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Abstract: Silicon carbide (SiC) metal oxide semiconductor field effect transistors (MOSFETs) have
many advantages compared to silicon (Si) MOSFETs: low drain-source resistance, high thermal
conductivity, low leakage current, and high switching frequency. As a result, Si MOSFETs are
replaced with SiC MOSFETs in many industrial applications. However, there are still not as many
SiC modules to customize for each application. To meet the high-power requirement for custom
applications, paralleling discrete SiC MOSFETs is an essential solution. However, it comes with
many technical challenges; inequality in current sharing, different switching losses, different transient
characteristics, and so forth. In this paper, the detailed MATLAB®/Simulink® Simpscape model of
the SiC MOSFET from the datasheet and the simulation of the half-bridge circuit are investigated.
Furthermore, this paper proposes the implementation of the four-paralleled SiC MOSFET half-bridge
circuit with an improved symmetric gate driver layout. Moreover, a unique laminated busbar
connected directly to the printed circuit board (PCB) is proposed to increase current and thermal
capacity and decrease parasitic effects. Finally, the experimental and simulation results are presented
using a 650 V SiC MOSFET (CREE) double-pulse test (DPT) circuit. The voltage overshoot problems
and applied solutions are also presented.

Keywords: double-pulse test (DPT) circuit; half-bridge; paralleled SiC MOSFETs; symmetric gate
driver layout; laminated busbar; voltage overshoot

1. Introduction

Wide bandgap semiconductor technology is a very popular and growing technology
for numerous industrial applications that require a high power density [1]. SiC-based
semiconductors are especially very common with low drain-source resistance, high thermal
conductivity, high blocking voltage, and high switching frequency compared to the old
semiconductor technology (Si-based) [2]. However, it is challenging to replace Si-based
power components with SiC ones for every customized application due to the unavailability
of a wide range of high-power SiC modules. Paralleling discrete SiC MOSFETs is the critical
solution to increasing the power and current capability of customized systems.

MOSFET paralleling seems like a straightforward process. Additionally, the positive
temperature characteristic of the on-state resistance of the MOSFET helps to balance the
steady-state current of the device. However, it is challenging, especially for high current
ratings. Fabrication mismatches (Rds(on), Vth, etc.), parasitic effects, layout differences, and
so forth must be handled to balance the currents of the paralleled MOSFETs, particularly
in the transient region. Fabrication mismatches of MOSFETs directly affect the switching
action, and any distortion of symmetry of the circuit layout results in different parasitic
effects. These differences cause an imbalance in the current sharing of the paralleled
MOSFETs, resulting in different losses and thermal imbalances. In addition, the system
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must be thermally balanced to protect current sharing and system performance. At that
point, the increased current capacity provided by paralleling makes thermal problems
difficult to solve on the PCB. A laminated busbar can be used to prevent the PCB from
carrying a high current, which behaves as a heat sink and releases heat. Although the
laminated busbar decreases the inductance of the current path, which reduces the voltage
overshoot caused by the switching action, an increase in the switching speed of the SiC
MOSFETs can also cause voltage overshoot problems.

