Validation of Estimating Stress from Fracture Injection Tests Using Continuous Wavelet Transform with Experimental Data †
Abstract
:1. Introduction
2. Material and Methods
2.1. Cwt Fracture Closure Detection Technique
2.2. Validation Using Experimental Data from EGS Collab Project
2.3. Theoretical Basis of Using SIMFIP Tool
2.4. Experiments’ Location
2.4.1. E1-I 164 Interval
2.4.2. Tv4100 Interval
3. Results
4. Discussion
4.1. Analysis of E1-I 164 Test 2
4.2. Analysis of E1-I 164 Test 3
4.3. Analysis of TV4100 Test 4
4.4. Analysis of TV4100 Test 7
5. Conclusions
- The signal average energy using the CWT closure detection technique is a reliable mathematical independent magnification for the pressure decay. This has been confirmed using the SIMFIP tool.
- The presence of natural fracture dampens the peak of the indicating the start of closure as it makes the fracture closure a more gradual process causing the average signal energy to drop in a more gradual manner.
- A linear relationship between the closure time can be detected by the new CWT technique and the number of natural fractures observed.
6. Patents
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
t | Shut-in time |
CWT | Continuous wavelet transform |
DFIT | Diagnostic fracture injection test |
G | G-time function |
P | Pressure |
SIMFIP | Step-Rate Injection Method for Fracture In-Situ Properties. |
t | Time |
References
- Gabry, M.A.; Eltaleb, I.; Soliman, M.Y.; Farouq-Ali, S.M. A New Technique for Estimating Stress from Fracture Injection Tests Using Continuous Wavelet Transform. Energies 2023, 16, 764. [Google Scholar] [CrossRef]
- Barree, R.D.; Barree, V.L.; Craig, D. Holistic fracture diagnostics: Consistent interpretation of prefrac injection tests using multiple analysis methods. SPE Prod. Oper. 2009, 24, 396–406. [Google Scholar] [CrossRef]
- Barree, R.D.; Barree, V.L.; Craig, D. Holistic fracture diagnostics. In Proceedings of the Rocky Mountain Oil & Gas Technology Symposium, OnePetro, Denver, CO, USA, 16–18 April 2007. [Google Scholar]
- McClure, M.W.; Jung, H.; Cramer, D.D.; Sharma, M.M. The fracture-compliance method for picking closure pressure from diagnostic fracture-injection tests. SPE J. 2016, 21, 1321–1339. [Google Scholar] [CrossRef]
- Dutler, N.; Valley, B.; Gischig, V.; Jalali, M.; Brixel, B.; Krietsch, H.; Roques, C.; Amann, F. Hydromechanical insight of fracture opening and closure during in-situ hydraulic fracturing in crystalline rock. Int. J. Rock Mech. Min. Sci. 2020, 135, 104450. [Google Scholar] [CrossRef]
- Gulrajani, S.N.; Nolte, K.; Economides, M. Fracture evaluation using pressure diagnostics. Reserv. Stimul. 2000, 2, 1. [Google Scholar]
- Guglielmi, Y.; Nussbaum, C.; Rutqvist, J.; Cappa, F.; Jeanne, P.; Birkholzer, J. Estimating perturbed stress from 3-D borehole displacements induced by fluid injection in fractured or faulted shales. Geophys. J. Int. 2020, 221, 1684–1695. [Google Scholar] [CrossRef] [Green Version]
- Guglielmi, Y.; Mcclure, M. Estimating Stress from Fracture Injection Tests: Comparing Pressure Transient Interpretations with In-Situ Strain Measurements. In Proceedings of the 47th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 7–9 February 2022. [Google Scholar]
- Eltaleb, I.; Soliman, M.Y. New Pump-In Flowback Model Verification with In-Situ Strain Measurements and Numerical Simulation. Energies 2023, 16, 1970. [Google Scholar] [CrossRef]
- Guglielmi, Y.; Cappa, F.; Lançon, H.; Janowczyk, J.B.; Rutqvist, J.; Tsang, C.F.; Wang, J. ISRM suggested method for step-rate injection method for fracture in-situ properties (SIMFIP): Using a 3-components borehole deformation sensor. In The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014; Springer: Berlin/Heidelberg, Germany, 2013; pp. 179–186. [Google Scholar]
