
Citation: Estrada-López, J.J.;

Vázquez-Castillo, J.; Castillo-Atoche,

A.; Osorio-de-la-Rosa, E.;

Heredia-Lozano, J.; Castillo-Atoche,

A. A Sustainable Forage-Grass-Power

Fuel Cell Solution for

Edge-Computing Wireless Sensing

Processing in Agriculture 4.0

Applications. Energies 2023, 16, 2943.

https://doi.org/10.3390/en16072943

Academic Editor: Rocío Pérez de

Prado

Received: 4 February 2023

Revised: 4 March 2023

Accepted: 21 March 2023

Published: 23 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

A Sustainable Forage-Grass-Power Fuel Cell Solution for
Edge-Computing Wireless Sensing Processing in
Agriculture 4.0 Applications
Johan J. Estrada-López 1 , Javier Vázquez-Castillo 2 , Andrea Castillo-Atoche 3 , Edith Osorio-de-la-Rosa 4 ,
Julio Heredia-Lozano 5 and Alejandro Castillo-Atoche 5,*

1 Faculty of Mathematics, Autonomous University of Yucatan, Mérida 97000, Mexico;
johan.estrada@correo.uady.mx

2 Informatics and Networking Department, Universidad Autónoma del Estado de Quintana Roo,
Chetumal 77019, Mexico

3 Chemistry and Biochemistry Department, Tecnológico Nacional de México/Instituto Tecnológico de Mérida,
Mérida 97118, Mexico

4 Informatics and Networking Department, CONACYT-Universidad Autónoma del Estado de Quintana Roo,
Chetumal 77019, Mexico

5 Mechatronics Department, Autonomous University of Yucatan, Mérida 97000, Mexico
* Correspondence: acastill@correo.uady.mx

Abstract: Intelligent sensing systems based on the edge-computing paradigm are essential for the
implementation of Internet of Things (IoT) and Agriculture 4.0 applications. The development of
edge-computing wireless sensing systems is required to improve the sensor’s accuracy in soil and data
interpretation. Therefore, measuring and processing data at the edge, rather than sending it back to a
data center or the cloud, is still an important issue in wireless sensor networks (WSNs). The challenge
under this paradigm is to achieve a sustainable operation of the wireless sensing system powered with
alternative renewable energy sources, such as plant microbial fuel cells (PMFCs). Consequently, the
motivation of this study is to develop a sustainable forage-grass-power fuel cell solution to power an
IoT Long-Range (LoRa) network for soil monitoring. The stenotaphrum secundatum grass plant is used
as a microbial fuel cell proof of concept, implemented in a 0.015 m3-chamber with carbon plates as
electrodes. The BQ25570 integrated circuit is employed to harvest the energy in a 4 F supercapacitor,
which achieves a maximum generation capacity of 1.8 mW. The low-cost pH SEN0169 and the SHT10
temperature and humidity sensors are deployed to analyze the soil parameters. Following the edge-
computing paradigm, the inverse problem methodology fused with a system identification solution
is conducted, correcting the sensor errors due to non-linear hysteresis responses. An energy power
management strategy is also programmed in the MSP430FR5994 microcontroller unit, achieving
average power consumption of 1.51 mW, ∼19% less than the energy generated by the forage-grass-
power fuel cell. Experimental results also demonstrate the energy sustainability capacity achieving a
total of 18 consecutive transmissions with the LoRa network without the system’s shutting down.

Keywords: Agriculture 4.0; edge computing; energy harvesting; IoT; plant microbial fuel cells;
wireless sensor networks

1. Introduction

The growth of the Internet of Things (IoT) has had a significant impact on the devel-
opment of novel wireless sensor networks (WSNs) and their applications in areas such as
smart cities [1,2], structural health monitoring [3,4], precision agriculture [5,6], and smart
homes [7,8]. More recently, the application of edge computing is being considered essen-
tial for the development of high-performance IoT and WSN platforms [9,10]. With the
increasing amount of data that sensor nodes are expected to handle, the application of
the edge-computing paradigm in end devices has emerged as a solution to simplify IoT
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networking. Edge-computing responds to ever-increasing bandwidth demands and pri-
vacy concerns of IoT, to collect, analyze, and process data closer to end devices, and more
efficiently than traditional cloud architectures [11]. However, this calls for edge devices
with more computational power that can deliver the required advanced data processing
and analytic methods in a flexible, efficient, and sustainable way [12].