Studies have been performed on the current sharing of paralleled MOSFETs, which
can be categorized into two groups, passive and active current balancing. In general, active
current-balancing methods require high-bandwidth sensors and complex current-balancing
circuits. Besides that, passive current balancing methods increase the size of the circuit by
adding inductors, capacitors, and chokes acting as passive circuit elements. In Ref. [3], the
current imbalance of two paralleled SiC MOSFETs in the transient switching region was
compensated with an active current balancing method. In this method, the difference in
unbalanced currents is sensed with a differential current transformer. Sensed unbalance is
eliminated by the active gate control circuit. According to its results, this method works fine
in the transient region; however, the current balance is more distorted in the steady-state
region. Furthermore, paralleling more than two MOSFETs with this method seems more
complicated. Instead of using a differential current transformer to measure the difference
of the magnitude of unbalance in currents, a planar Rogowski coil-based current sensor
was proposed in Ref. [4]. However, using a current sensor circuit increases the complexity
of the system. Moreover, in Ref. [5], the current sharing of paralleled SiC MOSFET modules
is balanced with the active gate driver circuit. The edge and slopes of the drain currents
are detected with the help of a voltage of source inductance. The gate driver voltage is
dynamically adjusted according to the drain currents. This method provides balanced
current sharing between SiC modules after a few switching cycles. However, dynamic
control of the gate driver voltage increases the complexity of the circuit. In addition, a
detailed analysis is required to detect the edges and slopes of the drain current of the
parallel units. A passive transient current balancing circuit is used for three parallel SiC
half-bridge units in Ref. [6]. This circuit provides a current balance, but it increases the
size of the circuit by adding an inductor to the power line. Additionally, the effectiveness
of that current-balancing circuit in paralleling a discrete SiC MOSFET should be further
analyzed because it was found in Ref. [7] that the parallel half-bridge unit has a smaller
current imbalance compared to the paralleling of the die. In another study, Ref. [8], peak
currents of paralleled SiC MOSFETs were balanced with the help of drive-source resistance
and coupled power inductors. However, detailed analysis is required to select the effective
values of the passive elements. Additionally, these elements increase the size of the circuit.
On the other hand, the current balance of the paralleled SiC MOSFETs was provided using
only the differential mode choke in Ref. [9]. This method is successful for current balancing
in both transient and steady-state regions. However, adding a differential mode choke to
the power line increases the circuit size, and paralleling more than two MOSFETs increases
the difficulty of the mechanical implementation of chokes. Furthermore, a detailed analysis
is required to determine the properties of the differential-mode choke.

The main purpose of this work is to construct a switching leg composed of paralleled
SiC MOSFETs that does not include any passive or active current balancing circuit without
any current imbalance. The proposed half-bridge circuit schematic composed of four
paralleled SiC MOSFETs is shown in Figure 1. One gate driver circuit is used for the four
parallel connected SiC MOSFETs. For the half-bridge circuit topology, two gate driver
circuits are used, one for the high side and one for the low side of the leg. DC source and
DC-Link capacitance are connected to the DC side of the circuit. R and L are the passive
loads for the circuit. All of the connections are provided on the PCB, except DC and phase
connections. These connections are provided with the help of a laminated busbar.
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Figure 1. Proposed half-bridge topology with four paralleled SiC MOSFETs.
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Figure 1. Proposed half-bridge topology with four paralleled SiC MOSFETs.

This paper is composed of five sections. In Section 2, the simulation model of the SiC
MOSFET is explained. In Section 3, the hardware of the system is detailed. Experimental
results are shown in Section 4. Finally, Section 5 summarizes the critical points of this paper.

2. Simulation Model of SiC MOSFET

Modeling of switching instants for any switching device is difficult for the simulation
environment due to the nonlinearity of elements and the limitation of computation per-
formance. In particular, modeling wide-bandgap semiconductors is more difficult due to
the high switching speed, which causes a challenging trade-off between computation time
and complexity of modeling. Mainly, the modeling of semiconductors can be categorized
into two groups: analytical and behavioral models. At this point, behavioral models are
more appropriate compared to analytical models because equations of physical modeling
that include the nonlinearity of elements require excessive computation. In Ref. [10], the
analytical model of SiC MOSFET in a DPT circuit is explained in detail; however, intensive
equations are used. In the same way, a detailed analytical model of the SiC MOSFET for the
bridge-leg configuration is constructed in Ref. [11]. However, it also requires a complicated
equation. On the contrary, behavioral models use the I-V and the capacitance curves (C-V)
of the device. Both of them can be obtained easily from the datasheet. Data sets can be
extracted from datasheet graphs with the help of any curve-fitting tool [12]. In this research,
the Plotdigitizer [13] program is used to accurately extract data sets from datasheet graphs.

