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Abstract: Theoretical line loss rate is the basic reference value of the line loss management of low-
voltage grids, but it is difficult to calculate accurately because of the incomplete or abnormal line
impedance and measurement parameters. The traditional algorithm will greatly reduce the number of
samples that can be used for model training by discarding problematic samples, which will restrict the
accuracy of model training. Therefore, an improved random forest method is proposed to calculate
and analyze the theoretical line loss of low-voltage grids. According to the Influence mechanism and
data samples analysis, the electrical characteristic indicator system of the theoretical line loss can be
constructed, and the concept of power supply torque was proposed for the first time. Based on this,
the attribute division process of decision tree model is optimized, which can improve the limitation
of the high requirement of random forest on the integrity of feature data. Finally, the improved effect
of the proposed method is verified by 23,754 low-voltage grids, and it has a better accuracy under the
condition of missing a large number of samples.

Keywords: low-voltage grids; theoretical line loss rate; improved random forest; decision tree opti-
mization

1. Introduction

According to the data from latest analysis report on China’s electric power develop-
ment, line loss of the power system is gradually getting lower—-from 5.62% in 2020 to 5.26%
in 2021, which is due to technological advancement. However, there is still a relatively large
gap from developed countries with an average line loss rate of 4%. With consideration of
the line loss from low-voltage grids constituting about 40% of the overall power system,
there is great practical significance to studying how to manage power systems scientifically
and save energy by accurately and effectively digging out energy-loss and thereby reducing
the potential for low-voltage grids.

The theoretical line loss in low-voltage grids is defined and determined by the technical
conditions of power grid equipment, including the loss of overhead and cable line, the loss
of capacitors, reactors, cameras and other auxiliary equipment, plus the loss of voltage,
current transducers, energy meters, etc. Compared to some human management factors,
theoretical line loss is relatively stable and the energy-loss reducing potential can be
detected by the difference between the theoretical and the actual line loss. Due to complex
wiring and the huge difference of line length and consumption load in low-voltage grids,
traditional methods including equivalent resistance method and power flow algorithm
cannot be satisfactorily applied, and the proposal of some improvements are required.
For example, [1] improved the calculation of load curve shape coefficient, copper loss,
small (many) power supply, and branch power, whilst [2] introduced the average time
of current loss and the weakening of hypothesis conditions to improve the accuracy. A
network loss calculation method based on user meter power has been proposed, but it
is highly dependent on accurate information such as network structure, line type, and
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length [3,4]. A method using the variable structure dissipative network theory to divide
the feeder into feeder segments has also been proposed, and the detailed line loss of each
piece of equipment makes the line loss distribution in the system clear at a glance with a
mathematical model [5]. A new CIM-based data-sharing scheme for an online calculation
of the theoretical line loss has also been presented, which can be calculated automatically
by reading data from other applications that are being used in electric power company,
such as electrical SCADA, GIS, etc. [6]. A technical loss estimation approach in power
distribution systems using a load model in the frequency domain has also been researched,
decomposing the load profile by discrete Fourier transformation, and has been applied to a
model adapted to compute the spectral analysis of the losses, showing that the load model
in the frequency domain calculation is robust [7].

With continuous construction of state smart grid and the rapid development of 5G
technology, the ability of data collection in low-voltage grids is being improved gradually,
and more data can be applied to the calculation of theoretical line loss in low-voltage
grids. Meanwhile, the new generation artificial intelligence technology like big data,
machine learning, and deep learning are employed to conduct theoretical line loss calcula-
tion. According to the physical distribution mechanism of the network loss for a power
system [8–13], the main characteristic parameters of line loss can be extracted and the
theoretical line model can be established by a different algorithm. Influencing factors of
the line loss rate are analyzed by an a priori algorithm and by association rules with the
data from AMI, and calculation results of the a priori algorithm and the interpretation
structure model are combined to make up for the shortcomings and draw the influence
path diagram of the regional distribution network line loss rate [14]. A comprehensive
analysis in the time domain and the space domain of a large-scale line loss rate is carried out
through K-means clustering and a temperature response model, including the relationship
between line loss rate and seasons, level area, energy consumption, and so on. The research
shows that it is a downward trend, and its significant change cycle is similar to the per
capita GDP [15]. The strong self-learning ability of neural network to fit the relationship
between line loss rate and characteristic parameters has been used [16,17]. To overcome
the disadvantages of a k-means algorithm, an adjacent propagation algorithm is used for
data clustering, and, on this basis, an optimized BP neural network model is built based
on an LM algorithm that can improve the accuracy of theoretical line loss calculation and
the convergence speed of model [18]. A method based on deep belief network (DBN),
which used the greedy algorithm to carry out unsupervised layer-by-layer pre-training of
neural network layer in DBN first and then implemented the supervised global fine-tuning
training, has also been proposed [19]. Furthermore, ref. [20] proposed a method based on
hierarchical clustering, a decision tree, and a random forest algorithm, which overcomes
the shortcomings of an artificial neural network algorithm with a slow convergence speed
and a greater difficulty of dealing with discrete variables directly. The affinity propagation
(AP) algorithm to cluster and group data, which surpassed the shortcoming of k-means
algorithm, has been used [21]. On this basis, the random forest regression model is used
to analyze and calculate the regression. A reasonable interval calculation model of line
loss based on the convolutional neural network is established, in which the collected data
are processed in the image format first, and the reasonable line loss interval will then be
calculated according to the operation data of different transformers [22].

