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Abstract: Shale gas reservoirs have extremely low porosity and permeability, making them challenging
to exploit. The best method for increasing recovery in shale gas reservoirs is horizontal well fracturing
technology. Hence, fracturing parameter optimization is necessary to enhance shale gas horizontal
fracturing well production. Traditional optimization methods, however, cannot meet the requirements
for overall optimization of fracturing parameters. As for intelligent optimization algorithms, most have
excellent global search capability but incur high computation costs, which limits their usefulness in real-
world engineering applications. Thus, a modified genetic algorithm combined based on the Spearman
correlation coefficient (SGA) is proposed to achieve the rapid optimization of fracturing parameters.
SGA determines the crossover and mutation rates by calculating the Spearman correlation coefficient
instead of randomly determining the rates like GA does, so that it could quickly converge to the optimal
solution. Within a particular optimization time, SGA could perform better than GA. In this study, a
production prediction model is established by the XGBoost algorithm based on the dataset obtained by
simulating the shale gas multistage fracturing horizontal well development. The result shows that the
XGBoost model performs well in predicting shale gas fracturing horizontal well production. Based
on the trained XGBoost model, GA, SGA, and SGD were used to optimize the fracturing parameters
with the 30-day cumulative production as the optimization objective. This process has conducted nine
fracturing parameter optimization tests under different porosity and permeability conditions. The
results show that, compared with GA and SGD, SGA has faster speed and higher accuracy. This study’s
findings can help optimize the fracturing parameters faster, resulting in improving the production of
shale gas fracturing horizontal wells.

Keywords: SGA; fracturing parameter optimization; shale gas fracturing horizontal well; XGBoost;
production prediction

1. Introduction

Natural gas now accounts for an increasing proportion of energy due to the ongoing
transition of the domestic energy system to clean energy [1–3]. However, the development
of conventional gas to meet the demand of the energy market is difficult. Thus, it is
necessary to increase the development of unconventional gas [4–6].

Shale gas is a kind of unconventional gas with significant reserves in the world [7].
However, compared with conventional reservoirs, shale gas reservoirs have super-low per-
meability and porosity [8]. Moreover, shale gas typically exists in shale through adsorption
and free state [9]. Due to the characteristics of shale gas reservoirs, achieving unconven-
tional gas economic recovery is challenging using conventional reservoir development
methods. Shale gas reservoirs are mainly developed through horizontal well fracturing
technology [10–12]. Hence, it is necessary to design reasonable fracturing parameters for
horizontal well fracturing technology.

Fracturing parameter design is usually achieved thanks to optimization methods,
which aim to obtain a combination of fracturing parameters with the maximum target
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parameters [13,14]. Generally, the target parameters are productivity indicators, such
as production, net present value, and so on [15]. Therefore, productivity prediction of
shale gas horizontal wells is critical for optimizing the fracturing parameters of shale gas
horizontal wells. Usually, a fast and accurate productivity prediction model is necessary to
decrease the optimization time and ensure optimization accuracy.

According to the calculating theory, productivity prediction models are classified into
three categories: analytical models [16], numerical simulation models [17], and data-driven
models [18]. Analytical and numerical simulation models are derived from the oil and gas
seepage theory to obtain an analytical solution. The analytical model calculates fast but its
prediction accuracy is limited to too many assumptions. Numerical simulation models have
higher prediction accuracy than analytical models but are time-consuming and require
plenty of complex reservoir data, such as fault, structure, sedimentary facies zone, and so on.
Data-driven models, established by machine learning methods, can meet the requirements
of calculation speed and accuracy for fracturing parameters optimization. Wang et al. [19]
predicted shale gas production with a Multi-layer Perceptron (MLP) network and Long
Short-term Memory (LSTM) network. Xue et al. [20] compared the performance of Multi-
objective Random Forest (MORF) and Multi-output Regression Chain (MORC) in shale gas
production prediction. However, every machine learning algorithm has its adaptability for
different problems.