Data sets are obtained from the datasheet of the Wolfspeed CREE-C3M0015065K SiC
MOSFET [14], which is shown in Tables 1–4. Tables 2 and 3 show the MOSFET Ids current
with respect to the Vgs&Vds voltages. The datasheet provides first and third quadrant
graphs of Ids&Vds for different Vgs voltages. The first quadrant graph includes the range of
0 V–10 V for Vds and 7 V, 9 V, 11 V, 13 V, and 15 V values for Vgs. Furthermore, the third
quadrant graph includes the range of −8 V–0 V for Vds and values of 0 V, 5 V, 10 V, and
15 V for Vgs. According to Tables 2 and 3, missing parts of the datasets are calculated using
a linear interpolation method. Although the Ids graph is non-linear, the linear interpolation
method is a handy tool to obtain the approximated Ids graph for different Vgs voltages. The
reason is that approximated curves are close to each other, and they can be considered
parallel. Moreover, it also makes the calculation process easier. Negative Vgs values are
added to the bottom of Tables 2 and 3 with zero current value because this part is modeled
under the body diode model. Table 1 shows the body diode Ids current with respect to the
Vgs&Vds voltages. The body diode current graph from the datasheet provides the range
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of −7 V–0 V for Vds and 0 V, −2 V, and −4 V for Vgs. However, 0 V, −2 V values for Vgs
are not modeled due to the customization options of a simulation program. Ids current
values for Vds = −10 V, −9 V, and −8 V are calculated with a linear interpolation method for
the body diode. Table 4 shows the internal capacitance values with respect to Vds voltage.
Internal capacitances are Ciss (input capacitance), Crss (reverse transfer capacitance), and
Coss (output capacitance).

Table 1. SiC MOSFET body diode Ids current with respect to the Vgs&Vds voltages at 25 ◦C.

Ids (A) Vds (V)

Vgs (V) −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

−4 −444 −356 −268 −180 −92 −39 −11 −0.9 −0.001 −0.0001 0

Table 2. First quadrant SiC MOSFET Ids current with respect to the Vgs&Vds voltages at 25 ◦C.

Ids (A) Vds (V)

Vgs (V) 0 1 2 3 4 5 6 7 8 9 10

15 0 65 127 185 243 301 359 417 475 533 591
13 0 57 107 154 197 240 283 326 369 412 455
11 0 44 81 114 143 170 194 216 238 260 282
10 0 36 65.5 91 113 132.5 149.5 165 179.5 193.5 207
9 0 28 50 68 83 95 105 114 121 127 132
7 0 13 21 27 31 34 37 387 39 41 42
5 0 9.28 15 19.28 22.14 24.28 26.42 27.14 27.85 29.28 30
0 0 0 0 0 0 0 0 0 0 0 0

−0.001 0 0 0 0 0 0 0 0 0 0 0
−8 0 0 0 0 0 0 0 0 0 0 0

Table 3. Third quadrant SiC MOSFET Ids current with respect to the Vgs&Vds voltages at 25 ◦C.

Ids (A) Vds (V)

Vgs (V) −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

15 −817 −734 −651 −568 −485 −402 −319 −236 −153 −70 0
13 −803.4 −720.4 −637.4 −554.4 −471.4 −388.4 −305.4 −222.4 −139.4 −62 0
11 −789.8 −706.8 −623.8 −540.8 −457.8 −374.8 −291.8 −208.8 −125.8 −54 0
10 −783 −700 −617 −534 −451 −368 −285 −202 −119 −50 0
9 −734 −656 −578 −500 −422 −344 −266 −188 −107.2 −43 0
7 −636 −568 −500 −432 −364 −296 −228 −160 −83.6 −29 0
5 −538 −480 −422 −364 −306 −248 −190 −132 −60 −15 0
0 −464 −395 −326 −257 −188 −119 −69 −34 −2.7 −0.3 0

−0.001 0 0 0 0 0 0 0 0 0 0 0
−8 0 0 0 0 0 0 0 0 0 0 0

Table 4. SiC MOSFET capacitance table for Vds voltage at 25 ◦C.