- Sneddon, I.N. The distribution of stress in the neighbourhood of a crack in an elastic solid. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 1946, 187, 229–260. [Google Scholar]
- Barton, N.; Bandis, S.; Bakhtar, K. Strength, deformation and conductivity coupling of rock joints. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1985, 22, 121–140. [Google Scholar] [CrossRef]
- Kneafsey, T.J.; Blankenship, D.; Knox, H.A.; Johnson, T.C.; Ajo-Franklin, J.B.; Schwering, P.C.; Dobson, P.F.; Morris, J.P.; White, M.D.; Podgorney, R.; et al. EGS Collab project: Status and progress. In Proceedings of the 44th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 11–13 February 2019. [Google Scholar]
- Kneafsey, T.J.; Blankenship, D.; Dobson, P.F.; Morris, J.P.; White, M.D.; Fu, P.; Schwering, P.C.; Ajo-Franklin, J.B.; Huang, L.; Schoenball, M.; et al. The EGS collab project: Learnings from Experiment 1. In Proceedings of the 45th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 10–12 February 2020; pp. 10–12. [Google Scholar]
- Singh, A.; Neupane, G.; Dobson, P.; Zoback, M.; Morris, J.; Fu, P.; Schwering, P.; Roggenthen, W.; Frash, L.; Kneafsey, T.; et al. Slip tendency analysis of fracture networks to determine suitability of candidate testbeds for the EGS Collab hydroshear experiment. In Proceedings of the GRC Annual Meeting & Expo, Palm Springs, CA, USA, 15–18 September 2019. [Google Scholar]
- Wang, H.; Lee, M.; Doe, T.; Haimson, B.; Oldenburg, C.; Dobson, P. In-situ stress measurement at 1550-m depth at the kISMET test site in Lead, SD. In Proceedings of the 51st US Rock Mechanics/Geomechanics Symposium, OnePetro, San Francisco, CA, USA, 25–28 June 2017. [Google Scholar]
- Guglielmi, Y.; Cook, P.; Soom, F.; Dobson, P.; Kneafsey, T.; Valley, B.; Kakurina, M.; Niemi, A.; Tsang, C.F.; Tatomir, A.; et al. Estimating Stress From Three-Dimensional Borehole Displacements Induced by Fluid Injection in Different Types of Fractured or Faulted Rocks. In Proceedings of the 55th U.S. Rock Mechanics/Geomechanics Symposium, OnePetro, Virtual, 20–23 June 2021. [Google Scholar]
- Schoenball, M.; Guglielmi, Y.; Ajo-Franklin, J.B.; Cook, P.J.; Dobson, P.; Hopp, C.; Kneafsey, T.J.; Soom, F.; Ulrich, C. In-situ observation of pre-, co-and post-seismic shear slip at 1.5 km depth. In Proceedings of the 51st U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 25–28 June 2017. [Google Scholar]
- Fu, P.; Schoenball, M.; Ajo-Franklin, J.B.; Chai, C.; Maceira, M.; Morris, J.P.; Wu, H.; Knox, H.; Schwering, P.C.; White, M.D.; et al. Close observation of hydraulic fracturing at egs collab experiment 1: Fracture trajectory, microseismic interpretations, and the role of natural fractures. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020840. [Google Scholar] [CrossRef]
- Nolte, K.G. Determination of fracture parameters from fracturing pressure decline. In Proceedings of the SPE Annual Technical Conference and Exhibition, OnePetro, Las Vegas, NV, USA, 23–26 September 1979. [Google Scholar]
- McClure, M.; Bammidi, V.; Cipolla, C.; Cramer, D.; Martin, L.; Savitski, A.A.; Sobernheim, D.; Voller, K. A collaborative study on DFIT interpretation: Integrating modeling, field data, and analytical techniques. In Proceedings of the Unconventional Resources Technology Conference, Denver, CO, USA, 22–24 July 2019; Society of Petroleum Engineers: Richardson, TX, USA; pp. 2020–2058. [Google Scholar]