Concerning this need for sustainable edge-based data acquisition and processing, dif-
ferent approaches have been studied already, such as energy-aware [13] and task schedul-
ing [14] techniques. In particular, energy harvesting (EH) [15] looks as a promising approach
to achieve edge-computing hardware powered by renewable energy sources, without the
need of batteries. Recent studies focus on reducing the dependency on batteries in edge
devices through the application of various techniques [16–18]. In [16], an analysis of EH
technologies and their potential power densities for edge devices is provided. In [17],
a mixed-integer linear programming technique is built to treat the problem of multitasking
by considering minimum energy consumption and multitasking scheduling in software-
defined sensor networks. Deep reinforcement learning (DRL)-based algorithms were
proposed for dynamic computation offloading on mobile edge computing (MEC) with
EH [18]. Previous results show that diverse edge devices can achieve a good balance
between wireless transmission time and consumed energy, and demonstrate a significant
improvement in performance when compared with baseline algorithms. However, previous
works are limited to conventional EH technologies, such as photovoltaic, and there is still
a need of analyzing the power generation capacity of novel renewable sources, and their
suitability for the design of battery-less edge sensor nodes. Recent studies have demon-
strated that Plant Microbial Fuel Cells (PMFCs) are an emerging and environmentally
friendly technology that generates bioelectricity in the rhizosphere region of plants [19–22].
The bioelectricity generation has been improved by integrating Graphene Quantum Dots
(GQD) into the soil at the root zone of plants. GQD materials promote power generation by
the redox reaction from plant roots [19]. The effects of rhizodeposition and photosynthetic
activity were also explored with a C. indica-based PMFC, achieving a power generation
capacity of 2.72 mW [20]. A three-chamber modular structure is also tested for bioelectric-
ity generation using a PMFC anodic chamber between two cathodes with an agar-based
solid-state nutrient. Bentonite/flyash-based clay operates like the ion-exchange membrane,
which is crucial to improve the performance of PMFCs [21]. Another approach for PMFC
power generation is proposed in [22], investigating the effects of soil water content and
temperature on the Purple Guinea forage grass. However, while these studies represent the
state-of-the-art in PMFC bioelectricity generation, they do not address the integration of an
energy harvester or wireless monitoring systems that can optimally extract the energy and
transmit information to the cloud, in line with the IoT paradigm.

Therefore, the challenge tackled in this work is to develop a forage-grass-power fuel
cell solution for powering edge-computing devices. In particular, the power generation
capacity of the stenotaphrum secundatum grass-type PMFC is investigated and quantified in
terms of the number of successfully transmitted packets of a Long Range (LoRa) network.
For this purpose, a fuel cell based on a grass-type array of plants was designed, fabricated,
and electrically characterized. The fuel cell is also used to energize the sensor node that
performs soil analysis for agricultural applications.

The energy harvested by the PMFC is managed for data acquisition, LoRa transmission
and data processing with the constrained optimization algorithm solution. The edge
computing approach demonstrates the feasibility to perform inverse problem solutions
with an energy sustainable behavior.

Figure 1 illustrates the conceptualization of the proposed forage-grass-power fuel cell
proof of concept prototype for edge-computing wireless sensing processing. The contribu-
tions of this study can be summarized as follows:

• A 0.015 m3-single chamber prototype of a grass-forage fuel cell with carbon plates
electrodes is developed, with a demonstrated maximum power generation of 1.8 mW.
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• A proven capacity of up to 18 consecutive LoRa transmissions with the edge sensing
device powered with the forage-grass-power fuel cell approach.

• An inverse problem phenomenology fused with a system identification solution for
an accurate sensing response of soil analysis on each sensor node.

• A low-power consumption of 1.51 mW@ 0.457 mA for the edge sensing system based
on the MSP430FR5994 microcontroller unit (MCU), which implements the constrained
regularization algorithm fused with the system identification.

(3.3V) BQ25570
Harvester circuit

Vin

VOUT
VBAT

Super-
capacitor

Grass forage-power fuel cell

Edge sensing
node

ill-posed 
system 

identification
problem 

Gateway
Edge server

Agriculture 4.0
analysis

Cloud storage

Carbon plates electrodes

Figure 1. Conceptual idea of the proposed grass forage-power fuel cell for edge-computing wire-
less sensing.