Vds (V)
C (pF) 0 3 10 12.5 20 30 40 50 100 150 200 300 400 500 600 640

Ciss 6570 5711 5284 5122 5122 5122 5202 5202 5202 5202 5122 4975 4975 4897 4897 4897
Coss 5202 3313 2013 1522 1205 969 816 744 528 431 381 303 289 289 289 285
Crss 1834 804 326 138 100 78 65 58 43 36 32 27 27 28 28 28

MOSFET and diode models of Simscape blocks of the MATLAB®/Simulink® have
many options to customize the model. The obtained datasets are implemented in Simscape
blocks using this property; therefore, most of the non-linear parts of the switching instant
are modeled. Moreover, a reverse recovery model of the body diode is implemented with
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the “charge dynamics” option of the Simscape diode model. The peak reversed current,
initial forward current, rate of change of current, and charge quantity properties from the
datasheet are implemented in the model. However, the datasheet provides these properties
only for the 175 ◦C junction temperature and 55.8 A initial current value. Therefore, only
that condition is modeled for reverse recovery. In addition, sample time and solver type are
essential factors for simulation time. The backward Euler solver is used with the 1 × 10−9

sample time, which many computers can handle. This sample time is obtained with a
trial-and-error method according to the trade-off between the processing time and the
resolution of the results. It is mainly affected by the switching frequency, which is 12.5 kHz.
A double-pulse test (DPT) circuit is used to verify the MOSFET and diode models, shown
in Figure 2. In the DPT circuit, a high-side MOSFET is switched off for the entire switching
period. Its body diode is used as a free-wheeling diode for the parallel connected inductor,
but low side MOSFET is switched with 15 V/−4 V PWM. The Rg value is set to 5 Ω ,
and VDC is selected as 400 V. Values of passive elements and applied voltages are selected
according to the DPT circuit of the MOSFET datasheet to compare the same cases. When
the low-side switch is turned on, current flows through the inductor and low-side MOSFET.
For that period, the current magnitude is increased according to the well-known formula
given in Equation (1); therefore, the switching current value of the low-side MOSFET is
adjusted by modifying the duty cycle. Besides that, the current on the inductor flows
through the body diode of the high-side MOSFET when the low-side switch is turned off.
In this way, the MOSFET’s turn-on and turn-off losses can be calculated.

diL
dt

=
VDC

L
(1)

where VDC is the applied DC voltage, iL is the inductor current, and L is the induc-
tance value.
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Figure 2. Double Pulse Test (DPT) circuit.Figure 2. Double−pulse test (DPT) circuit.

Comparison of switching losses is a valuable indicator to verify the simulation model.
Therefore, switching losses are calculated with the DPT circuit in the simulation program
for the low-side MOSFET. The calculated values are compared with the datasheet values;
the results are shown in Table 5. To compare the accuracy of results, total loss error (TLE)
calculation is used, which is shown in Equation (2). As seen in Table 5, the maximum
mismatch of the total error is less than 10% for all current ratings. The turn-on loss
mismatch is the significant portion of the mismatch because the turn-off losses are closer
to the datasheet values than the turn-on losses. When the low-side MOSFET is switched
to turn-on, the current of the inductor and the reverse recovery current of the high-side
MOSFET body diode are superposed. Therefore, the main reason behind the mismatch of
the turn-on loss is caused by the reverse recovery model of the body diode. As explained
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above, only the 175 ◦C junction temperature and 55.8 A initial current value case of the
diode can be implemented. However, the mismatch in the turn-on loss, less than 10% of the
total loss mismatch, is in an acceptable range. Furthermore, the current and voltage curves
of the MOSFET and diode are implemented in detail in the simulation model. For this
reason, the conduction losses calculated in the simulation are the same as the conduction
losses in the datasheet based on the value Rds.

TLE(%) =
(Eon + Eo f f )simulation

(Eon + Eo f f )datasheet
× 100 (2)

where, TLE is the total loss error, Eon and Eo f f are the turn-on and turn-off energies of the
MOSFET, respectively.

Table 5. SiC MOSFET SW loss comparison table at 25 ◦C.