There are two kinds of fracturing optimization methods: traditional optimization [21–23]
and intelligent optimization [24–26]. The traditional optimization method mainly optimizes
the fracturing parameters one by one by sensitivity analysis. Jiang et al. [27] optimized the
fracturing parameters of horizontal wells in tight gas reservoirs by analyzing the relationship
curve between the fracturing parameters and the cumulative gas production. Ma et al. [28]
obtained the optimal cluster number, optimal cluster spacing, optimal fracture length, and
optimal fracture conductivity in the shale oil horizontal well section by sensitivity analysis
and optimization. It is easy to realize the operation, but the overall optimization of fracturing
parameters cannot be achieved, and the optimization accuracy is difficult to guarantee.

The intelligent optimization method is optimizing fracturing parameters based on
intelligent optimization algorithms, such as Genetic Algorithm (GA) [29] and Particle
Swarm Optimization (PSO) [30]. Compared with the traditional optimization method,
the intelligent optimization method can achieve the overall optimization of fracturing
parameters and has better optimization accuracy. Dong et al. [31] compared the optimiza-
tion effects of four evolutionary algorithms—genetic algorithms, differential evolution
algorithm, simulated annealing algorithm, and particle swarm optimization—on the frac-
turing parameters of tight oil horizontal wells. Guo et al. [32] optimized the fracturing
parameters of the tight oil wells with production as the optimization objective. However,
most intelligent optimization algorithms might have some problems in application, such as
low optimization accuracy and long search time. Thus, intelligent optimization algorithms
have been improved for application-related problems. Yao et al. [33] presented a Modified
Variable-length Particle-swarm Optimization (MVPSO) to solve the variable dimension
problem. Zhou et al. [34] proposed a correlation-guided genetic algorithm to improve the
efficiency of the evolutionary process.

To solve the problem of optimizing the duration of shale gas horizontal well opera-
tion, in this study, a modified genetic algorithm named SGA is proposed to optimize the
fracturing parameters of shale gas horizontal wells. Compared with Genetic Algorithm
(GA), SGA has better local search ability and faster optimization speed while ensuring
optimization accuracy. In this process, the XGBoost algorithm is used to establish the
production prediction model. Based on the trained XGBoost model, the optimization of
fracturing parameters could be achieved by SGA.

The main contribution of this study is that this study proposes a modified genetic
algorithm based on the Spearman correlation coefficient to achieve the fracturing param-
eters optimization of shale gas horizontal wells. Compared with GA, SGA improves the
crossover and mutation operations of GA based on the Spearman correlation coefficient to
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converge to the optimal solution quickly. This method allows us to optimize the fracturing
parameters for horizontal shale gas wells much more quickly. This study might offer a new
idea for fracturing parameter optimization and help formulate the fracturing scheme.

2. Methodology
2.1. XGBoost Algorithm

Extreme Gradient Boosting (XGBoost), proposed by Tianqi Chen, is an ensemble
algorithm based on the Gradient Boosting Decision Tree (GBDT), which is a classical
machine learning algorithm [35]. It has been applied in many fields for its fast calculation
speed and high prediction accuracy. This method has been used in the petroleum industry
for sweet spot searching [36], dynamometer-card classification [37] and water absorption
prediction [38].

The goal of the ensemble algorithm is to build several base learners and to combine
them to complete the learning task through specific strategies. The main idea of XGBoost
is to keep adding a base learner, usually a simple learner such as a decision tree, to fit the
residual of the last base learner until the residual is reduced to a specific range, to enhance
the learning ability. Equation (1) gives the objective function of XGBoost,

Obj =
n

∑
i=1

l
(

yi − ŷ(t)i

)
+

t

∑
i=1

Ω( fi) (1)

where yi denotes the actual value and ŷ(t)i the predicted value. l represents the loss function.
Ω indicates the regularization term. As can be seen, there are two parts to the objective
function. The first part, which also denotes the objective function of GBDT, is the sum
of the loss functions of all classifiers. Another part is the sum of all regularization terms,
which can adjust the model complication and reduce overfitting.