From the reference investigation mentioned above, one can see that most of the re-
search and calculation techniques focus on the algorithm. However, in practical application
and calculation, obtainable low voltage grid characteristics are different due to the different
management of basic data in different areas. Meanwhile, data missing and abnormality also
exist to some extent. If the models are always trained by traditional techniques, featuring
abandoning the sample sets with abnormal data, lots of sample sets cannot be applied in
model training. Finally, the accuracy of the model calculation is deteriorated.

To address the above problems, the author tries out the back propagation neural
network (BPNN), support vector machine (SVM), k nearest neighbour (KNN), and random
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forest (RF). The experimental results show that random forest has a better generalization
ability than other methods, and the overall accuracy is better than other methods. However,
there is still large room for improvement, so this paper proposes a theoretical line loss
calculation and analysis method for low-voltage grids based on an improved random forest.
The contributions of this paper are as follows:

• The reasonable characteristic factors of the low-voltage grids are constructed according
to the physical and operational characteristics. The concept of power supply torque is
proposed for the first time.

• The random forest algorithm is improved by modifying the property classifying
process of decision tree and optimizing the weight factor allocation method when
data is missing. The problems of the high characteristic data integrity requirement is
solved and the accuracy of the model is improved when a large number of samples
are missing.

Table 1 shows the comparison of the proposed method with existing methods. The
detailed algorithms will be given in the following sections.

Table 1. Comparison of proposed method with existing methods to calculate theoretical line loss.

No Additional
Measurement

Equipment
Required

No Complete
Grid and Line

Parameters
Required

Factors Can Be
Interpreted by
the Circuitous

Philosophy

Feature
Integrity

Requirement

Complexity of
the Model

Accuracy of
the Model

Ref. [5] × ×
√

High Low High
Ref. [14] ×

√
× High High High

Refs. [16,17]
√ √

× Low Moderate Low
Ref. [19]

√ √ √
Moderate Moderate Moderate

Refs. [20,21]
√ √

× Moderate High Moderate
Proposed method

√ √ √
Low Low High

The remainder of this paper is organized as follows. The reasonable characteristic
factors of the low-voltage grids are constructed in Section 2. Section 3 presents the algorithm
to calculate the theoretical line loss with random forest and improved the adaptability
of the model by modifying the property classifying process of decision tree. Section 4
demonstrates the test results for the proposed method validation. Section 5 provides the
conclusion of this paper.

2. Analysis of Characteristic Factors
2.1. Influence Mechanism of Theoretical Line Loss

In order to improve the performance of model training, characteristic factors should
be constructed according to the influence mechanism of theoretical line loss in low-voltage
grids. In this paper, equivalent resistance method with relatively high calculation accuracy
is selected to study and analyze the influence mechanism of theoretical line loss in the
low-voltage grids. Its basic principle is shown in Figure 1. Through the simplified circuit
model, the grids are assumed to be an equivalent resistance Reql, and the electric energy
loss generated when the total current of the line Iav flowing through this resistance is equal
to the sum of the power loss generated by the resistance of each branch line Ri (i = 1,2,...n).

According to the equivalent resistance method, the calculation equation of theoretical
line loss in the low-voltage grids can be expressed as:

∆A = N(kIav)
2ReqlKbt× 10−3 + (

t
24D

)∑ (∆Adbimi) + ∑ ∆AC (1)

where ∆A (kWh) is the energy loss in a low voltage grid, N is the structure parameters
of the grids and varies according to the wiring mode, k is the load shape factor, Iav is the
average current at the secondary side of transformer, Reql (Ω) is the equivalent resistance of
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low-voltage grids, Kb is the three phase unbalanced coefficient, t (h) is the time of operation,
D is the annual calendar days, mi is the number of electric meters, ∆Adbi (kWh) is the
monthly energy loss of electric meters, and ∆AC (kWh) is the energy loss of reactive-load
compensation equipment.
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Figure 1. Equivalent resistance method calculation structure diagram.