SW Loss (Datasheet) SW Loss (Simulation) Total Loss

Ids (A) Eon (µJ) Eof f (µJ) Eon (µJ) Eof f (µJ) Error (%)

30 231 95 209.5 99.28 5.28
40 287 156 286.1 168.4 2.59
60 416 316 468.3 305.3 5.68
70 488 406 577.2 379.9 7.05

Simulation of Half-Bridge Circuit with Four Paralleled SiC MOSFET

The half-bridge circuit with four paralleled SiC MOSFET, as shown in Figure 1, is run
with the obtained model of the SiC MOSFET in the simulation program. The laminated
busbar model is implemented into the simulation model by equivalent resistance, capac-
itance, and inductance values. These values are obtained by measurement with an LCR
meter. The gate resistance of 10 Ω is used for the SiC MOSFETs, and the 220 µH inductor is
used as a load. Furthermore, 82 µF capacitance is used for the DC-Link. In the simulation,
equal current sharing is observed between parallel connected MOSFETs. However, voltage
overshoot problems are observed in the Vds voltage when a turn-off case is applied. For the
50 A Ids current of MOSFETs, 416 V overshoot is observed for the 300 V switching voltage.
That corresponds to 38% voltage overshoot. The applied switching waveform and the
voltage overshoot are shown in Figure 3.
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Figure 3. Simulation results, (a) applied waveform, (b) turn-on waveform, (c) turn-off waveform.

3. Hardware Design and Description

In this part, the design of the gate driver circuit and the layout of the power circuit are
explained in detail. First, the calculation of the power of the gate driver circuit, the layout
design, and the placement are given. Then, the high-voltage part of the half-bridge circuit
is described.

3.1. Gate Driver Design

Using the same gate driver circuit for parallel MOSFETs has advantages compared
to separated MOSFETs in terms of circuit size and the number of components. However,
this comes with challenges in power requirements and gate driver layout during the circuit
design process. In this study, one gate driver is used for four paralleled MOSFETs, one for
the high side and one for the low side of the half-bridge. Separated turn-on gate resistors,
turn-off resistors, and Miller protection paths are used to decrease interference between
devices. Parallel devices increase the power requirements of the gate drive circuit. The gate
driver circuit must be the source and sink of the peak gate current and average current.
The average current can be calculated with Equation (3) [15]. To calculate the worst case,
the switching frequency can be higher than the planned frequency. The gate charge value
is taken from the datasheet.

Igate(avg) = f × Q × n

= 20 kHz × 188 nC × 4 (3)

= 15.04 mA

where, Q is the gate charge, f is the switching frequency, and n is the number of parallel
devices.

The average gate current is small compared to the peak gate current. Because of
that, the peak current must be checked. The peak gate current of the gate driver circuit is
calculated using Equation (4) [16]. Rg(int) of the MOSFET is 1.5 Ω, from the datasheet. The
datasheet advises that Rg is taken as 5 Ω.

Igate(peak) =
(VG(on) − VG(o f f ))

Rg(ext) + Rg(int)
× n

=
15 V − (−4 V)

5 Ω + 1.5 Ω
× 4 (4)

= 11.69 A
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where, Rg(ext) refers to the external gate resistance, Rg(int) refers to the internal gate resis-
tance of the device, VG(on) and VG(o f f ) refer to the turn-on and turn-off gate voltages of the
device, respectively.

According to the calculations, a 10 A-rated gate driver integrated circuit is selected.
This current rating is lower than the required peak current; however, capacitors are known
to supply a large portion of the peak current. Furthermore, 70% of the peak current is
enough according to Ref. [17] for a non-oscillated gate loop.

All parallel connected MOSFETs must reach the gate signal at the same instant. This is
an important point for the equal current distribution between MOSFETs. The laminated
busbar technique is used in Ref. [18] for the gate signal loop. However, it is not the
preferred solution because it will cause an increase in parasitic capacitance. As a result, the
switching speed slows down, and the switching losses increase [19]. Moreover, a slower
switching speed increases the current mismatch between paralleled SiC MOSFETs [20]
because the mismatch of the device parameters becomes more effective by increasing the
switching time. Although the parasitic inductances of the gate signal paths in the devices
are decreased, symmetry and equality of the gate signal path will be lost. As a result, the
inequality in the propagation delay of the gate signal path causes asynchronous switching
and current mismatch between parallel MOSFETs. To protect against a current mismatch,
the parasitic effects of asymmetric layout must be minimized. The same line inductance
and resistance of the gate signal paths of the paralleled devices are provided with the same
trace length. Figure 4 shows the applied PCB tracing. The yellow trace implies the turn-on
path, and the blue trace indicates the turn-off path of the gate signal path of the MOSFETs.
As seen from the layout, the gate signal path is divided with the power of two, providing a
symmetric and equal trace from every discrete MOSFET to the source of the gate signal.