There are seven hyperparameters for XGBoost, including booster, n_estimators, max_depth,
min_child_weight, eta, gamma and subsample. Booster determines the type of base learner,
usually a decision tree, and n_estimators is the number of base learners. For tree booster,
max_depth denotes the maximum depth, and min_child_weight is the minimum sum of leaf
node sample weights. Eta represents the learning rate, which can be decreased to reduce
overfitting. Gamma indicates the minimum loss function drop for node splitting. Subsample
decides the proportion of random samples for each base learner.

2.2. Optimization Algorithm
2.2.1. Related Work

Intelligent optimization algorithms, such as GA and PSO, are popular and have many
applications in engineering optimization [39,40]. However, each intelligent optimization
algorithm has its strengths and weaknesses. GA was selected as the optimizer in this study
because of its simple structure.

GA, first proposed by John Holland, is a method for finding an optimal solution
by simulating a natural evolution process [41]. Compared with traditional optimization
algorithms, GA usually performs better when solving complex combinatorial optimization
problems. In recent decades, GA has been widely applied to various optimization prob-
lems [42–44]. However, the traditional GA requires many iterations for the best solution,
which results in a long optimization time. The cause is that generating new individuals is
too random, which is not conducive to a fast search for the optimal solution.

2.2.2. The Modified Genetic Algorithm (SGA)

In this study, we propose a modified genetic algorithm based on the Spearman corre-
lation coefficient. Generally, in GA, the probabilities of crossover and mutation operations
are preset by experience, and all the genes have the same crossover and mutation rates. It
is not conducive to the preservation of dominant genes. SGA determines the crossover and
mutation rates by calculating the Spearman correlation coefficient instead of the rates, like
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GA does by experience. It is helpful for SGA to converge to the optimal solution quickly.
As shown in Figure 1, the workflow of SGA is as follows:
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Step 1 Population initialization: The population is composed of several individuals.
Each individual has a chromosome with some genes, and each gene represents a fracturing
parameter of the shale gas fracturing horizontal well. Thus, the population initialization
process generates a certain number of individuals, recorded n, by randomly generating the
fracturing parameters.

Step 2 Fitness calculation: Fitness is a standard to measure the quality of individuals,
which is necessary for individual selection. In this study, the 30-day cumulative gas
production obtained by the trained XGBoost model was used as the fitness. The greater the
cumulative gas production, the higher the individual’s fitness.

Step 3 Selection operation: This step mainly selects n pairs of individuals from the
population as parents, which are used to obtain the next generation via crossover and
mutation operation. In this process, each individual has a probability to decide whether to
be selected, which is decided by fitness. Generally, the greater the fitness, the bigger the
selection probability. It is beneficial to maintain the superiority of the population.

Step 4 Calculating the crossover and mutation rates: This step is to obtain crossover
and mutation rates based on the correlation coefficients of the fracturing parameters and
the cumulative gas production.

Firstly, the Spearman correlation coefficient needs to be calculated. Correlation coeffi-
cients, such as Spearman, Pearson, and Kendall, are mainly used to describe the correlation
between two parameters. The Pearson correlation coefficient is usually used for contin-
uous variables with positive distribution and works well only with linear relationships.
Nevertheless, the relationships between the fracturing parameters and the cumulative
gas production are usually nonlinear. The Kendall correlation coefficient is applied to the
rank variables. The Spearman correlation coefficient converts the original variables into
the rank variables and obtains the correlation coefficient by Equation (2). The Spearman
correlation coefficient can calculate the correlation between two variables with linear or
even partial nonlinear correlation and has no requirement for data distribution. Therefore,
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the Spearman correlation coefficient is selected to calculate the correlative coefficients of
the fracturing parameters and the cumulative gas production.