As can be seen from Equation (1), the theoretical line loss in the low-voltage grids
is composed of the loss of the line, the loss of the electric meter, and the loss of the
reactive power compensation equipment. The electric meter loss and the reactive power
compensation equipment loss are relatively stable, and the line loss in the station area plays
an important role in the theoretical line loss of the grids. The main factors affecting the line
loss of the station can be subdivided into two categories: static line factors and dynamic
operation factors.

2.2. Qualitative Influence Analysis of the Factors

(1) Static line factors

Static line factors mainly include line length and type that affect the equivalent
impedance Reql of the low-voltage grids. When the line length becomes longer and the
electrical resistivity of the selected line increases, the equivalent resistance Reql of the grids
will enlarge and the line loss will increase relatively. Figure 2 shows the investigation of
the relationship between line length and line loss in a certain place and there is a relatively
positive correlation between the two parameters.
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(2) Dynamic operation factors

Dynamic operation factors mainly include level of electric load, fluctuation characteristics
of electric load, and degree of three phase unbalance. With the increase in the level of electric
load, fluctuation characteristics of electric load and degree of three phase unbalance, the line
loss will increase correspondingly. Figure 3 shows the investigation of the relationship between
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the average current at the secondary side of the transformer and line loss in a certain place,
and there is a obviously a positive correlation between the two parameters.
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(3) Fusion factors

Since the static line factors are relatively separated from the dynamic operation factors,
in order to characterize and analyze the influence mechanism more accurately, Figure 4
shows the concept of power supply torque, which is proposed for the first time in this paper
by coupling the line factors and operation factors in the low-voltage grids and referring
to the concept of torque in mechanics. The specific definition is shown in Equation (2),
which is the average product of the power supply distance and the average daily electricity
consumption of all users in the low-voltage grids:

Me =

n
∑

i=1
(Pi · Di)

n
(2)

where Me is the supply torque, Pi is the power of consumer i, n is the amount of consumers
in one low voltage grid, and Di is the distance between consumer i and the transformer of
the grid.
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2.3. Construction of Characteristic Factors

Considering all the factors affecting the theoretical line loss of low-voltage grids in
Section 2.2, the following eight characteristic factors are selected in this paper, including
power supply radius X1, total line length of low-voltage grids X2, amount of consumers in
a low voltage grid X3, load rate of low-voltage grids X4, three-phase unbalance degree X5,
load shape factor X6, power factor X7, and power supply torque X8. Detailed definitions of
the various factors mentioned above are listed in Table 2.

Table 2. Characteristic factors for theoretical line loss in low-voltage grids.

Characteristic Factor Characteristic Definition

Power supply radius X1
Physical distance from furthest load point to

distribution transformer
Total line length X2 Sum of total low-voltage line length in low-voltage grids

User numbers X3
Total user numbers in low-voltage grids, including

single-phase users and three-phase users

Load rate X4
Ratio of power consumption capacity to rating capacity

of distribution transformer

Three-phase unbalance degree X5

Unbalance degree of three-phase current in three-phase
power system, which is the relative deviation between
the maximum and the mean value of the three-phase

current in a transformer

Load shape factor X6
Ratio of daily current RMS value to average value on

distribution transformer side in low-voltage grids
Transformer daily average power

factor X7

Ratio of active power to apparent power in
low-voltage grids

power supply torque X8

Multiplication of average power supply distance of
low-voltage grids load and user average power

consumption capacity

3. Construction of the Method
3.1. Model Based on Traditional Random Forest

Random forest [23–27] is an integrated learning algorithm based on a decision tree. As
shown in Figure 5, multiple samples are extracted from original sample sets by Bootstrap
sampling method. The decision tree model is established according to each sample, and
predictions from multiple decision trees are combined to get the final results by voting
mechanism. Instead of setting aside an additional portion of the test set for model evalua-
tion, Out-of-Bag (OOB) data can be used to do the evaluation, and the In-Bag data is used
to do the model training.
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Assume original theoretical line loss dataset from low-voltage grids and A corre-
sponding characteristic factors dataset is S = {(x1, y1), (x2, y2), . . . . . ., (xm, ym)}. Assume
the electrical characteristic index data set is x = {X1, X2, . . . . . ., Xn}. Assume theoretical
line loss set is y and sample quantity is m, while sample property dimension is n and
individual learner quantity of decision tree is k. The process of random forest algorithm
implementation is as below:

(1) Extract m data samples randomly from original datasets and repeat the process for k
times, then k sets of training datasets are obtained.