(a)

Figure 4. Cont.
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(b)

Figure 4. Layout of the gate driver circuit, (a) Gate turn-on path “yellow trace”, (b) gate turn-off path
“blue trace”.

A high dV/dt causes a Miller current to flow through the Miller capacitance (Cgd)
during switching. The Miller current becomes dangerous while switching off the MOSFET
because the current caused by high dV/dt increases the gate voltage. As a result, the
Miller current can cause hazardous damage to the switches, such as a false turn-on and
shoot-through. To avoid that, Active Miller Clamp protection is used. Basically, that circuit
sinks the excessive Miller current and allows the gate voltage to remain constant. The
selected gate driver circuit has this feature. However, the Active Miller Clamp protection
pin of the gate driver integrated circuit ‘CLMPI’ cannot directly connect the gate of the
parallel connected MOSFETs due to the interference between switches. Because any ringing
of the gate voltage of any of the parallel-connected MOSFETs will reflect that to the other
MOSFETs, which will result in a gate voltage ringing for all parallel-connected MOSFETs. To
decrease the interference between the MOSFETs, the diodes are placed separately between
the gate of the parallel-connected MOSFETs and the CLMPI pin of the gate driver integrated
circuit, shown in Figure 5. A diode is preferred to the resistor because the voltage drop on
the diode does not change substantially with respect to the current flow. It is important that,
while the Miller current is sinking [21], the gate voltage of the MOSFET must not increase
due to the voltage drop on the diode in order not to cause a false turn-on. Additionally, a
symmetric layout is used to prevent a mismatch between parasitic elements on the Miller
current path, shown in Figure 6. As a result of that, the inequality between gate voltages of
the parallel connected MOSFETs is prevented while the Active Miller Clamp protection is
working.
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3.2. High Voltage Layout

Placing high voltage and high current paths on the printed circuit board (PCB) comes
with many challenges. It increases the difficulty of the thermal and electrical design of
the PCB. Furthermore, it can cause electrical interference between the low-voltage and
high-voltage sides of the circuit. In addition, isolation and physical limitations make the
design process more difficult. Therefore, a unique laminated busbar is designed to separate
the high-voltage side of the circuit from the PCB. A symmetric conductor path (like in
the gate driver side) instead of a laminated conductor plane is not preferred for the high
voltage side of the circuit because it is very hard to design a laminated, symmetric and low
parasitic inductance busbar. The laminated busbar is shown in Figure 7, which comprises
three laminated layers from top to bottom; positive, negative, and output layer, respectively.
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The positive and negative sides of the DC voltage are laminated on the busbar to decrease
parasitic inductance. The output layer refers to the midpoint of the half-bridge circuit. DC
source and load connections are provided by the screw holes on the busbar. All layers
of the laminated busbars have many discrete thin legs to provide a discrete connection
for every discrete parallel connected MOSFET and DC-Link capacitor on the PCB. These
legs are easily soldered on the vias on the PCB. Current sharing of the devices is provided
on the busbar through these discrete connections. This method provides a low parasitic
inductance, better thermal performance and ease of mount.

62 mm
122 mm

15 mm

Figure 7. Laminated busbar.

4. Experimental Verification

In this part, the experiments and test setup are explained in detail. The printed
circuit test board is given in the test setup. Furthermore, the measurement devices and
measurement points are also explained. Then, experimental tests and results are described.
The current sharing performance and switching characteristics of parallel connected discrete
SiC MOSFETs are examined.