ρi =

n
∑

j=1

(
dij − di

)(
sj − s

)
√

n
∑

j=1

(
dij − di

)2 n
∑

j=1

(
sj − s

)2
(2)

where ρi is the Spearman correlative coefficient of the ith fracturing parameter, and n rep-
resents the number of samples. dij denotes the rank of the jth sample sorted according

to the jth parameter, and
−
d i is the mean rank of the samples sorted according to the ith

fracturing parameter. sj denotes the rank of the jth sample sorted according to the cumulative

gas production, and
−
s is the mean rank of the samples sorted according to the cumulative

gas production. Generally, a more considerable absolute value of the Spearman correlative
coefficient means a stronger correlation between the fracturing parameter and the cumulative
gas production. However, a small value of the correlation coefficient does not mean the
correlation must be weak. In other words, the correlation coefficient can only represent the
importance of parameters to cumulative production to a certain extent. Nevertheless, the
correlation coefficient is still an essential indicator for evaluating correlation.

Secondly, the crossover and mutation rates could be obtained based on the calculated
Spearman correlation coefficients. We decide to give the genes with high Spearman correlative
coefficients low crossover and mutation rates, which are conducive to preserving the superior
genes of individuals. However, genes with high rates do not necessarily mean they will cross
or mutate. Genes with low rates may also cross and mutate. It still retains some randomness,
which is conducive to ensuring the diversity of the population and jumping out of the local
optimum. The crossover and mutation rates could be obtained by Equation (3):

ri =

1− |ρi|
m
∑

i=1
|ρi|

× a (3)

where ri denotes the crossover and mutation rates of the ith gene, and m is the number
of fracturing parameters. A is the control factor, which could limit the crossover and
mutation rates. Mostly, crossover and mutation operations have different values of a, and
the mutation rates are far lower than the crossover rates.

Step 5 Crossover operation: Crossover operation aims to generate new individuals by
crossing one or more genes on two chromosomes based on the calculated crossover rates.
In this process, the genes with high crossover rates are more likely to be selected to cross,
but not necessarily. It is conducive to preserving dominant genes while ensuring diversity.

Step 6 Mutation operation: The new individuals obtained by crossover operation
must be implemented in the mutation operation to obtain the next generation population.
The mutation randomly changes the fracturing parameter values corresponding to the
chromosome genes. Similar to crossover operation, the genes with high mutation rates are
more likely to be selected to achieve the mutation operation.

Step 7 Output the best solution: The next generation population could be obtained
after Crossover and mutation operations. Then, the next step is judging whether it reaches
the maximum iterations. If reached, the individual with the best fitness will be outputted
as the best solution. If not, this new generation population will return to Step 2.
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3. Application
3.1. Data Description

In this study, CMG commercial numerical simulation software was used to simulate
shale gas multistage fracturing horizontal well development to obtain the geological,
fracturing and production data, which could be used to build the production prediction
model. For the production prediction model, the input consists of geological parameters,
including porosity and permeability, and fracturing parameters, including the number of
fracturing sections, the length of the horizontal well, fracture width and fracture half-length.
Furthermore, the output is the cumulative gas production in 30 days. As shown in Figure 2,
the shale gas reservoir established by CMG has a dimension of 3000 × 3000 × 100 m. The
grid size is 200 × 200 × 10, wherein the grid step size in the I direction and J direction is
15 m, and that in the K direction is 10 m. The pertinent reservoir information is shown in
Table 1. Moreover, the shale gas horizontal well is established in the fifth layer, and the
fractures produced by perforation are vertical.
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Table 1. Basic gas reservoir parameters.