(2) Input corresponding data set into each decision tree and select classifying property
for each node of the decision tree. Randomly select a subset including d properties
from n data properties, and then choose the optimum classifying property from the
subset. Normally, d equals to the integer closest to log2 n. Considering the decision
tree algorithm is adopted for an individual learner in the random forest algorithm, the
learning capability of the random forest algorithm is contingent on the performance
of the decision tree. The implementation steps are described below:

(a) If label values of all the data in S are the same, the decision tree including only
one node is generated and the node value is the same as the label value.

(b) If A is empty or all the data in S have the same value in A, the decision tree
including only one node is then generated, and the node value is the same as
the label value belonging to most of the data samples in S.

(c) Select optimum classifying subset Ai from A.
(d) Traverse all the values of Ai, and form dataset Sv including all the data with

value of Av
i from property subset Ai in S.

(e) If Sv is empty, mark Sv as node, and the node value is the same as the label
value belonging to most of the data samples in S.

(f) If Sv is not empty, treat Sv as input dataset and A\{Ai} as property set. Repeat
steps (a)~(e) until a decision tree is generated.

(3) Average strategy can be applied for regression. All the output values from the decision
tree are averaged as final output value. Voting strategy can be applied for classification.
Compare all the output classified values from the decision tree and take the one with
most votes as the final output value.

(4) Based on historical documentations and measurement data of various low-voltage
grids from the consumption data collection system, marketing system, production
management system, and geographic information system, the characteristic factor
data can be calculated for each low-voltage grid using definition and the calculation
principle of various characteristic factors. Meanwhile, abnormal characteristic data
should be cleaned. Feed the cleaned sample data into a random forest algorithm
for training and establish a theoretical line loss model of low-voltage grids. Finally,
finish detailed theoretical line loss calculation with the established model. A detailed
algorithm flow chart is given in Figure 6.

3.2. Improved Random Forest Algorithm

ID 3, ID 4.5, and CART decision trees are the most commonly used decision tree
algorithms at present. Considering that ID3 is easy to overfit and ID 4.5 is relatively
complex, it is difficult to realize model training with a large number of samples. Finally,
the CART decision tree is selected based on the calculation principle and calculation
requirement of theoretical line loss. The equation below is utilized to select the optimum
classify property:

Gini_ratio(S, Ai) = Gini(S)−
V

∑
v=1

|Sv|
|S| Gini(Sv) (3)
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Gini(S) = 1−
C

∑
k=1

p2
k (4)

Gini(S) is Gini index of S and Gini(S, Ai) represents the change of Gini index before
and after S being classified by Ai. C means there are C types of data samples in datasets, and
pk is the ratio of the k type of samples. According to the maximum criteria of Gini(S, Ai),
the CART decision tree selects the corresponding Ai as classify property. However, when
there is a missing value in D, Equations (3) and (4) cannot be applied directly. If forced
cleaning of missing samples is implemented, massive sample data loss might occur and
model accuracy will be influenced.
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ID 3, ID 4.5, and CART decision trees are the most commonly used decision tree al-

gorithms at present. Considering that ID3 is easy to overfit and ID 4.5 is relatively com-
plex, it is difficult to realize model training with a large number of samples. Finally, the 
CART decision tree is selected based on the calculation principle and calculation require-
ment of theoretical line loss. The equation below is utilized to select the optimum classify 
property: 
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Figure 6. Theoretical line loss calculation of low-voltage grids based on random forest.

Therefore, optimization and modification for the basic CART decision tree are consid-
ered. Assume Si is a subset of S organized by evaluation samples without missing values
in Ai. There are K types of data samples and Sk

ic(k = 1, 2, ..., K) is the k type of subset in Si.
Si has V values in Ai and they are A1

i , A2
i , ..., AV

i . According to these values, Si is classified
into V subsets as S1

i , S2
i , ..., SV

i . Define weight Wj, j = 1, 2, . . . . . ., m for each evaluation data
sample Xj and define

pk
i =

∑ Xj ∈ Sk
icwj

∑ Xj ∈ Siwj
(k = 1, 2, ..., K) (5)

rv
i =

∑ Xj ∈ Sv
i wj

∑ Xj ∈ Siwj
(v = 1, 2, ..., V) (6)

pk
i is the ratio of the kth type of data sample in Si and rv

i is the ratio of Ai with value of
Ak

i in Si. Based on above definitions, Equations (3) and (4) can be modified to:

Gini_ratio(Si, Ai) = Gini(Si)−
V

∑
v=1

rv
i Gini(Sv

i ) (7)

Gini(Si) = 1−
K

∑
k=1

(pk
i )

2 (8)
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With consideration of the sample missing, define the influence factor of weight Wi:

Wi =
∑ Xj ∈ Siwj

∑ Xj ∈ Swj
(k = 1, 2, ..., d) (9)

Wi represents the weight of samples without missing values in total samples.
In summary, when there are missing values in the evaluation data, the selection

equation of the decision tree classify property can be modified to

Gini_ratio(S, Ai) = Wi ∗ (Gini(Si)−
V

∑
v=1

rv
i Gini(Sv

i )) (10)

With this modification, the previous equation for optimum classify property selection
can also be used when there is a missing value in the evaluation data. Meanwhile, the
influence of optimum classify property selection can be comprehensively considered with
data samples having missing values or not. The topological structure of improved random
forest by modifying decision tree is shown in Figure 7.
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3.3. Evaluation of the Algorithm

For the evaluation of the algorithm, the training samples are firstly put into the
algorithm, and the corresponding model parameters are trained, including the number of
leaf nodes and the number of decision trees in random forest. Furthermore, the root mean
square error (RMSE) of test samples is used to measure the accuracy of the model.

RMSE is the residual sum of squares of all calculated values, followed by the square
root, which is used to indicate the accuracy of the calculated values. It can be expressed by
Equation (11):

RMSE =

√
1
n

n

∑
i=1

(yci − yoi )
2 (11)

Where n is number of test samples, yci is the calculated value of the model, and yoi is
observed value. The closer the RMSE is to 0, the higher the accuracy of the model.

Meanwhile, the overall calculation can be measured by the distribution of calculated
values and the observed values of test samples, fitting the linear relationship between them
and measuring the correlation coefficient between calculated values and observed values.
Theoretically, the coefficient is between −1 and 1. The closer the coefficient is to 1, the better
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the linear relationship between the calculated value and the observed value, the smaller the
overall difference between the two values, and the better the calculation accuracy of the model.

4. Results and Discussion
4.1. Data Preparation

Take the line loss calculation of 23,754 low-voltage grids in a specific area as an example.
Characteristic factors of each low-voltage grid are calculated once a day and the derived
results are treated as one sample record. In the end, 166,283 samples are accumulated from
7 continuous days. After cleaning, these samples will be divided into two parts: one part is
the training sample, accounting for 80%, and the other part is the test sample, accounting
for 20%. The accuracy of the model was evaluated by the RMSE of the test sample.

During the process of abnormal data cleaning, it is found that the calculated data of
characteristic factors present lots of abnormalities, due to data collection issues and non-
uniform data quality. Furthermore, factors like power supply radius and low voltage line
length are missing in some low-voltage grids due to different documentation management
levels in different grids. Therefore, a reasonable range of various characteristic factors
is formed with considerations of electrical characteristic calculation principles and low-
voltage grid design regulations. Meanwhile, abnormal sample data out of range are cleaned.
The cleaning and screening conditions of each characteristic factor are shown in Table 3.

Table 3. Cleaning rules of characteristic factors.

Characteristic Factors Cleaning Rules

Power supply radius X1 [200, 800]
Total line length X2 [500, 10,000]
User numbers X3 [50, 500]

Load rate X4 [5, 60]
Three-phase unbalance degree X5 [0, 200]

Load shape factor X6 (0, 20]
Power factor X7 [0.8, 1]

Power supply torque X8 [0, 16,000]

After cleaning, 6708 data samples are retained, which only constitute 4.03% of original
low-voltage grid samples. This is due to massive sample abnormalities and missing data
caused by data management level issues in the original sample sets.

4.2. Analysis Based on Traditional Random Forest in High Cleaning Rate

Feed the cleaned sample data as original data into the random forest algorithm model.
Select the numbers of leaf nodes and decision trees in the random forest model with
RMSE as the evaluation criteria. Seen from the figure, when the number of decision trees
increases, the root mean square error of the model becomes smaller, and the decreasing
trend gradually slows down, but the complexity of the model does so only gradually.
Meanwhile, when the number of decision trees are the same, the RMSE of the model will
become smaller with fewer leaf nodes. Finally, considering the accuracy of the model
and the complexity of the model, the optimal number of leaf nodes and decision trees are
selected. In this situation, the final leaf nodes’ number is 5 and the decision tree’s number
is 85, while optimum RMSE is 1.3239, as shown in Figure 8.