4.1. Test Setup

The double-pulse test circuit without a resistive load, as seen in Figure 1, is constructed
for experiments. Four WolfSpeed Cree-C3M0015065K SiC MOSFETs [14] with 10 Ω gate
resistance are connected in parallel for both sides of the half-bridge circuit. 220 µH inductor
is used as a load. 80 µF film capacitor and 8 µF Ceralink capacitors [22] are used as a
DC-Link capacitance. The top side and bottom side of the laminated busbar implemented
printed circuit test board can be seen in Figure 8a,b, respectively. A liquid cooling system is
used to cool down the MOSFETs. Experiments are carried out for the 300 V DC-Link voltage
and 50 A Ids current per MOSFET. For measurements, Tektronix MDO 3034 oscilloscope
is used with the following probes: Tektronix TRCP0300 Rogowski Coil (300 A-20 mV/A),
CWT-PEM Rogowski Coil (300 A-20 mV/A), Tektronix TMDP0200 (75 Vpk), Tektronix
THDP0200 (1500 Vpk). Currents of two MOSFETs which are farthest from each other are
measured to observe the worst case of current mismatch. Tektronix TMDP0200 (75 Vpk) is
used to measure the Vgs voltage and Tektronix THDP0200 (1500 Vpk) is used to measure the
Vds voltage of the MOSFETs. The established test setup can be seen in Figure 9.
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Figure 9. Experimental test setup.

4.2. Experimental Results

Several experimental tests were carried out to examine circuit performance. For the
described test setup, approximately equal current sharing is achieved; on the other hand,
the drain-source voltage overshoot problem appeared. A triple pulse is applied instead of a
double-pulse to observe the higher voltage overshoot with increasing the load current. For
all-scope measurement, the green waveform implies the Vgs voltage, the blue waveform
implies the Vds voltage, and the cyan and purple waveforms imply the Ids current of two
furthest MOSFETs.

Experimental tests were carried out by changing the Ceralink capacitance [22] value
and position to overcome the overshoot problem of the drain-source voltage. Three different
cases were compared, where these are:

1. 2 µF Ceralink capacitance on PCB
2. 2 µF Ceralink capacitance on PCB + 6 µF Ceralink capacitance located on the DC-Link

input of busbar
3. 2 µF Ceralink capacitance on PCB + 6 µF Ceralink capacitance located through discrete

MOSFETs connected in parallel.
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For case-3, 6 µF Ceralink capacitance located through discrete MOSFETs connected in
parallel is shown in Figure 10. Red capacitors imply the 1 µF Ceralink capacitor. A total of
6 µF capacitance is distributed through discrete MOSFETs connected in parallel.
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Figure 10. Location of 6 µF Ceralink capacitance connected in parallel through discrete MOSFETs.Figure 10. Location of 6 µF Ceralink capacitance connected in parallel through discrete MOSFETs.

The behavior of the maximum voltage overshoot that appeared in the first case is
similar to the simulation. The applied triple pulse test waveform is shown in Figure 11a.
Zoomed maximum current scope images for the turn-on and turn-off cases are shown in
Figure 11b,c, respectively. As seen in the results, 38% voltage overshoot occurred, which is
similar to the simulation. In the second case, 6 µF Ceralink capacitances [22] are located
on the DC-Link input of the busbar. Copper sheets are used for the implementation. This
improvement provides that voltage overshoot is decreased to 26%. Scope images of the
applied pulse waveform, turn-on, and turn-off cases can be seen in Figure 12.

For the last case, distributed arrangement of the capacitors, connections of the capac-
itors are provided with the copper sheet. The voltage overshoot decreases to 24% with
this improvement. The scope images of the applied pulse waveform, turn-on, and turn-off
cases can be seen in Figure 13.