The paper is organized as follows: Section 2 shows the fabrication of the forage-grass-
power fuel cell solution to power the IoT sensing edge device. Section 3 describes the
electronic embedded system and the inverse problem methodology processing. Section 4
presents the experimental results of the bio-electricity power generation capacity and
the sustainability of the edge computing system. Finally, the discussion and concluding
remarks are given in Sections 5 and 6, respectively.

2. Forage-Grass-Power Fuel Cell Structure Design and Characterization

Investigating the bio-electricity generation capacity of a grass-forage fuel cell is the
motivation for the development of a proof of concept prototype design suitable for Agri-
culture 4.0 applications. The fuel cell fabrication, as well as the description of the energy
harvesting circuit, are addressed in this section.

2.1. Stenotaphrum secundatum PMFC

The Stenotaphrum secundatum plant is a specie of the Gramineae family that is resistant
to hot and humid weather conditions, and is particularly common in southeast Mexico.
Traditionally, it is seen in landscapes and as an ornamental plant in gardens. The plant
stems spread extensively over the ground surface, regularly producing roots, and the leaf
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sheaths, i.e., 3 to 6 cm long, are mostly hairless. The dehydrogenase activity in soil with
stenotaphrum secundatum is greater than in uncropped soil, which means more biomass
production. Therefore, this PMFC represents an attractive option to harvest energy in
outdoor environments, taking advantage of biomass metabolism as catalysts and the
organic matter to generate bio-electrical energy [20].

2.2. Fuel Cell Fabrication

A low-cost single-chamber structure was constructed with acrylic material in a
15,000 cm3-square pot container of dimensions 30× 50× 10 cm, as depicted in Figure 2.
The PMFC employs a mixture of 10 kg organic matter and 100 g industrial fertilizer.

Soil

Stenotaphrum 
secundatum

Single-chamber
acrylic structure

Edge
sensing node

Sensors

Carbon
plates

Electrodes30 cm
50 cm

10 cm
5 cm

Figure 2. Prototype of the single-chamber grass forage-power fuel cell.

The PMFC electrodes’ plates of dimension 4× 5× 0.2 cm, are made of carbon. There
were no holes at the bottom of the structure, keeping the soil immersed favoring conductiv-
ity. The distance between each pair of electrodes is 5 cm. According to [23], this distance
gave a better performance in PMFCs.

Figure 3a describes the scalability of the PMFCs interconnected in parallel in the grass
forage field. The deployment follows the Kirchhoff model of power sources as illustrated
in Figure 3b. Each PMFC addresses the Randles equivalent circuit model [24] based on
the physical understanding of the electrochemical processes occurring in the fuel cell. The
Randles model contains a non-conductive interfacial capacitance working as an electric
double layer and a pathway for electron transfer. This model represents the simplest
electrode equivalent circuit, corresponding to a standard semi-circular arc when plotted on
a single-arc Nyquist diagram. This phenomenon implies that a single-reaction process may
be occurring in the PMFC [25].

The PMFC is electrochemically modeled as follows:

ZPMFC(ω) = Rir +
Rct + W

1 + jωCdl(Rct + W)
(1)

where Rir is the ionic resistance, Rct is the charge transfer resistance, Cdl is the double layer
capacitance, and W is the Warburg impedance.

The magnitude and the phase angle of the complex impedance are represented with a
phasor diagram plotting the magnitude of the impedance vector as |ZPMFC| and the phase
angle as θ. The impedance is expressed using its real and imaginary components as follows

|ZPMFC(w)| =
√

Zr2 + Zj2. (2)



Energies 2023, 16, 2943 5 of 17

The corresponding angle phase is

θPMFC = tan−1(
Zj
Zr

). (3)

PMFC-1
PMFC-2

PMFC-3

(a)

PMFC-1 PMFC-2 PMFC-3

+

-

+

-

+

-

(b)

Figure 3. PMFC-based grass forage-power cell: (a) PMFC power array, and (b) equivalent PMFC
schematic model.

2.3. Fuel Cell Characterization

The Metrohm Autolab electrochemical impedance spectroscopy equipment is used
to characterize the PMFC array. The equipment tests in real-time the impedance diffusion
of the forage-grass-power cell with a set of load resistances that analyze the extracted
energy from the cell. Figure 4a compares the Randles diffusion model of Equation (1) and
the measurements.