Basic Parameters Value Units

Initial reservoir pressure 28.9 Mpa
Total production time 30 day

Depth to the tops of grid blocks 2890 m
Depth to water–gas contact 4500 m

Producing the data takes three steps. First, the geological and fracturing parameters
are produced randomly in the reasonable value ranges, shown in Table 2. Second, these
parameters are inputted into the above CMG numerical model for simulation calculation to
obtain the 30-day cumulative gas production of the horizontal well. Third, the dataset is ob-
tained by repeating the two steps. In this study, the process was repeated by programming,
and a dataset with 500 groups of samples was obtained. Figure 3 gives the distributions
between input parameters and 30-day cumulative gas production.

Table 2. The values of input parameters.

Input Parameters Units Value

Geological
parameters

Porosity % 5–15
Permeability mD 0.0001–0.001

Fracturing
parameters

The number of fracturing sections \ 10–30
The length of the horizontal well m 300–3000

Fracture width m 50–250
Fracture half-length m 0.001–0.005
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3.2. Building the Productivity Prediction Model

This paper uses the XGBoost algorithm to establish the production prediction model
for fracturing horizontal wells. Six parameters, including porosity, permeability, the number
of fracturing sections, the length of the horizontal well, fracture width and fracture half-
length, were used as the input of the production prediction model of fracturing horizontal
wells. Furthermore, the output is the 30-day cumulative gas production. Then, 80% of
the samples from the dataset above were randomly selected as the training set, and the
remaining 20% were used as the testing set. In addition, 10% of samples from the training
set were used as the validation set to achieve cross-validation. The training set was used
to train the production prediction model based on the XGBoost algorithm. Moreover, the
hyperparameter combination of the XGBoost model was optimized with the grid search
method, and the results are shown in Table 3. In the process, the average Mean Absolute
Errors (MAEs) of cross-validation is 3.68%, which shows that the XGBoost model has a low
training error.

Table 3. Summary of optimal hyperparameter settings for the XGBoost model.

Hyperparameters Value

booster gbtree
n_estimators 150
max_depth 12

min_child_weight 9
eta 0.023

gamma 0.15
subsample 1
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In addition, the samples in the testing set were used to validate the prediction per-
formance of the trained XGBoost model. The geological and fracturing parameters of the
samples in the testing set were inputted into the trained XGBoost model, and the predicted
cumulative gas productions were obtained. Figure 4 gives the comparison plot of the
predicted and actual cumulative gas productions. From the plot, it can be seen that the
predicted values are close to the actual values. More precisely, the MAE was calculated
to show the performance of the trained XGBoost model in the testing set, and the value
is 4.06%. Moreover, R2, a standard statistical indicator, was used to show the prediction
accuracy of the XGBoost model, and the value is 0.9811. Both indicators show that the
trained XGBoost model performs excellently in predicting cumulative gas production.
Therefore, the trained XGBoost model can replace the numerical model for the fracturing
parameter optimization.
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3.3. Fracturing Parameters Optimization

The purpose of fracturing parameters optimization is to find the optimal fracturing
parameter combination with the maximum cumulative gas production based on the produc-
tion prediction model. However, in this study, the trained XGBoost model’s input parame-
ters include geological and fracturing parameters. To optimize the fracturing parameters,
the geological parameters should be determined first, and then the optimization algorithm
is used to optimize the fracturing parameters. Thus, nine production prediction models
with determined geological parameters were used for the fracturing parameter optimiza-
tion tests. In the process, we optimized the fracturing parameters with three optimization
methods: GA, SGA, and Stochastic Gradient Descent (SGD), a classical gradient-based
optimization algorithm. For SGA, the mutation and crossover rates were calculated first,
and the control factors of the crossover operation and the mutation operation are 50% and
20%, respectively. The results are shown in Table 4. In addition, for GA, the mutation rate
was 15%, and the crossover rate was 30%. Moreover, for GA and SGA, the population
size was 20, and the maximum iterations were 100. Figure 5 gives the comparison plots
of the optimization results of GA, SGA and SGD. The nine comparison plots show that
the number of iteration steps required for SGA to search the optimal value is less than GA,
and SGA’s optimization results are a little higher than GA’s. It can be seen that SGA has
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obvious advantages in optimization speed. Moreover, SGD has a much faster speed than
SGA thanks to less computation per iteration. Nevertheless, SGA has obviously higher
accuracy in fracturing parameter optimization than SGD. Furthermore, the optimization
results of SGA show significant diversity in different porosity and permeability conditions,
as shown in Table 5.