Figure 9 shows the distribution of the model calculated value and the observed value of
the test samples, with the relatively obvious linear correlation between the model calculated
value and the observed value shown. The correlation coefficient is only 0.4522. The experi-
mental results demonstrate that the prediction accuracy is acceptable. Excellent calculation
accuracy is obtained in a high distribution density range of [1, 5], while calculation accuracy
is low in a low distribution density range of [5, 8]. This results from massive samples being
removed in the low distribution density range during the process of force cleaning.
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Figure 8. Parameter selection of random forest (cleaning rate 95.97%). 
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4.3. Analysis Based on Traditional Random Forest in Lower Cleaning Rate

Therefore, samples need to be retained as much as possible considering the calculation
results of various characteristic factors. As in Figure 10, by analyzing the distribution of
various characteristic factors, it is found that the line length of 17% low-voltage grids is
zero, which obviously is not true. Meanwhile, a power factor of 33% low-voltage grids is
zero while load shape factor of 14.75% low-voltage grids is also zero, which are against
practical operation rules of low-voltage grids. A three-phase unbalance degree of 4.5%
low-voltage grids is, besides, actually higher than 200, which does not comply with the
calculation principle of the three-phase unbalance degree in low-voltage grids.

Although data missing and abnormality exist in the mass of sample sets, much useful
information disappears if a forced cleaning strategy is implemented, and model accuracy is
influenced. By removing abnormal samples not complying with characteristic calculation
principles and preserving those samples with partial properties, 89,067 of data samples are
retained, which constitute 53.56% of the total samples. The cleaned sample data are fed
into the modified random forest algorithm model. As shown in Figure 11, the leaf node
number is set to 5, while the number of decision trees is 110 and optimum RMSE is 1.7319.
Model fitting error is much higher than when the forced cleaning strategy is used.

As shown in Figure 12, from the distribution diagram of the model calculated value
and the observed value of test samples, a certain linear correlation between the model
calculated value and the observed value is shown. The correlation coefficient is only 0.4166,
representing the relatively low accuracy of the model prediction. Good calculation accuracy
is achieved in the high distribution density range of [1, 4] and a lack of the minimum
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accuracy in the range of [0, 1] and [4, 8]. The experimental results above demonstrate
that the fitting accuracy in the low distribution density range is not improved when the
cleaning rate of abnormal samples drops. On the contrary, the performance of the model is
influenced due to the longer training time caused by the larger training sample size.
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4.4. Analysis Based on Improved Random Forest in Lower Cleaning Rate

When the cleaned sample data as the original data is fed into the modified random
forest algorithm model, as shown in Figure 13, the leaf node number is set to 5, while the
number of decision trees is 75, and optimum RMSE is 1.2639.
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The calculated value and observed value of test samples are distributed in Figure 14.
Obviously, there is a linear correlation between the model calculated value and the observed
value. The correlation coefficient is 0.6733. Excellent linear correlation features appear both
in the high distribution density range of [1, 5] and the low distribution density range of [5, 8].
It is verified that the model prediction performance can meet the accuracy requirement of
the theoretical line loss model for low-voltage grids.
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Figure 14. Calculation results based on modified random forest (cleaning rate 46.44%).

4.5. Discussion

As demonstrated by the results, the improved random forest method, by optimizing
the decision tree, can help improve the accuracy of the theoretical line loss calculation when
samples are missing in large amounts. The results of the abovementioned methods are
compared in Table 4.
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Table 4. Results of different methods.

Cleaning Rate RMSE Correlation Coefficient

BPNN 95.97% 1.9875 0.4021
SVM 95.97% 1.7621 0.4978
KNN 95.97% 2.0255 0.3687

RF 95.97% 1.3239 0.4522
RF 46.44% 1.7319 0.4366

Proposed Method 46.44% 1.2639 0.6733

The results can be summarized as follows:

(1) According to definitions and calculation principles of electrical characteristics for low-
voltage grids, a reasonable range of various characteristic are formed. The cleaning of
abnormal sample data out of range is then performed. With the change of the sample
data cleaning rule, model training effects using the random forest algorithm under
the cleaning rates of 95.57% and 46.44% are compared. The accuracy errors of the
model are 1.3239 and 1.7319, respectively.

(2) The issue of the characteristic factor missing using modified random forest algorithm
is solved. Furthermore, the model is trained by the modified random algorithm, and
model accuracy error is only 1.2161 compared to other approaches when the sample
data cleaning rate is 46.44%.

(3) Correlation between the model calculated value and the observed value reached
0.6711 when the improved random forest algorithm was used in the situation of a
lower sample cleaning rate, which was much higher than the other two situations
(0.4522 and 0.4366). Meanwhile, it can also show the good calculation accuracy of
improved random forest algorithm in different line loss intervals.

(4) More characteristic samples can be preserved when using the modified random forest
algorithm to deal with samples featuring characteristics missing than by using forced
cleaning. Therefore, better accuracy can be obtained during model training and
calculation, which demonstrates that it is more effective to calculate and analyze
low-voltage grids’ theoretical line loss using the method proposed in this paper.