The real component of the impedance is represented in the x-axis of the Nyquist
plot, and the imaginary component is plotted in the y-axis. Each point corresponds to
the impedance at one frequency value. The following parameters Rir = 42 Ω, Rct =
140 Ω, Cdl = 13.3 µF, and W = 150 Ω were used in the analysis. Bode graphs are also
shown with the dynamic behavior of the electrochemical impedance of the PMFC array in
magnitude and phase in Figure 4b and Figure 4c, respectively. The Bode plots describe an
accurate response of the PMFC array when compared with the calculated parameters of
the Randles model.
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Figure 4. Comparative plots of the PMFC impedance analysis from the experimental and modeled
data: (a) Nyquist plot of the PMFC array at maximum power point, (b) Bode impedance magnitude,
and (c) impedance phase.

3. Self-Powered Edge Computing System and Inverse Problem Framework

A sustainable electronic edge computing system is described in this section as a
viable solution for intelligent self-sensing Lora networks in Agriculture 4.0 applications.
The power generated by the grass forage-power fuel cell is harvested and managed for
the edge wireless system, which represents a reliable power fuel cell solution. Figure 5
illustrates the single-chamber forage-grass-power fuel cell prototype integrated with the
edge-computing LoRa self-sensing system.
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Figure 5. Self-powered edge computing system by the single-chamber forage-grass-power fuel cell.

3.1. Energy Harvester Circuit

The forage-grass-power fuel cell generates bioelectricity from the biodegradation
of plant root exudates, rhizodeposits, and organic matter in the soil. The bacteria and
microbes in the rhizosphere produce exudates that act as substrates and donate electrons to
the anode via electron transfer [26]. This generated current and voltage vary depending
on the absorbed energy in the carbon plates of the proposed PMFC. The BQ25570 is an
integrated circuit EH solution that can be used to efficiently acquire and manage the
bioenergy power generated from the PMFC.

The circuit shown in Figure 6 converts the bioenergy from the PMFC array with the
DC/DC boost converter. The boost converter starts working with an input voltage V_IN
down to 330 mV, and can continuously harvest energy from inputs as low as 100 mV.

BQ25570

Boost
Controller

V_IN

V_BAT

(>100 mV)

Supercap

GND

MPPT

GND

Buck
Controller

V_OUT

V_STOR

(3.3 V)

Figure 6. Energy harvesting circuit with the BQ25570.
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The BQ25570 also implements a programmable maximum power point tracking
(MPPT) algorithm to optimize the power transfer of the PMFCs. The sampled voltage for
the MPPT is controlled via external resistor and capacitors to the circuit.

The boost circuit of the BQ25570 amplifies the input voltage from the grass forage-
power cell to a predefined voltage level that charges a supercapacitor. The charging voltage
is set to V_STOR equal to 4.2 V with external resistors. On the other hand, the buck
converter circuit regulates the output voltage V_OUT to 3.3 V providing high efficiency
across low- to high-output currents, i.e., ≤10 µA to ∼110 mA, respectively.

3.2. Front-End and Sensors

A low-cost pH sensor SEN0169 is employed in the sensing node with a typical power
consumption of 3.0 mA. The LTC1563 is used to filter the pH signal, through an active
Butterworth 4th-order low-pass filter with a 256 Hz cutoff frequency. This integrated
circuit can be configured in shutdown mode, reducing its current consumption to 1 µA.
The SEN0169 measures the pH response, which quantifies the nutrients and chemicals
that are soluble in soil water, and, therefore, the available nutrients in plants. Remark
that some nutrients are available under acid conditions while others are under alkaline
conditions [27,28]. The temperature and humidity of the soil are measured with the SHT10
sensor. The SHT10 has a 12-bit digital output with a typical resolution of 0.05% RH
(humidity) and 0.01 ◦C (temperature). It operates with a supply voltage range of 2.4–5.5 V,
with a typical current consumption of 0.9 mA, and a guaranteed maximum of 1.5 µA
when it is put to sleep. Temperature, humidity, and pH in the soil play a key role in crop
quality estimation. However, uncertainties in the measurements due to the variability
of minerals and dry plant tissue make it necessary to re-calibrate the sensors. Intelligent
system management is conducted to improve the measurement reliability during system
operation following the inverse problem phenomenology with the parametric system
identification to build a mathematical model from the measured data.