Table 4. The mutation and crossover rates of each fracture parameter.

Fracturing Parameters Spearman Correlative
Coefficient

Crossover Rate
(%)

Mutation Rate
(%)

the number of fracturing sections 0.794 29.6 11.84
the length of the horizontal well 0.525 36.51 14.6

fracture width 0.356 40.85 16.34
fracture half-length 0.271 43.04 17.21
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Table 5. The optimal fracturing parameters of the nine test samples.

Test Samples

Geological Parameters The Optimal Fracturing Parameters

Permeability (mD) Porosity (%)
The Number of

Fracturing
Sections

The Length of
the Horizontal

Well (m)

Fracture Width
(m)

Fracture
Half-Length (m)

(a) 0.00012 14.8 29 870 0.00478 229.95
(b) 0.0005 14.8 29 2325 0.00475 207.43
(c) 0.00098 14.8 29 1905 0.00415 192.37
(d) 0.00012 10 28 2490 0.00476 244.72
(e) 0.0005 10 28 2685 0.00461 218.92
(f) 0.00098 10 28 2715 0.00447 181.62
(g) 0.00012 5.2 28 2370 0.00496 242.35
(h) 0.0005 5.2 29 1320 0.00484 228.5
(i) 0.00098 5.2 28 1680 0.00488 229.21

Although SGA has an excellent performance in fracturing parameter optimization, it
still has some limitations. First, calculating the Spearman correlation coefficient has specific
requirements with regards to the quantity and quality of the dataset. Second, the Spearman
correlation coefficient can only show a partial nonlinear relationship and roughly represent
the correlation, which might limit the optimization accuracy.

3.4. Robustness Analysis

Robustness analysis is a common way to test the stability of methods. This paper
will test the stability of this method by adding Gaussian noise to the dataset. As shown
in Figure 6, with the increasing noise, the R2 of the XGBoost model is also decreasing.
When we add Gaussian noise to 20%, the R2 of the XGBoost model can still exceed 0.8.
It shows that the XGBoot model has specific stability. In addition, we can find that the
optimal cumulative gas productions obtained by the XGBoost model and SGA are generally
decreasing with the noise increasing. However, as can be seen, the drop in the optimal
cumulative gas production does not exceed 3 × 106 m3 when the noise increases to 20%. It
is acceptable and shows that SGA is relatively stable.

Energies 2023, 16, x FOR PEER REVIEW 10 of 13 
 

 

Table 5. The optimal fracturing parameters of the nine test samples. 

Test Sam-
ples 

Geological Parameters The Optimal Fracturing Parameters 

Permeability (mD) Porosity 
(%) 

The Number of 
Fracturing Sections 

The Length of the 
Horizontal Well (m) 

Fracture 
Width 

(m) 

Fracture 
Half-Length 

(m) 
(a) 0.00012 14.8 29 870 0.00478 229.95 
(b) 0.0005 14.8 29 2325 0.00475 207.43 
(c) 0.00098 14.8 29 1905 0.00415 192.37 
(d) 0.00012 10 28 2490 0.00476 244.72 
(e) 0.0005 10 28 2685 0.00461 218.92 
(f) 0.00098 10 28 2715 0.00447 181.62 
(g) 0.00012 5.2 28 2370 0.00496 242.35 
(h) 0.0005 5.2 29 1320 0.00484 228.5 
(i) 0.00098 5.2 28 1680 0.00488 229.21 