- Mcclure, M.; Fowler, G.; Picone, M. Best practices in DFIT interpretation: Comparative analysis of 62 DFITs from nine different shale plays. In Proceedings of the SPE International Hydraulic Fracturing Technology Conference & Exhibition, The Woodlands, TX, USA, 31 January–2 February 2023. [Google Scholar]
Name | Injection Duration (min:sec) | Injection Volume, L | Avg. Injection Rate, L/min | Shut-In Duration, (h) |
---|---|---|---|---|
E1-I 164 Test 1 | 10:00 | 2.1 | 0.21 | 2 |
E1-I 164 Test 2 | 63:00 | 23 | 0.37 | 15 |
E1-I 164 Test 3 | 20:00 | 75 | 5 | 15 |
Name | Injection Duration (min:sec) | Injection Volume (L) | Avg. Injection Rate (L/min) | Shut-In Duration (h) |
---|---|---|---|---|
TV4100 Test 4 | 10:29 | 20.5 | 1.08 | 7 |
TV4100 Test 7 | 12:21 | 45.2 | 2.15 | 16 |
Fracture Closure Pressure Detection Technique | E1-I 164 Test 2 | E1-I 164 Test 2 | TV4100 Test 4 | TV4100 Test 7 |
---|---|---|---|---|
Using SIMFIP | 21.37 MPa (3100 psi) | 21.37 MPa (3100 psi) | 18.69 MPa (2712 psi)–19.2 MPa (2785 psi) | 18.6 MPa (2700 psi) |
Using CWT fracture closure detection Technique | Start of closure = 21.59 MPa (3132 psi) | Start of closure = 20.68 MPa (3000 psi) | Start of closure = 18.89 MPa (2740 psi) | Start of closure = 19.02 MPa (2760 psi) |
Complete closure = 21.39 MPa (3103 psi) | Complete closure = 20.34 MPa (2950 psi) | Complete closure = 18.6 MPa (2700 psi) | Complete closure = 18.6 MPa (2700 psi) | |
Using Compliance Method | Rapid closure 20.68 MPa (3000 psi)–24.13 MPa (3500 psi) | 18.79 MPa (2725 psi) | 17.06 MPa (2475 psi) | 19.31 MPa (2800 psi) |
Fracture closure pressure using Tangent Method | Less than 15.17 MPa (2200 psi) | Less than 15.17 MPa (2200 psi) | Less than 15.17 MPa (2200 psi) | 18.61 MPa (2700 psi) |
Using Nolte Technique | 23.44 MPa (3400 psi) | No closure signature | 20.06 MPa (2910 psi) | 21.90 MPa (3177 psi) |
Using log–log method | No closure signature | No closure signature | No closure signature | No closure signature |
Using the square root of time method | No closure signature | No closure signature | No closure signature | 18.6 MPa (2700 psi) |
Test | Pressure at Start of Closure Event, MPa (psi) | Pressure at Start of Closure Event, MPa (psi) | Period of Closure Event, min | Number of Reported Natural Fractures |
---|---|---|---|---|
E1-I 164 Test 2 | 21.59 (3132) | 21.39 (3103) | 3 | 0 |
E1-I 164 Test 3 | 20.68 (3000) | 20.34 (2950) | 20 | Not Reported |
TV4100 Test 4 | 18.89 (2740) | 18.61 (2700) | 28 | 5 |
TV4100 Test 7 | 19.03 (2760) | 18.61 (2700) | 42 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabry, M.A.; Eltaleb, I.; Soliman, M.Y.; Farouq-Ali, S.M. Validation of Estimating Stress from Fracture Injection Tests Using Continuous Wavelet Transform with Experimental Data. Energies 2023, 16, 2807. https://doi.org/10.3390/en16062807
Gabry MA, Eltaleb I, Soliman MY, Farouq-Ali SM. Validation of Estimating Stress from Fracture Injection Tests Using Continuous Wavelet Transform with Experimental Data. Energies. 2023; 16(6):2807. https://doi.org/10.3390/en16062807
Chicago/Turabian StyleGabry, Mohamed Adel, Ibrahim Eltaleb, Mohamed Y. Soliman, and S. M. Farouq-Ali. 2023. "Validation of Estimating Stress from Fracture Injection Tests Using Continuous Wavelet Transform with Experimental Data" Energies 16, no. 6: 2807. https://doi.org/10.3390/en16062807
APA StyleGabry, M. A., Eltaleb, I., Soliman, M. Y., & Farouq-Ali, S. M. (2023). Validation of Estimating Stress from Fracture Injection Tests Using Continuous Wavelet Transform with Experimental Data. Energies, 16(6), 2807. https://doi.org/10.3390/en16062807