3.3. Wireless Communication Module

The RFM95W LoRa transceiver is used for local communication from the edge sensing
node to the gateway. The LoRaWAN-Class A protocol operates in the 915 MHz unlicensed
band, being able to transmit up to a distance of 3 km in line of sight or up to 20 km
with directional antennas. The LoRaWAN wireless technology offers a balance in power
consumption and range coverage, even though other popular stacks, such as narrowband
IoT (NB-IoT) and long-term evolution (LTE), are good candidates. However, NB-IoT
operates on the existing global system for mobile (GSM), and the LTE network use licensed
frequency bands. Both options have larger power consumptions [29].

3.4. Low-Power Edge Computing Controller

The selected MSP430FR5994 is a 16-bit ultra-low-power MCU designed for applica-
tions with low energy budgets in mind. For example, with a 3.3 V suppy, its sleep (LPM3)
and shut-down (LPM3.5) modes consume a maximum current of 0.4 µA and 0.25 µA,
respectively, while the active mode has a typical current consumption of 400 µA. The max-
imum time required by the MCU to wake up from sleep mode is 6 µs. In addition, its
hardware includes mixed signal capability, a non-volatile Ferroelectric Random Access
Memory (FRAM) of 256 KB, and a Low-Energy Accelerator (LEA) that delivers fast and
efficient vector math acceleration required in sensing and edge-computing applications.

3.4.1. System Modeling

The ill-posed nature of an inverse problem is alleviated by employing the parametriza-
tion idea as a descriptive regularization method. This ill-posed essence is due to sensing
data acquisition errors, the diffuse nature of the soil conditions, and numerical modeling er-
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rors. The observation model is formulated assuming the inverse problem phenomenology,
as follows:

u = S(ρ) + ε, (4)

where S is the unknown inertia-less transform matrix of an input vector ρ, and ε is the
random noise in measurements u.

To solve the inverse problem in an intelligent system management approach, a para-
metric system identification based on the least-squares (LS) criterion is defined:

J(ρ) = min
ρ
{||u− S(ρ,φ)||2} (5)

where || · || is the Euclidean norm and s(ρ,φ) is considered to be a known function of
variable ρ dependent on the vector of unknown parameters φ.

The strategy consists in comparing all the possible solutions that fit the input-output
data of the system {uk, ρk; k = 1, ..., K} for the hypothesis model, and then make a choice
in such a way that the approximation error of u and the identified model S(ρ,φ) is the
smallest. Here, the particular known system model S(ρ,φ) = aln(ρ)+ b, whereφ = (a, b)T,
is proposed. To handle the ill-posedness, partial derivatives of J are implemented with
respect to {φ1 = a, φ2 = b} and set these to zero, as presented in the next equation

∂J
∂φi

= (−2)
K

∑
k=1

[uk − s(ρk; a, b)]
∂s(ρk; φ)

∂φi
= 0; i = 1, 2; φ1 = a, φ2 = b. (6)

The parameters â and b̂ are estimated applying the linear regression problem to the
partial derivatives as follows:

â =
K ∑ ρkUk −∑ ρk ∑ Uk

K ∑ ρ2
k − (∑ ρk)2

, (7)

b̂ =
1
K
(Uk − Â ∑ ρk). (8)

where variables (u = U, v = V, a = A, b = B), model S(ρ,φ)→ â = Â, b̂ = B̂ .
A software library is developed for the selected microcontroller unit, containing the

estimated parameters and mathematical operations of the inverse problem fused system
identification solution presented above for accurate soil measurements.

3.4.2. Power Management Strategy

In this subsection, the power management strategy is modeled as a finite state machine
to reduce the power consumption of the edge-computing sensing node. The sensing node
operation is the following: at every sample, the measurements of the SHT10 and the
SEN0169 sensors are acquired, and processed with our proposed system identification (SI)
model. Data are next transmitted to the cloud with the LoRaWAN protocol. Once data
are transmitted, the MCU returns to the sleep state for 15 min. This power management
strategy, implemented in the MCU, is modeled as a finite state machine (FSM) to reduce
the power consumption of the sensing node operation, and, in consequence, improve the
energy management of the sensing system. Figure 7 illustrates the state transition graph
(STG) of the proposed power management strategy approach.