3.4. Robustness Analysis 
Robustness analysis is a common way to test the stability of methods. This paper will 

test the stability of this method by adding Gaussian noise to the dataset. As shown in 
Figure 6, with the increasing noise, the R2 of the XGBoost model is also decreasing. When 
we add Gaussian noise to 20%, the R2 of the XGBoost model can still exceed 0.8. It shows 
that the XGBoot model has specific stability. In addition, we can find that the optimal 
cumulative gas productions obtained by the XGBoost model and SGA are generally de-
creasing with the noise increasing. However, as can be seen, the drop in the optimal cu-
mulative gas production does not exceed 3 × 106 m3 when the noise increases to 20%. It is 
acceptable and shows that SGA is relatively stable. 

0.98 0.96
0.92

0.86
0.82

0% 5% 10% 15% 20%

0.8

1.0

1.2

1.4

R2

Noise ratio

 R2

 30-day cumulative gas production

30

32

34

36

38

40

42

44

46

48

30
-d

ay
 c

um
ul

at
iv

e 
ga

s p
ro

du
ct

io
n 

(1
06 m

3 )

 
Figure 6. The results of robustness tests. The red points denote the optimization results of SGA in 
the different tests. The blue columns represent the R2 of the XGBoost models in the five tests. 

  

Figure 6. The results of robustness tests. The red points denote the optimization results of SGA in the
different tests. The blue columns represent the R2 of the XGBoost models in the five tests.

4. Conclusions and Future Research

In this study, we propose a modified algorithm based on the Spearman correlation
coefficient to rapidly optimize the fracturing parameters of shale gas horizontal wells. The
proposed method could speed up the search for the optimal solution by improving the
crossover and mutation operations based on the Spearman correlation coefficient. The main
improvement is changing the crossover and mutation rates in accordance with correlation,
which results in retaining the dominant genes in the optimization process. Before testing
the performance of SGA, a production prediction model is built by the XGBoost algorithm
based on the dataset obtained by simulating the production process of shale gas fracturing
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horizontal wells. The test results show that the XGBoost model performs well in predicting
the 30-day cumulative gas production. Based on the trained XGBoost model, SGA is used to
optimize the fracturing parameters with the 30-day cumulative production as the optimiza-
tion objective. The optimization results show that SGA has a faster optimization speed than
GA and higher accuracy than SGD. However, SGA still has two limitations. On the one hand,
calculating the Spearman correlation coefficient has specific requirements from the quantity
and quality of the dataset. On the other hand, the Spearman correlation coefficient can only
roughly represent the correlation, which might limit the optimization accuracy.

In future research, we will expand our study based on the following two aspects.
First, the data we used in this study is from the numerical simulation by CMG commercial
numerical simulation software. However, more parameters could be considered in the
oilfield than those in the numerical simulation. Hence, an extension of the proposed method
is that SGA can be used in the horizontal well fracturing optimization in the oilfield. It can
also further test the applicability of SGA. Second, the Spearman correlation coefficient can
only roughly represent the correlation. It might have a slight impact on the population
quality obtained by crossing and variation operations. Thus, another extension is to select
appropriate methods to improve the efficiency of crossover and mutation operations.
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Nomenclature

Acronyms
a the control factor
d the ranks of fracturing parameters
−
d the mean values of fracturing parameters’ ranks
GA Genetic Algorithm
l the loss function of XGBoost
MAE Mean Absolute Error
m the number of fracturing parameters
n the number of samples
r the crossover and mutation rates
s the ranks of the cumulative gas productions
−
s the mean value of the cumulative gas productions’ ranks
SGA the modified Genetic Algorithm combined with the Spearman correlative coefficient
SGD Stochastic Gradient Descent
XGBoost Extreme Gradient Boosting
y the actual value of cumulative gas production
ŷ the predicted value of XGBoost
ρ the spearman correlative coefficient of fracturing parameter
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