Machine Learning Approach on Optimization of CRDI-Split Injection with Waste Cooking Oil Biodiesel to Improve Diesel Engine Performance. Energies 2023, 16, 2805. https://doi.org/10.3390/en16062805
Dharmalingam B, Annamalai S, Areeya S, Rattanaporn K, Katam K, Show P-L, Sriariyanun M. Bayesian Regularization Neural Network-Based Machine Learning Approach on Optimization of CRDI-Split Injection with Waste Cooking Oil Biodiesel to Improve Diesel Engine Performance. Energies. 2023; 16(6):2805. https://doi.org/10.3390/en16062805
Chicago/Turabian StyleDharmalingam, Babu, Santhoshkumar Annamalai, Sukunya Areeya, Kittipong Rattanaporn, Keerthi Katam, Pau-Loke Show, and Malinee Sriariyanun. 2023. "Bayesian Regularization Neural Network-Based Machine Learning Approach on Optimization of CRDI-Split Injection with Waste Cooking Oil Biodiesel to Improve Diesel Engine Performance" Energies 16, no. 6: 2805. https://doi.org/10.3390/en16062805
APA StyleDharmalingam, B., Annamalai, S., Areeya, S., Rattanaporn, K., Katam, K., Show, P. -L., & Sriariyanun, M. (2023). Bayesian Regularization Neural Network-Based Machine Learning Approach on Optimization of CRDI-Split Injection with Waste Cooking Oil Biodiesel to Improve Diesel Engine Performance. Energies, 16(6), 2805. https://doi.org/10.3390/en16062805