The proposed strategy consists on turning on and off some system’s components
in a specific sequence, while putting all the other circuitry into Sleep Mode [30]. This
methodology saves energy and extends the sensor node’s battery life. The energy-optimized
operating states of the sensor node are called low-power modes; i.e., LPM0 and LPM4,
where the MCU is configured in standby and sleep mode, respectively. The active mode
sequentially acquires, process, and transmit the data. The standby mode occurs between
the sleep and the active state, as illustrated in Figure 7.
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Figure 7. State transition graph of the power management strategy.

A state transition table (STT) is used to analyze the affections of input conditions on the
system’s state or output changes. STT, in Table 1, helps to analyze the power management
behavior for different input conditions. This description is implemented in C++ language
for low-power consumption of the MSP430FR5994 MCU and compiled with the Texas
Instruments Code Composer Studio (CCS) design suite.

Table 1. STT analysis.

Inputs

States 000 001 010 011 100 101 110 111

Sleep – Stdby – – – – – –
Stdby – – Acq. Temp Acq. Hum Acq. pH – – LoRaTx

Acq. Temp – – – – – SI process – –
Acq. Hum – – – – – SI process – –
Acq. pH – – – – – SI process – –

SI process – – – – – – Stdby –
LoRa Tx Sleep – – – – – – –

– => unchanged state.

Algorithm 1 shows the pseudo-code implementation of the power management strat-
egy programmed in the MSP430FR5994 MCU. The STG and the STT models provide a
mathematical representation with the aim of energy-saving, while still allowing a more
frequent monitoring of the soil when compared with previous works that propose longer
sleep periods of 30 to 60 min [31]. The measured data show that a minimum period of
10 min results in a good trade-off for our specific study for Agriculture 4.0 applications.
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Algorithm 1 FSM pseudo-code of the power management

Initialization: Sleep state
typedef const struct State State_t;
#define Sleep &FSM[0]
#define Stdby &FSM[1]
#define AcqTemp &FSM[2]
#define AcqTemp &FSM[3]
#define AcqpH &FSM[4]
#define SIprocess &FSM[5]
#define LoRaTx &FSM[6]
State_t FSM[7] =

dir1,t1,{Sleep, Stdby, Sleep, Sleep, Sleep, Sleep, Sleep,Sleep},
dir2,t2,{Stdby, Stdby, AcqTemp, AcqHum, AcqpH, Stdby, Stdby,LoRaTx},
dir3,t3,{AcqTemp, AcqTemp, AcqTemp, AcqTemp, AcqTemp, SIprocess, AcqTemp,

AcqTemp},
dir4,t3,{AcqHum, AcqHum, AcqHum, AcqHum, AcqHum, SIprocess, AcqHum, Ac-

qHum},
dir5,t3,{AcqpH, AcqpH, AcqpH, AcqpH, AcqpH, SIprocess, AcqpH, AcqpH},
dir6,t1,{SIprocess, SIprocess, SIprocess, SIprocess, SIprocess, SIprocess,

Stdby,SIprocess}
dir6,t4,{Sleep, LoRaTx, LoRaTx, LoRaTx, LoRaTx, LoRaTx, LoRaTx,LoRaTx};

void main(void) {
uint32_t cs; uint32_t input;
initialize_ports_timer();
cs = Sleep;

while (1) do
//1) Wakeup from sleep state
LPM0(); Delay(FSM[cs].Time); cs = Stdby;
// 2) Data acquisition
AM(); DataAcq(); Delay(FSM[cs].Time); cs = AcqTemp | AcqHum | AcqpH;
// 3) System Identification processing
AM(); SIprocess(); Delay(FSM[cs].Time); cs = SIprocess;
// 4) Standby state
LPM0(); LoRaTx(); Delay(FSM[cs].Time); cs = LoRaTx;
// 5) LoRa transmission
AM(); Delay(FSM[cs].Time);cs = Sleep;
// 6) Sleep state
LPM4(); Delay(FSM[cs].Time);cs = Stdby;

end while
}

4. Experimental Results

The power generation capacity of the grass forage-power fuel cell is presented in this
section, demonstrating the sustainable operation of the edge-computing wireless sensing
network. The energy harvested from the array of P-MFCs and the power management
strategy provides 19% more energy than the energy consumed by sensors, the inverse
problem processing, and the LoRa transceiver. The self-powered operation is also pre-
sented in terms of the number of packets transmitted in an IoT-LoRa network. Figure 8
illustrates the prototype of the grass forage-power fuel cell powering a single-edge wireless
sensing device.
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Sensors
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Harvesting
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Figure 8. Prototype of the grass forage-power cell system.