The maximum 460 V DC-Link voltage is tested in this setup. 87.5 A load current
passed per MOSFET, a total of 350 A load current is passed in the circuit. 23% voltage
overshoot is observed. Scope images of the applied pulse waveform, turn-on, and turn-off
cases can be seen in Figure 14. An increase in the ringing for the turn-off case is caused by
the high-voltage DC source. 350 A is a little higher than its current rating. The results of
the experimental tests from the voltage overshoot point of view are shown in Table 6.
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Figure 11. 2 µF Ceralink capacitance on PCB, (a) Triple pulse test waveform, (b) Gate−source voltage
waveform, (c) Drain−source voltage waveform.
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Figure 12. Extra 6 µF Ceralink capacitance located on the DC−Link input of busbar, (a) Triple pulse
test waveform, (b) Gate−source voltage waveform, (c) Drain−source voltage waveform.
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Figure 13. Extra 6 µF Ceralink capacitance located through discrete MOSFETs connected in paral-
lel, (a) Triple pulse test waveform, (b) Gate−source voltage waveform, (c) Drain−source voltage
waveform.
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Figure 14. Maximum DC−link voltage case, (a) Triple pulse test waveform, (b) Gate−source voltage
waveform, (c) Drain−source voltage waveform.
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Table 6. Vds overshoot comparison table.

Case Ids(A) Switching Voltage (V) Overshoot Voltage (V) Overshoot (%)

Case-1 50 300 416 38
Case-2 50 300 380 26
Case-3 50 300 372 24

Case-Max. 87.5 460 566 23

Parallel connected SiC MOSFET currents for the discretely located capacitance case are
shown in Figure 15. The observed maximum steady-state current mismatch is 3 A, and the
maximum transient current mismatch is 11 A. The observed maximum current mismatch is
approximately 20%. Switching losses of the paralleled SiC MOSFETs are shown in Table 7.
The total loss mismatch percentage is calculated based on the average total losses of the
paralleled SiC MOSFETs. The observed maximum total loss mismatch is 6.2%. Furthermore,
the proposed half-bridge circuit test case and test results are shown in Table 8. These values
are in the acceptable range for many applications. Finally, the advantages and limitations of
the proposed method are summarized in Table 9. There is no need for the active gate driver
circuit, the active current balancing circuit, the passive filter, and complex calculations with
the help of this method.
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Figure 15. Paralleled SiC MOSFET currents.

Table 7. Switching loss comparison.

MOSFET Eon (µJ) Eof f (µJ) Total Loss (µJ) Total Loss Mismatch (%)

MOSFET-1 406 562 968 3.12
MOSFET-2 406 562 968 3.12
MOSFET-3 437 562 999 0.025
MOSFET-4 500 562 1062 6.27

Table 8. Proposed half-bridge circuit results.

Case Voltage (V) Current (A) Voltage Overshoot (%) Maximum Current Mismatch (%) Total Switching Loss Mismatch (%)

Discrete Located Capacitor 300 50 24 22 6.27
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Table 9. Proposed half-bridge circuit advantages and limitations.

Advantages Limitations

No active gate driver Laminated busbar required
No active current balance circuit Circuit parasitics depend on the busbar and PCB design

No big passive filter circuit
No complex calculation

Easy to implement

5. Conclusions

In this article, it was explained why the parallel connection is needed for the discrete
SiC MOSFETs instead of the modules. Additionally, the technical challenges of parallel
connection of SiC MOSFETs were explained briefly. In the simulation model section,
the MATLAB®/Simulink® Simscape model of the Wolfspeed CREE C3M0015065K SiC
MOSFET [14] was explained in detail. Furthermore, the simulation model was verified by
comparing the switching losses via the double-pulse test circuit. The observed maximum
loss mismatch is smaller than 10%. Moreover, a half-bridge circuit with four paralleled
SiC MOSFET was constructed in the simulation program, and equal current sharing was
shown; however, the voltage overshot problem occurred. A 36% overshoot was observed
in the simulation. In the hardware design, the gate driver design, layout improvements,
and laminated busbar model were shown in detail. The required gate driver current
was calculated at approximately 10 A. The same voltage overshoot problem faced in the
simulation program also appeared in the experimental test setup. The voltage overshoot
decreased from 38% to 24% with an applied capacitor-based solution method. The results
show that the maximum current mismatch is 6% for steady-state and 22% for transient
with the described experimental setup. Additionally, this method has many advantages
with the circuit size, with no active circuit and no big passive filter requirements. However,
the effect on the voltage overshoot of the geometry and material type of the busbar can be
further investigated. Moreover, symmetric and non-symmetric layout effects on the current
mismatch can also be further investigated.
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