5. Conclusions

In this paper, an improved random forest method was proposed for the calculation of
theoretical line loss in low-voltage grids. The main work of this paper included the following:

(1) The reasonable electric characteristic factors of the low-voltage grids were constructed
according to the physical and operational influencing mechanism of theoretical line
loss. The concept of power supply torque was proposed for the first time to analyze
the influence mechanism more accurately by coupling the physical factors and the
operational factors.

(2) The random forest algorithm was improved by modifying the property classifying
process of the decision tree and optimizing the weight factor allocation method
when sample data is missing. The problems of a high characteristic data integrity
requirement was solved and the accuracy of the model was improved when a large
amount of samples are missing. When the sample data cleaning rate changes from
95.57% to 46.44%, the accuracy of the traditional random forest increases from 1.3239
to 1.7319. However, the accuracy error of the improved random forest is only 1.2161
when the classifying process of the decision tree is modified.

We conclude that the proposed method can more accurately calculate the theoretical
line loss of low-voltage grids when samples are missing in a large amount due to the
different management of basic data in different areas. Further work may aim at optimizing
the parameters of the algorithm model according to other data problems constantly found
in practical application so as to improve the accuracy of the theoretical line loss and guide
the actual loss reduction work more accurately.



Energies 2023, 16, 2971 15 of 16

Author Contributions: Conceptualization, L.H. and G.Z.; methodology, L.H.; validation, J.Z., Y.Z.
and L.L.; formal analysis, L.H.; investigation, L.H.; resources, J.Z.; writing—review and editing, L.H.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Key-Area Research and Development Program of Guangdong
Province under No. 2020B0101130023.

Data Availability Statement: Available when request.

Acknowledgments: The authors would like to express their gratitude for the valuable recommenda-
tions made by the reviewers to improve the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ding, X.H.; Luo, Y.F.; Liu, W.; Shi, L.Z. Proposals on improving the current methods for calculating line losses of distribution

network. Autom. Electr. Power Syst. 2001, 25, 57–60.
2. Fu, X.Q.; Chen, H.Y. Energy losses estimation using equivalent time of average current loss method. Trans. China Electrotech. Soc.

2015, 30, 377–382.
3. Zhang, K.K.; Yang, X.Y.; Bu, C.R.; Ru, W.; Liu, C.J.; Yang, Y.; Chen, Y. Theoretical analysis on distribution network loss based on

load measurement and counter measures to reduce the loss. Proc. CSEE 2013, 33, 59–63.
4. Liu, T.L.; Wang, S.; Zhang, Z.; Zhu, J.F. Newton-Raphson method for theoretical line loss calculation of low-voltage distribution

transformer district by using the load electrical energy. Power Syst. Prot. Control 2015, 43, 143–148.
5. Zhang, Y.; Wu, Y.F.; Zhang, F.; Yao, X.D.; Liu, A.; Tang, L.; Mo, J.G. A real-time three-phase line loss calculation method for

distribution network based on feeder terminal unit. Energy Rep. 2022, 8, 146–152.
6. Zhang, Y.; Zhu, Y.; Bai, X.Q.; Hua, W. CIM-based Data-sharing Scheme for Online Calculation of Theoretical Line Loss. Energy

Procedia 2012, 16, 1619–1626. [CrossRef]
7. Marcio, A.R.; André, L.V.G.; Miguel, E.M.U.; Eduardo, C.G.; Leonardo, M.O.Q. Technical loss estimation approach in power

distribution systems using load model in frequency domain. Electr. Power Syst. Res. 2022, 209, 107982.
8. Bao, H.; Ma, Q. Physical distribution mechanism of network loss for power system. Proc. CSEE 2005, 25, 82–86.
9. Pablo, A.; Matias, A.K.; Selina, K. Flexibility management in the low-voltage distribution grid as a tool in the process of

decarbonization through electrification. Energy Rep. 2022, 8, 248–256.
10. Kim, Y.J. Development and analysis of a sensitivity matrix of a three-phase voltage unbalance factor. IEEE Trans. Power Syst. 2018,

33, 3192–3195. [CrossRef]
11. Dai, Z.; Lin, W. Adaptive estimation of three-phase grid voltage parameters under unbalanced faults and harmonic disturbances.

IEEE Trans. Power Electron. 2017, 32, 5613–5627. [CrossRef]
12. Karami, E.; Gharehpetian, G.B.; Madrigal, M.; Chavez, J.D.J. Dynamic phasor-based analysis of unbalanced three-phase systems

in presence of harmonic distortion. IEEE Trans. Power Syst. 2018, 33, 6642–6654. [CrossRef]
13. Tan, Y.; Wang, Z. Incorporating unbalanced operation constraints of three-phase distributed generation. IEEE Trans. Power Syst.