4.1. Grass Forage-Power Generation Results

The forage-grass-power cell was evaluated by analyzing the polarization curves under
laboratory conditions operating the PMFC array at the maximum power point. In the
experiment, the power cell was evaluated with the Metrohm Autolab Potentiostat. Figure 9
shows the current and power density curves in terms of the voltage. A maximum power
and current generation of up to ∼1.8 mW and ∼10 mA were achieved. In the experimental
analysis, the P-MFC array impedance was measured with the potentiostat equipment
finding an accurate response according to the Randles model of Equation (1).
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Figure 9. Forage-grass-power fuel cell I-V analysis.

The power generation capacity is tested with the cold-start operation analysis. A 25 ◦C
room temperature and the light adjusted to 2000 lux, were set for the test. Figure 10
shows the supercapacitor charging time when the storage element is completely discharged.
The forage-grass-power fuel cell charges the 4 F supercapacitor at 4.2 V in only 15 h.

From the analysis of Figure 10, one can notice that the harvester circuit achieves 1.8 V
in 11.6 h, and the main booster on the bq25570 extracts the energy more efficient to charge
up the supercapacitor in only 3.4 h.
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Figure 10. Cold start forage-grass-power cell analysis.

4.2. Edge Signal Processing Response

The parametric system identification (SI) technique was used to develop a mathemat-
ical system modeling approach, to increase process reliability, and reduce the hysteresis
effect in the SEN0169 pH sensor response. From all possible strain gradients related to the
pH dispersion, the proposed SI model S(ρ,φ) = aln(ρ) + b identifies the best statistical
curve as a solution to an ill-posed problem. This is illustrated in Figure 11. The coefficients
a = 4.038, and b = 0.306 were calculated following Equations (7) and (8).
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Figure 11. SI model analysis.

To convert the digital readout data SOT coming from the SHT10 sensor, the following
equation was implemented in the MCU to calibrate the temperature measurement:

T◦C = d1 + d2 ∗ SOT + dTi10, (9)
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where d1 = 39.7 ◦C, d2 = 0.04 and dTi10 = 0.001 ◦C, which represents the calibration offset
of the sensor.

The humidity sensor’s non-linearity can be compensated using the following equation:

%RH = c1 + c2 · SORH + c3 · SO2
RH (10)

where c1 = −2.0468, c2 = 0.0367, c3 = −1.5955× 10−6 and SORH is the measured value of
humidity. Temperature compensation is also required when measuring the humidity. This
can be performed using the following correction equation:

%RHC = (T◦C − 25) · (t1 + t2 · SORH) + %RH (11)

where t1 = 0.01 and t2 = 0.00008, and %RHC is the relative humidity measurement with
temperature compensation.

4.3. Power Consumption of the Sensing Node

The Code Composer Studio platform includes the EnergyTrace++ tool, which was
used for the real time measurement and analysis of the LoRa edge sensing node’s power
consumption. Table 2 presents the measurement results of the sensing node operating in
all processing states.

Table 2. Power consumption analysis of the edge-computing wireless sensing node.

Single-Edge Sensing Node States Power Consumption

Sleep state (MCU) and peripherals turn-off 0.32 mW @ 96.9 µA
Sensing on 14 mW @ 4.2 mA

MCU SI processing 6.12 mW @ 1.85 mA
LoRa transmission 228 mW @ 69 mA

Complete Sensor Node System Average Power Consumption
1.51 mW @ 457.5 µA

Observe that the inverse problem system identification algorithm has a measured
power consumption of 6.12 mW, which is less than the sensing state consumption (14 mW)
state, due to the application of the finite state machine algorithm for the power manage-
ment strategy. The LoRa transceiver is active for data transmission for 617 ms, with a
consumption of 228 mW. Even with this peak power demanded by the transmitter during a
short time, the average consumption of the edge-computing sensing node is only 1.51 mW.
This is the result of configuring the MCU in ultra-low-power mode during the sleep state
of 15 min, with all the peripherals disconnected and turned off.

The power generation result of the grass forage-power cell is 1.8 mW, which means
∼1.19× the required power of the LoRa wireless node. Therefore, it can be concluded
that the grass forage-power cell can generate the energy for an autonomous performance,
achieving a perpetual battery-less operation.

5. Sustainability Discussion and Power Capacity Interpretation

In terms of power generation capacity, the edge-computing wireless system is able
to perform 18 consecutive LoRa transmissions once the 4F supercapacitor is fully charged.
However, although the power generation capacity seems to be stable, the water content in
the soil, humidity, temperature, and other conditions could cause the power generation
to decrease over several days. A dynamic power management strategy is recommended
for future study, to regulate the sensor node duty cycle, maximizing the number of LoRa
transmissions and guaranteeing sustainable operation.

Table 3 presents an analysis of the power capacity of the forage-grass-power fuel cell
for IoT systems, in comparison to other similar works. The studies in [19–22] developed
PMFC-based fuel cells. Xu et al. [19] integrated graphene quantum dots to enhance the
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power capacity of the fuel cell in the soil at the root zone of the plant. Although their power
generation of 4.84 mW is higher than our system, they employed a large array of PMFCs,
i.e., a green wall, as a power source. An attractive three-chamber modular structure for
bioelectricity generation using a PMFC anodic chamber between two cathodes with an
agar-based solid-state nutrient was proposed in [21]. The advantage of this power cell is
the Bentonite/flyash-based clay that operates like the ion-exchange membrane. However,
they did not incorporate the harvester circuit. The studies in [20,22] presented PMFC-based
power cell implementations with carbon cloth electrodes. However, a wireless embedded
processing approach is not included.

Table 3. PMFC comparative analysis.

Reference Plant
Type

Number of
PMFCs

Power
Generation Electrodes Harvester

Circuit
Wireless

Communication

[19] Zephyranthes
Grandflora Array 4.84 mW Graphene

Quantum Dots – WiFi

[20] C. indica 3 2.72 mW Carbon
Cloth – –

[21] Epipremnum
aureum – 1.48 mW Carbon

Cloth – –

[22] Purple
guinea – 1.53 mW Carbon

Cloth – –

This
Work

Stenotaphrum
secundatum 3 1.8 mW Carbon

Plates Bq25570 LoRa

6. Conclusions

A sustainable forage-grass-power fuel cell solution to power an IoT LoRa network
for soil analysis was proposed. In this regard, a 0.015 m3-single chamber prototype us-
ing the stenotaphrum secundatum plant-type with carbon plate electrodes was designed
and electrically characterized to power the edge computing devices of the sensing nodes.
The edge-sensing system based on the MSP430FR5994 MCU has a low power consumption
level of 1.51 mW@ 0.457 mA, and the BQ25570 harvester circuit achieves a maximum
generation capacity of 1.8 mW. In terms of sustainability, the generated energy by the
forage-grass-power cell is∼19% more than the single-edge wireless sensing node consump-
tion. In terms of IoT systems, this energy is capable to implement up to 18 consecutive
transmissions with a LoRa network without the system’s shutting down. Likewise, an in-
verse problem methodology with a system identification was proposed and implemented
following the edge computing paradigm. This methodology aims to correct the sensor’s
errors due to non-linear system parameters to provide accurate responses. In order to save
the system’s consumption, an energy power management strategy was programmed in the
low-power Texas Instruments MSP430FR5994 microcontroller unit, which was powered
by the PMFC-based fuel cell, demonstrating the feasibility to develop inverse problem
solutions in the edge sensing node device. Experimental results show the energy sus-
tainability capacity of the forage-grass-based power fuel cell prototype and the power
management strategy, allowing to perform inverse problem solutions to minimize sensing
errors under the edge-computing paradigm in wireless sensing networks for Agriculture
4.0 applications.
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Abbreviations
The following abbreviations are used in this manuscript:

CCS Code Composer Studio
DRL Deep Reinforcement Learning
DSP Digital Signal Processing
EH Energy Harvesting
FRAM Ferroelectric Random Access Memory
FSM Finite State Machine
GQD Graphene Quantum Dots
GSM Global System for Mobile
IoT Internet of Things
LEA Low-Energy Accelerator
LTE Long Term Evolution
MCU Microcontroller Unit
MEC Mobile Edge Computing
MPPT Maximum Power Point Tracking
NB-IoT Narrow Band IoT
PMFC Plant Microbial Fuel Cell
STG State Transition Graph
STT State Transition Table
WSN Wireless Sensor Networks
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