2019, 34, 2449–2452. [CrossRef]
14. Xu, C.; Song, X.; Tao, Y.; Yang, Q.Q. Research on influencing factors of line loss rate of regional distribution network based on

apriori-interpretative structural model. Energy Rep. 2022, 8, 53–64.
15. Xi, C.; Song, C.H.; Wang, T.R. Spatiotemporal analysis of line loss rate: A case study in China. Energy Rep. 2021, 7, 7048–7059.
16. Wen, F.S.; Han, Z.X. The calculation of energy losses in distribution systems based upon a clustering algorithm and an artificial

neutral network model. Proc. CSEE 1993, 13, 41–50.
17. Jiang, H.L.; An, M.; Liu, X.J.; Zhao, X.; Zhang, J.H. The calculation of energy losses in distribution systems based on RBF network

with dynamic clustering algorithm. Proc. CSEE 2005, 25, 35–39.
18. Li, Y.; Liu, L.P.; Li, B.Q.; Yi, J.; Wang, Z.Z.; Tian, S.M. Calculation of Line Loss Rate in Transformer District Based on Improved

K-Means Clustering Algorithm and BP Neural Network. Proc. Chin. Soc. Electr. Eng. 2016, 36, 4543–4552.
19. Ma, L.Y.; Liu, J.H.; Lu, Z.G.; Wang, H.Y.; Yuan, Q.F.; Yang, L.P. Theoretical line loss calculation method of low voltage transform

district based on deep belief network. Electr. Power Autom. Equip. 2020, 40, 7.
20. Wang, S.X.; Zhou, K.; Su, Y. Line loss rate estimation method of transformer district based on random forest algorithm. Electr.

Power Autom. Equip. 2017, 37, 39–45.
21. Zhao, Q.M. The Calculation of Line Loss Rate in Transformer District Based on Affinity Propagation Algorithm and Random

Forest Regression. Proc. CSU-EPSA 2020, 32, 94–98.
22. Hu, W.; Guo, Q.; Wang, W.; Wang, W.; Song, S. Loss reduction strategy and evaluation system based on reasonable line loss

interval of transformer area. Appl. Energy 2022, 306, 118123. [CrossRef]
23. Bernard, S.; Adam, S.; Heutte, L. Dynamic random forests. Pattern Recognit. Lett. 2012, 33, 1580–1586. [CrossRef]
24. Bonissone, P.; Cadenas, J.M.; Garrido, M.C.; DíAzvalladares, R.A. A fuzzy random forest. Int. J. Approx. Reason. 2010, 51, 729–747.

[CrossRef]

http://doi.org/10.1016/j.egypro.2012.01.252
http://doi.org/10.1109/TPWRS.2018.2807980
http://doi.org/10.1109/TPEL.2016.2605131
http://doi.org/10.1109/TPWRS.2018.2835820
http://doi.org/10.1109/TPWRS.2019.2895559
http://doi.org/10.1016/j.apenergy.2021.118123
http://doi.org/10.1016/j.patrec.2012.04.003
http://doi.org/10.1016/j.ijar.2010.02.003


Energies 2023, 16, 2971 16 of 16

25. Ibrahim, I.A.; Khatib, T. A novel hybrid model for hourly global solar radiation prediction using random forests technique and
firefly algorithm. Energy Convers. Manag. 2017, 138, 413–425. [CrossRef]

26. Ristin, M.; Guillaumin, M.; Gall, J.; Van, G.L. Incremental learning of random forests for large-scale image classification. IEEE
Trans. Pattern Anal. Mach. Intell. 2016, 38, 490–503. [CrossRef]

27. Anaissi, A.; Kennedy, P.J.; Goyal, M.; Catchpoole, D.R. A balanced iterative random forest for gene selection from microarray
data. BMC Bioinform. 2013, 14, 261. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.enconman.2017.02.006
http://doi.org/10.1109/TPAMI.2015.2459678
http://doi.org/10.1186/1471-2105-14-261

	Introduction 
	Analysis of Characteristic Factors 
	Influence Mechanism of Theoretical Line Loss 
	Qualitative Influence Analysis of the Factors 
	Construction of Characteristic Factors 

	Construction of the Method 
	Model Based on Traditional Random Forest 
	Improved Random Forest Algorithm 
	Evaluation of the Algorithm 

	Results and Discussion 
	Data Preparation 
	Analysis Based on Traditional Random Forest in High Cleaning Rate 
	Analysis Based on Traditional Random Forest in Lower Cleaning Rate 
	Analysis Based on Improved Random Forest in Lower Cleaning Rate 
	Discussion 

	Conclusions 
	References

